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Bayesian structural inference for hidden processes
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1Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis,

California 95616, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

(Received 10 September 2013; published 10 April 2014)

We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed

method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM)

topologies for inference of process structure from a data series. We employ a recently developed exact enumeration

of topological ǫ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM

topologies has the added benefit that inferred models are guaranteed to be ǫ-machines, irrespective of estimated

transition probabilities. Properties of ǫ-machines and uHMMs allow for the derivation of analytic expressions

for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate

model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI’s

effectiveness in estimating a process’s randomness, as reflected by the Shannon entropy rate, and its structure, as

quantified by the statistical complexity. We also compare using the posterior distribution over candidate models

and the single, maximum a posteriori model for point estimation and show that the former more accurately

reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov

processes, as well to an out-of-class, infinite-state hidden process.

DOI: 10.1103/PhysRevE.89.042119 PACS number(s): 02.50.Ga, 05.45.Tp, 02.50.Ey

I. INTRODUCTION

Emergent patterns are a hallmark of complex, adaptive
behavior, whether exhibited by natural or designed systems.
Practically, discovering and quantifying the structures making
up emergent patterns from a sequence of observations lies
at the heart of our ability to understand, predict, and control
the world. But what are the statistical signatures of struc-
ture? A common modeling assumption is that observations
are independent and identically distributed (IID). This is
tantamount, though, to assuming a system is structureless.
Therefore, pattern discovery depends critically on testing
when the IID assumption is violated. Said more directly,
successful pattern discovery extracts the (typically hidden)
mechanisms that create departures from IID structurelessness.
In many applications, the search for structure is made all
the more challenging by limited available data. The very real
consequences, when pattern discovery is done incorrectly with
finite data, are that structure can be mistaken for randomness
and randomness for structure.

The search for meaningful or appropriate structure to
describe the mechanisms generating observed data is funda-
mental to all areas of science. Due to this central importance, a
wide variety of approaches to finding structure or topology
has resulted from focusing on different types of data, as
well as from varying assumptions about the appropriate type
of mathematical model for the system of interest. Before
introducing a specific type of data and our model classes,
it is helpful to point the interested reader to complementary
efforts on structural inference. Examples include employing
information-theoretic measures to infer nonlinear ordinary
differential equations (ODEs) [1] and particle filtering to infer

*strelioff@ucdavis.edu
†chaos@ucdavis.edu

ODEs and continuous-time Markov processes [2], as well as a
variety of hybrid Bayesian techniques [3,4]. Beyond specific
methods of structural inference, some have discussed why
modeling works and how it can be difficult [5,6]. Though
incomplete as a broad overview of structural inference in
different settings, the above references and citations therein
provide a useful starting point.

Here, we develop an approach to pattern discovery that
attempts to remove the confusions between randomness and
structure, focusing on data series consisting of a sequence of
symbols from a finite alphabet. That is, we wish to discover
temporal patterns, as they occur in discrete-time and discrete-
state time series. (The approach also applies to spatial data
exhibiting one-dimensional patterns.) Inferring structure from
data series of this type is integral to many fields of science rang-
ing from bioinformatics [7,8], dynamical systems [9–12], and
linguistics [13,14] to single-molecule spectroscopy [15,16],
neuroscience [17,18], and crystallography [19,20]. Inferred
structure assumes a meaning distinctive to each field. For
example, in single-molecule dynamics structure reflects stable
molecular configurations, as well as the rates and types
of transition between them. In the study of coarse-grained
dynamical systems and linguistics, structure often reflects
forbidden words and relative frequencies of symbolic strings
that make the language or dynamical system functional. Thus,
the results of successful pattern discovery teach one much more
about a process than models that are only highly predictive.

Our goal is to infer structure using a finite data sample
from some process of interest and a set of candidate ǫ-machine
model topologies. This choice of model class is made because
ǫ-machines provide optimal prediction as well as being a
minimal and unique representation [21]. In addition, given an
ǫ-machine, structure and randomness can be quantified using
the statistical complexity Cμ and Shannon entropy rate hμ.
Previous efforts to infer ǫ-machines from finite data include
subtree merging (SM) [22], ǫ-machine spectral reconstruction
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(ǫMSR) [23], and causal-state splitting reconstruction
(CSSR) [24,25]. These methods produce a single, best estimate
of the appropriate ǫ-machine given the available data.

