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Bayesian Statistics Without Tears: 

A Sampling-Resampling Perspective 

A. F. M. SMITH and A. E. GELFAND* 

Even to the initiated, statistical calculations based on 

Bayes's Theorem can be daunting because of the nu­

merical integrations required in all but the simplest ap­

plications. Moreover, from a teaching perspective, in­

troductions to Bayesian statistics-if they are given at 

all-are circumscribed by these apparent calculational 

difficulties. Here we offer a straightforward sampling­

resampling perspective on Bayesian inference, which 

has both pedagogic appeal and suggests easily imple­
mented calculation strategies. 

KEY WORDS: Bayesian inference; Exploratory data 
analysis; Graphical methods; Influence; Posterior dis­

tribution; Prediction; Prior distribution; Random var­

iate generation; Sampling-resampling techniques; Sen­

sitivity analysis; Weighted bootstrap. 

1. INTRODUCTION 

Given data x obtained under a parametric model in­
dexed by finite-dimensional e, the Bayesian learning 

process is based on 

p(elx) 
lee; x)p(e) 

(1.1) 

J lee; x)p(e) de' 

the familiar form of Bayes's Theorem, relating the pos­

terior distribution p(elx) to the likelihood lee; x), and 
the prior distribution is p( e). If e = (</>, 1/1), with interest 

centering on </>, the joint posterior distribution is mar­

ginalized to give the posterior distribution for </>, 

p(</>Ix) = J pc</>, t/Jlx) dl/l. (1.2) 

If summary inferences in the form of posterior expec­

tations are required (e.g., posterior means and vari­
ances), these are based on 

E[m(e)lx] = J m(e)p(elx) de, (1.3) 

for suitable choices of m(·). 
Thus, in the continuous case, the integration oper­

ation plays a fundamental role in Bayesian statistics, 
whether it is for calculating the normalizing constant in 
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(1.1), the marginal distribution in (1.2), or the expec­

tation in (1.3). However, except in simple cases, explicit 

evaluation of such integrals will rarely be possible, and 

realistic choices of likelihood and prior will necessitate 

the use of sophisticated numerical integration or ana­

lytic approximation techniques (see, for example, Smith 
et a1. 1985, 1987; Tierney and Kadane, 1986). This can 

pose problems for the applied practitioner seeking rou­

tine, easily implemented procedures. For the student, 
who may already be puzzled and discomforted by the 

intrusion of too much calculus into what ought surely 
to be a simple, intuitive, statistical learning process, this 

can be totally off-putting. 
In the following sections, we address this problem by 

taking a new look at Bayes's Theorem from a sampling­

resampling perspective. This will open the way to both 

easily implemented calculations and essentially calculus­

free insight into the mechanics and uses of Bayes's 

Theorem. 

2. FROM DENSITIES TO SAMPLES 

As a first step, we note the essential duality between 

a sample and the density (distribution) from which it is 

generated. Clearly, the density generates the sample; 

conversely, given a sample we can approximately re­
create the density (as a histogram, a kernel density 

estimate, an empirical cdf, or whatever). 
Suppose we now shift the focus in (1.1) from densities 

to samples. In terms of densities, the inference process 

is encapsulated in the updating of the prior density p( e) 
to the posterior density p(Olx) through the medium of 

the likelihood function 1(0; x). Shifting to samples, this 

corresponds to the updating of a sample from p( e) to 

a sample from p( elx) through the likelihood function 

lee; x). 
In Section 3, we examine two resampling ideas that 

provide techniques whereby samples from one distri­

bution may be modified to form samples from another 

distribution. In Section 4, we illustrate how these ideas 

may be utilized to modify prior samples to posterior 

samples, as well as to modify posterior samples arising 

under one model specification to posterior samples aris­
ing under another. An illustrative example is provided 

in Section 5. 