The following develops a distinctively different approach
to the problem of structural inference—Bayesian structural
inference (BSI). BSI requires a data series D and a set of candi-
date unifilar hidden Markov model (uHMM) topologies, which
we denote M. However, for our present goal of introducing
BSI, we consider only a subset of unifilar hidden Markov
models—the topological ǫ-machines—that are guaranteed to
be ǫ-machines irrespective of estimated transition probabil-
ities [26]. Unlike the inference methods cited above, BSI’s
output is not a single best estimate. Instead, BSI determines
the posterior probability of each model topology conditioned
on D and M. One result is that many model topologies are
viable candidates for a given data set. The shorter the data
series, the more prominent this effect becomes. We argue, in
this light, that the most careful approach to structural inference
and estimation is to use the complete set of model topologies
according to their posterior probability. Another consequence,
familiar in a Bayesian setting, is that principled estimates of
uncertainty—including uncertainty in model topology—can
be straightforwardly obtained from the posterior distribution.

The methods developed here draw from several fields,
ranging from computational mechanics [21] and dynamical
systems [27–29] to methods of Bayesian statistical infer-
ence [30]. As a result, elements of the following will be
unfamiliar to some readers. To create a bridge, we provide an
informal overview of foundational concepts in Sec. II before
moving to BSI’s technical details in Sec. III.

II. PROCESS STRUCTURE, MODEL TOPOLOGIES,

AND FINITE DATA

To start, we offer a nontechnical introduction to structural
inference to be clear how we distinguish (i) a process and its
inherent structure from (ii) model topology and these from
(iii) sampled data series. A process represents all possible
behaviors of a system of interest. It is the object of our focus.
Saying that we infer structure means we want to find the
process’s organization—the internal mechanisms that generate
its observed behavior. However, in any empirical setting we
only have samples of the process’s behavior in the form of finite
data series. A data series necessarily provides an incomplete
picture of the process due to the finite nature of the observation.
Finally, we use a model or, more precisely, a model topology
to express the process’s structure. The model topology—the
set of states and transitions, their connections, and observed
output symbols—explicitly represents the process’s structure.
Typically, there are many model topologies that accurately
describe the probabilistic structure of a given process. ǫ-
Machines are special within the set of accurate models,
however, in that they are the model topology that provides
the unique and minimal representation of process structure.

To ground this further, let us graphically survey different
model topologies and consider what processes they represent
and how they generate finite data samples. Figure 1 shows
models with one or two states that generate binary processes—
observed behavior is a sequence of 0s and 1s. For example, the
smallest model topology is shown in Fig. 1(a) and represents

the IID binary process. This model generates data by starting
in state A and outputs a 0 with probability p and a 1 with
probability 1 − p, always returning to state A.

A more complex model topology, shown in Fig. 1(g), has
two states and four edges. In this case, when the model is in
state A it generates a 0 with probability p and returns to state A

or it generates a 1 with probability 1 − p and moves to state B.
When in state B, a 0 is generated with probability q and 1 with
probability 1 − q, moving to state A in both cases. If p �= q

this model topology represents a unique, structured process.
However, if p = q the probability of generating a 0 or 1 does
not depend on states A and B and the resulting process is
IID. Thus, this model topology with p = q becomes an overly
verbose representation of the IID process, which requires only
a single state—the topology of Fig. 1(a). This setting of the
transition probabilities is an example where a model topology
describes the probabilistic behavior of a process but does not
reflect the structure. In fact, the model topology in Fig. 1(g) is
not an ǫ-machine when p = q. Rather, the process structure is
properly represented by Fig. 1(a), which is.

This example and other cases where specific model topolo-
gies are not minimal and unique representations of a process’s
structure motivate identifying a subclass of model topologies.
All model topologies in Fig. 1 are unifilar hidden Markov
models (defined shortly). However, the six model topologies
with two states and four edges, Fig. 1(g)–1(i) and 1(l)–1(n),
are not minimal when p = q. As with the previous example,
they all become overly complex representations of the IID
process for this parameter setting. Excluding these uHMMs
leaves a subset of topologies called topological ǫ-machines,
Fig. 1(a)–1(f), 1(j), and 1(k), that are guaranteed to be
minimal and unique representations of process structure for
any transition probabilities setting, other than 0 or 1. Partly to
emphasize the role of process structure and partly to simplify
technicalities, in this first introduction to BSI we only consider
topological ǫ-machines. A sequel lifts this restriction, adapting
BSI to work with all ǫ-machines.