3. TWO RESAMPLING METHODS 

Suppose that a sample of random variates is easily 

generated, or has already been generated, from a con­

tinuous density gee), but that what is really required is 

a sample from a density h( e) absolutely continuous with 
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respect to g( &). Can we somehow utilize the sample 

from gee) to form a sample from h(e)? Slightly more 

generally, given a positive function f( e) which is nor­

malizable to such a density h( e) = f( e)/ ff( e) de, can 

we form a sample from the latter given only a sample 

from g( e) and the functional form of f( e)? 

3.1 Random Variates via the Rejection Method 

In the case where there exists an identifiable constant 

M> Osuch thatf(e)/g(e) :s M, for all e, the answer is 

yes to both questions, and the procedure is as follows: 

1. Generate e from g( e). 
2. Generate u from uniform CO, 1). 

3. If u :s f( e)/ Mg( e), accept e; otherwise, repeat Steps 

1-3. 

Any accepted e is then a random variate from 

h(e) = fee) / f fee) de. 

The proof (see also Ripley 1986, p. 60) is straight­

forward. 

Let 

So = lee, u): e:s e[), u :s f(e)/Mg(e)], 

and let 

5 = lee, u): u :s fce)/Mg(e)]. 

Then the cdf of accepted e, according to the preceding 

procedure, is 

Pre e :s eol e accepted) 
Pre e :s eo, e accepted) 

Pre e accepted) 

f f Iso . g( e) du de 

f f Is . g( e) du de 

r(~f(e)de 

i:x fee) de' 

It follows that accepted e have density h( e) :x f( e). 
Hence, for a sample e;, i = 1, ... , n, from gee), in 

resampling to obtain a sample from h( e) we will tend 

to retain those ei for which the ratio of f relative to g 

is large, in agreement with intuition. The resulting sam­

ple size is, of course, random, and the probability that 

an individual item is accepted is given by 

Pre e accepted) = f f Is . g( e) du de 

= M- 1 i:x f(x) dx. 

The expected sample size for the resampled e;,s is there­

fore M-1 n f~x f(x) dx. 

3.2 Random Variates via a Weighted Bootstrap 

In cases where the bound M required in the preceding 

procedure is not readily available, we may still approx­

imately resample from h( e) = f( e)/ ff( e) de as follows. 

Given ei , i = 1, ... , n, a sample from g, calculate 

Wi = f( ei)/g( e;) and then 

Draw e* from the discrete distribution over {e1 , ••• , 

en} placing mass q; o~ e;. Then e* is approximately 

distributed according to h with the approximation "im­

proving" as n increases. We provide a justification for 

this claim in a moment. However, first note that this 

procedure is a variant of the by now familiar bootstrap 

resampling procedure (Efron 1982). The usual boot­

strap provides equally likely resampling of the e;, while 

here we have weighted resampling with weights deter­

mined by the ratio of f:g, again in agreement with in­

tuition. See also Rubin (1988), who referred to this 

procedure as SIR (sampling/importance resampling). 

Returning to our claim, suppose for convenience that 

e is univariate. Under the customary bootstrap, e* has 

cdf 

Pr(e* :s a) 

so that e* is approximately distributed as an observation 

from gee). Similarly, under the weighted bootstrap, e* 

has cdf 

n 

Pre e* :s a) = 2: q)( _ x,a)( e;) 
i= 1 

fJce)de a r = L h(6)d6 
f( e) de 

-x 

so that e* is approximately distributed as an observation 

from h. Note that the sample size under such resampling 

can be as large as desired. We mention one important 

caveat. The less h resembles g, the larger the sample 

size n will need to be in order that the distribution of 

e* well approximates h. 

Finally, the fact that either resampling method allows 

h to be known only up to proportionality constant (i.e., 

only through f) is crucial, since in our Bayesian appli­

cations we wish to avoid the integration required to 
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standardize f. (Although, from the preceding, we can 

see that 

i=l 

provides a consistent estimator of the normalizing 

constant 

if such be required.) 

4. BA YESIAN CALCULATIONS VIA 

SAMPLING - RESAMPLING 

Both methods of the previous section may be used 

to resample the posterior (h) from the prior (g) and 

also to res ample a second posterior (h) from a first (g). 