In this way, we see how a process’s structure is expressed
in model topology and how possible ambiguities arise. This
is the forward problem of statistical inference. Now consider
the complementary inverse problem: Given an observed data
series, find the model topology that most effectively describes
the unknown process structure. In a Bayesian setting, the first
step is to identify those model topologies that can generate
the observed data. As just discussed, we do this by choosing a
specific model topology and start state and attempting to trace
the hidden-state path through the model, using the observed
symbols to determine the edges to follow. If there is a path
for at least one start state, the model topology is a viable
candidate. This process is repeated for each model topology in
a specified set, such as that displayed in Fig. 1. The procedure
that lists, and tests, model topologies in a set of candidates
we call enumeration.

To clarify the procedure for tracing hidden-state paths let
us consider a specific example of observed data consisting of
the following short binary sequence:

11101100111101111001. (1)

If tested against each candidate in Fig. 1, 8 of the 14 model
topologies are possible: (a), (e), (g)–(i), and (l)–(n). For
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(a) n1k2id3

A p|01 − p|1

(b) n2k2id3

A

B

1|1 1|0

(c) n2k2id4

A

B

1|1 p|0 1 − p|1

(d) n2k2id5

A

B

1|1 p|0

1 − p|1

(e) n2k2id7

A

B

1|1 1 − p|1

p|0

(f) n2k2id12

A

B

p|0

1 − p|1 1|0

(g) n2k2id13

A

B

p|0

1 − p|1 q|0

1 − q|1

(h) n2k2id14

A

B

p|0

1 − p|1

q|0

1 − q|1

(i) n2k2id16

A

B

p|0

1 − p|1 1 − q|1

q|0

(j)n2k2id22

A

B

1|0 p|0 1 − p|1

(k) n2k2id23

A

B

1|0 p|0

1 − p|1

(l) n2k2id31

A

B

1 − p|1

p|0 q|0 1 − q|1

(m) n2k2id32

A

B

1 − p|1

p|0 q|0

1 − q|1

(n) n2k2id40

A

B

1 − p|1 p|0 1 − q|1q|0

FIG. 1. (Color online) All binary, unifilar hidden Markov model topologies with one or two states. Each topology, designated (a) through

(n), also has a unique label that provides the number of states n = 1,2, the alphabet size k = 2, and a unique id that comes from the algorithm

used to enumerate all possible model topologies [26]. Model edges are labeled with a transition probability and output symbol using the

following format: probability | symbol.

example, using Fig. 1(i) and starting in state A, the observed
data are generated by the hidden-state path as follows:

ABABBABBBABABBABABBBA. (2)

One way to describe this path—one that is central to statistical
estimation—is to count the number of times each edge in the
model was traversed. Using n(σ x |σ0) to denote the number
of times that symbol x is generated using an edge from
state σ given that the sequence starts in state σ0, we obtain
n(A0|A) = 0, n(A1|A) = 7, n(B0|A) = 6, and n(B1|A) = 7,
again assuming σ0 = A. Similar paths and sets of edge counts
are found for the eight viable topologies cited above. These
counts are the basis for estimating a topology’s transition and
start-state probabilities. From these, one can then calculate the
probability that each model topology produced the observed
data series—each candidate’s posterior probability.

By way of outlining what is to follow, let us formalize
the procedure just sketched in terms of the primary goal of
estimating candidates’ posterior probabilities. First, Sec. III
recapitulates what is known about the space of structured
processes, reviewing how they are represented as ǫ-machines
and how topological ǫ-machines are exactly enumerated. Then
Sec. IV adapts Bayesian inference methods to this model class,
analyzing transition probability and start-state estimation
for a single, known topology. Next, setting the context for
comparing model topologies, it explores the organization of
the prior over the set M of candidate models. Section IV closes

with a discussion of how to estimate various process statistics
from functions of model parameters. Finally, Sec. V applies
BSI to a series of increasingly complex processes: (i) the
Golden Mean Process, a finite-order Markov process; (ii) the
Even Process, an infinite-order Markov process; and, finally,
(iii) the Simple Nonunifilar Source (SNS), an infinite-memory
process. Although these example processes appear simple
at first glance, the range of dynamics is substantial. The
Golden Mean Process is a simple (first-order) Markov chain,
meaning that each state corresponds to the previous observed
symbol [31]. Although the Even Process has two states when
illustrated as a uHMM, a Markov chain representation would
require an infinite number of states. Finally, the SNS, because
it is nonunifilar, would take an infinite number of states to
represent as a uHMM. This example is truly out of class and it
is not possible to capture the structure of the SNS using the set
of topological ǫ-machines. Given these varied data sources,
we illustrate BSI’s effectiveness by emphasizing its ability to
accurately estimate a process’s randomness (Shannon entropy
rate hμ) in all examples and stored information (statistical
complexity Cμ) in all examples except the SNS.