In this section we give details of both applications. 

4.1 Prior to Posterior 

How does Bayes's Theorem generate a posterior sam­

ple from a prior sample? For fixed x, defir;e IxC 8) = 

1(8; x)p(8). If 0 maximizes 1(8; x), let M = 1(8; x). Then 

with g( 8) = p( 8), we may immediately apply the re­

jection method of Section 3.1 to obtain samples from 

the density corresponding to the standardized lx, which, 

from (1.1), is precisely the posterior density p(8Ix). Thus, 

we see that Bayes's Theorem, as a mechanism for gen­

erating a posterior sample from a prior sample, takes 

the following simple form: for each 8 in the prior sample 

accept 8 into the posterior sample with probability 

Ix(8) l(8; x) 

Mp(8) = 1(0; x)' 

otherwise reject it. 

The likelihood therefore acts as a resampling prob­

ability; those 8 in the prior sample having high likeli­

hood are more likely to be retained in the posterior 

sample. Of course, since p(8Ix) ex 1(8, x)p(8), we can 

also straightforwardly res ample using the weighted 

bootstrap with 

qi = l(8i; x) Iftl l(8j ; x). 

Several obvious uses of this sampling-resampling 

perspective are immediate. Using large prior s~mp~es 

and iterating the resampling process for succeSSIve 10-

dividual data elements-for two-dimensional e, say­

provides a simple pedagogic tool for illustrating the 

sequential Bayesian learning process, as well as the in­

creasing concentration of the posterior as the amount 

of data increases. In addition, the approach provides 

natural links with elementary~graphical displays (e.g., 

histograms, stem-and-leaf displays, boxplots to sum­

marize univariate marginal posterior distributions, scat­

terplots to summarize bivariate posteriors). In general, 

the translation from functions to samples provides a 
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wealth of opportunities for creative exploration of 

Bayesian ideas and calculations in the settin? of com­

puter graphical and exploratory data analysIs (EDA) 

tools. 

4.2 Posterior to Posterior 

An important issue in Bayesian inference is sensitivity 

of inferences to model specification. In particular, we 

might ask: 

1. How does the posterior change if we change the 

prior? 

2. How does the posterior change if we change the 

likelihood? 

In the density function/numerical integration setting, 

such sensitivity studies are rather off-putting, in that 

each change of a functional input typically requires one 

to carry out new calculations from scratch. This is not 

the case with the sampling-resampling approach, as we 

now illustrate in relation to the questions posed above. 

In~ comparing two models in relation to the second 

'question, we note that change in likelihood may arise 

in terms of: 

1. change in distributional specification with 8 re­

taining the same interpretation, for example, a location 

2. change in data to a larger data set (prediction), a 

smaller data set (diagnostics), or a different data set 

(validation) 

To unify notation, we shall in either case denote two 

likelihoods by 11(8) and 12( 8). We denote two different 

priors to be compared in relation to the first question 

by PI (8) and pZC 8). For complete generality, we shall 

consider changes to both I and p, although in any par­

ticular application we would not typically change both. 

Denoting the corresponding posterior densities by PI(8), 

pZC 8), we easily see that 

- (8) ex 12(8)p2(8) . - (8) (4.1) 
P2 11(8)PI(8) PI . 

Letting v( 8) = l2( 8)pzC 8)/11 (8)PI (8), we note that to 

implement the rejection method for (4.1) requires 

sup v(8). 
e 

In many examples this will simplify to an easy calcu­

lation. Alternatively, we may directly apply the weighted 

bootstrap method taking g = PI(8),f = v(8)PI(8), and 

Wi = v( 8;). Resampled 8* will then be approximately 

distributed according to I standardized, which is pre­

cisely P2( 8). 

Again, different aspects of the sensitivity of the pos­

teriors to changes in inputs are easily studied by graph­

ical examination of the posterior samples. 