III. STRUCTURED PROCESSES

We describe a system of interest in terms of its observed
behavior, following the approach of computational mechanics,
as reviewed in Ref. [21]. Again, a process is the collection of
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behaviors that the system produces. A process’s probabilistic
description is a bi-infinite chain of random variables,
denoted by capital letters, . . . Xt−2 Xt−1 Xt Xt+1 Xt+2 . . ..
A realization is indicated by lowercase letters,
. . . xt−2 xt−1 xt xt+1 xt+2 . . .. We assume the value xt

belongs to a discrete alphabet X . We work with blocks
Xt :t ′ = Xt . . . Xt ′−1, where the first index is inclusive and the
second exclusive.

ǫ-Machines were originally defined in terms of prediction in
the so-called history formulation [21,22]. Given a past realiza-
tion x−∞:t = . . . xt−2 xt−1 and future random variables Xt :∞ =

Xt Xt+1 . . ., the conditional distributions P(Xt :∞|x−∞:t ) define
the predictive equivalence relation over pasts as follows:

x−∞:t ∼ x−∞:t ′ ⇔ P(Xt :∞|x−∞:t ) = P(Xt ′:∞|x−∞:t ′ ). (3)

Within the history formulation, a process determines the
ǫ-machine topology through ∼: The causal states S are its
equivalence classes and these, in turn, induce state-transition
dynamics [21]. This way of connecting a process and its
ǫ-machine influenced previous approaches to structural in-
ference [22,25,32].

The ǫ-machine generator formulation, an alternative, was
motivated by the problem of synchronization [33,34]. There an
ǫ-machine topology defines the process that can be generated
by it. Recently, the generator and history formulations were
proven to be equivalent [35]. Although the history view is
sometimes more intuitive, the generator view is useful in a
variety of applications, especially the approach to structural
inference developed here.

Following [33–35], we start with four definitions that
delineate the model classes relevant for temporal pattern
discovery.

Definition 1: A finite-state, edge-labeled hidden Markov
model (HMM) consists of the following:

(1) A finite set of hidden states S = {σ1, . . . ,σN }.
(2) A finite output alphabet X .
(3) A set of N × N symbol-labeled transition matrices

T (x), x ∈ X , where T
(x)
i,j is the probability of transitioning

from state σi to state σj and emitting symbol x. The cor-
responding overall state-to-state transition matrix is denoted
T =

∑

x∈X T (x).
Definition 2: A finite-state, edge-labeled, unifilar HMM

(uHMM) is a finite-state, edge-labeled HMM with the fol-
lowing property:

(1) Unifilarity: For each state σi ∈ S and each symbol x ∈

X there is at most one outgoing edge from state σi that outputs
symbol x.

Definition 3: A finite-state ǫ-machine is a uHMM with the
following property:

(1) Probabilistically distinct states: For each pair of
distinct states σk,σj ∈ S there exists some finite word w =

x0x1 . . . xL−1 such that

P(w|σ0 = σk) �= P(w|σ0 = σj ).

Definition 4: A topological ǫ-machine is a finite-state ǫ-
machine where the transition probabilities for leaving each
state are equal for all outgoing edges.

These definitions provide a hierarchy in the model topolo-
gies to be considered. The most general set (Definition 1)

consists of finite-state, edge-labeled HMM topologies with
few restrictions. These are similar to models employed in
many machine learning and bioinformatics applications; see,
e.g., Ref. [7]. Using Definition 2, the class of HMMs is further
restricted to be unifilar. The inference methods developed here
apply to all model topologies in this class, as well as all more
restricted subclasses. As a point of reference, Fig. 1 shows all
binary, full-alphabet (able to generate both 0s and 1s) uHMM
topologies with one or two states. If all states in the model are
probabilistically distinct, following Definition 3, these model
topologies are also valid generator ǫ-machines. Whether a
uHMM is also a valid ǫ-machine often depends on the specific
transition probabilities for the machine; see Sec. II for an
example. This dependence motivates the final restriction to
topological ǫ-machines (Definition 4), which are guaranteed
to be minimal even if transition probabilities are equal.

Here, we employ the set of topological ǫ-machines for
structural inference. Although specific settings of the transition
probabilities are used to define the set of allowed model
topologies this does not affect the actual inference procedure.
For example, in Fig. 1 only Figs. 1(a)–1(f), 1(j), and 1(k)
are topological ǫ-machines. However, the set of topological
ǫ-machines does exclude a variety of model topologies that
might be useful for general time-series inference. For example,
when Definition 4 is applied, all processes with full support
(all words allowed) reduce to a single-state model. However,
broadening the class of topologies beyond the set considered
here is straightforward and so we address extending the present
methods to them in a sequel. The net result emphasizes
structure arising from the distribution’s support and guarantees
that inferred models can be interpreted as valid ǫ-machines.
And the goal is to present BSI’s essential ideas for one class
of structured processes—the topological ǫ-machines.