5. AN ILLUSTRATIVE EXAMPLE 

To illustrate the passage, via Bayes's Theorem, from 

a prior sample to a posterior sample, we consider a two-

ugenjlf
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ugenjlf
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parameter problem first considered by McCullagh and 

NeIder (1989, sec. 9.3.3). 

For i = 1,2,3, suppose that Xi] ~ Binomial(nij , 8j) 

and X iZ ~ Binomial(niz , 8z), conditionally independent 

given 8j , 8z, with nij, niZ specified. Suppose further that 

the observed random variables are Yi = Xij + X i2 , i = 

1,2,3, so that the likelihood for 81, 82 given Yj = Yj, 

Y2 = Yz and Y3 = Y3 takes the form: 

TI L n.il ni2 . 3 [ ()( ) 
i=1 ii }; Yi - Ji 

x 8i1(1 - 8jtil~Y'8~i~ii(1 - 8Z)"2~Y'+ii], 

where max{O, Yi - niZ} :5 ji :5 min{nij' yJ 
The data considered by McCullagh and NeIder are 

the following: 

123 

nij 5 6 4 

niZ 5 4 6 

Yi 7 5 6 

For purposes of illustration, we take the joint prior 

distribution for 8j, 8z to be uniform over the unit square. 

In accordance with the shift to a sampling perspective 

that constitutes our fundamental message in this article, 

Figure 1 presents a scatterplot of points uniformly drawn 

from the unit square, together with summary histo­

grams confirming the uniform "shape" of the prior mar­

ginals for 81 and 8z. 

We now proceed to generate a posterior sample by 

resampling from the prior sample. For this illustration, 

the weighted bootstrap procedure was used and resulted 

in the posterior sample scatterplot shown in Figure 2, 

together with summary histograms of the posterior mar­

ginals for 81 and 8z. General features of the posterior 

are easily identified from this picture-for example, 
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Figure 1. Sample from Prior. 
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Figure 2. Sample from Posterior. 

the marginal locations and spreads of inferences for the 

two parameters, together with the negative correlation 

and slight bimodality, which reflects the ambiguity re­

sulting from observations in the form of sums of bi­

nomial outcomes. 

Numerical summaries-in the form of posterior mo­

ments, quantiles, or whatever-are trivially obtained, 

if required, by forming corresponding sample quantities 

in the obvious way. 

A further flexible and straightforwardly implemented 

feature of the sample-based approach is that posterior 

inferences can be trivially reexpressed in terms of any 

reparameterization of interest. For example, the logit 

(log-odds) reparameterization is often of interest in 

problems involving binomial data, so that, in the above, 

it might be of interest to recalculate the joint and mar-

10 

o 

·5 o 

log [8.1(1 - 9,l] 

Figure 3. Sample from Transformed Posterior. 
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ginal posteriors for the parameters log [8;1(1 - 8;)], i = 

1, 2. The sample for 81 , 82 translates directly into a 

sample from the logit transformed parameters and re­

sults in the summary picture given in Figure 3. We note 

that the forms of joint posterior revealed in Figures 2 

and 3 are far from "nice" and would require subtle 

numerical handling by the nonsampling approaches cited 

in the Introduction. 

So far as choice of sample sizes for initial and res am­

pIes is concerned, this will typically be a matter of ex­

perimentation with particular applications, having in 

mind the level of "precision" required from pictorial or 

numerical summaries. For example, in Figure 1 we dis­

play 1,000 sample points as an effective pictorial rep­

resentation. However, the resampling ratio needs to be 

at least 1 in 10, with some 2,000 points plotted in Figures 

2 and 3 to convey adequately these awkward posterior 

forms. The actual generated sample from the prior thus 

needed to be in excess of 20,000 points. 

Clearly, there is considerable scope for more refined 

graphical outputs in terms of joint density contours, 

kernel density curves, and so on. We encourage readers 

to be creative in fusing EDA and graphical techniques 
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with the sample-based approach to formal inference 

presented here. 

[Received May 1990. Revised January 1991.) 
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