The set of topological ǫ-machines can be exactly and
efficiently enumerated [26], motivating the use of this model
class as our first example application of BSI. Table I lists
the number Fn,k of full-alphabet topologies with n = 1, . . . ,5
states and alphabet size k = 2. Compare this table with the
model topologies in Fig. 1, where all n = 1 and n = 2 uHMMs
are shown. Only Fig. 1(a)–1(f), 1(j), and 1(k) are topological ǫ-
machines, accounting for the difference between the 8 models
in Table I and the 14 in Fig. 1. For comparison, the library has
been enumerated up to eight states, containing approximately
2 × 109 distinct topologies. However, for the examples to
follow we employ all 36 660 binary model topologies up to
and including five states as the candidate basis for structural
inference.

TABLE I. Size Fn,2 of the enumerated library of full-

alphabet, binary topological ǫ-machines from one to five

states. Reproduced with permission from Ref. [26].

States ǫ-Machines

n Fn,2

1 1

2 7

3 78

4 1388

5 35 186
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IV. BAYESIAN INFERENCE

Previously, we developed methods for kth-order Markov
chains to infer models of discrete stochastic processes and
coarse-grained continuous chaotic dynamical systems [12,36].
There, we demonstrated that correct models for in-class data
sources could be effectively and parsimoniously estimated. In
addition, we showed that the hidden-state nature of out-of-class
data sources could be extracted via model comparison between
Markov orders as a function of data series length. Notably, we
also found that the entropy rate can be accurately estimated,
even when out-of-class data were considered.

The following extends the Markov chain methods to the
topologically richer model class of unifilar hidden Markov
models. The starting point depends on the unifilar nature of the
HMM topologies considered here (Definition 2)—transitions
from each state have a unique emitted symbol and destination
state. As we demonstrated in Sec. II, unifilarity also means
that, given an assumed start state, an observed data series
corresponds to at most one path through the hidden states.
The ability to directly connect observed data and hidden-state
paths is not possible in the more general class of HMMs
(Definition 1) because they can have many, often exponentially
many, possible hidden paths for a single observed data series.
In contrast, as a result of unifilarity, our analytic methods
previously developed for “nonhidden” Markov chains [36]
can be applied to infer uHMMs and ǫ-machines by adding a
latent (hidden) variable for the unknown start state. We note
in passing that for the more general class of HMMs, including
nonunifilar topologies, there are two approaches to statistical
inference. The first is to convert them to a uHMM (if possible),
using mixed states [37]. The second is to use more conventional
computational methods, such as Baum-Welch [38].

Setting aside these alternatives for now, we formalize the
connection between observed data series and a candidate
uHMM topology discussed in Sec. II. We assume that a data
series D0:T = x0x1 . . . xT −2xT −1 of length T has been obtained
from the process of interest, with xt taking values in a discrete
alphabet X . When a specific model topology and start state
are assumed, a hidden-state sequence corresponding to the
observed data can sometimes, but not always, be found. We
denote a hidden state at time t as σt and a hidden-state sequence
corresponding to D0:T as S0:T +1 = σ0σ1 . . . σT −1σT . Note that
the state sequence is longer than the observed data series since
the start and final states are included. Using this notation, an
observed symbol xt is emitted when transitioning from state σt

to state σt+1. For example, using the observed data in Eq. (1),
a hidden-state path corresponding to Eq. (2) can be obtained
by assuming topology Fig. 1(i) and start state A.

We can now write out the probability of an observed data
series. We assume a stationary uHMM topology Mi with a set
of hidden states σi ∈ S i . We add the subscript i to make it
clear that we are analyzing a set of distinct, enumerated model
topologies. As demonstrated in the example from Sec. II, edge
counts n(σix|σi,0) are obtained by tracing the hidden-state path
given an assumed start state σi,0. Putting this all together, the
probability of observed data D0:T and corresponding state-path
S0:T +1 is as follows:

P(S0:T +1,D0:T ) = p(σi,0)
∏

σi∈S i

∏

x∈X

p(x|σi)
n(σix|σi,0). (4)

A slight manipulation of Eq. (4) lets us write the probability
of observed data and hidden dynamics, given an assumed start
state σi,0, as follows:

P(S0:T +1,D0:T |σi,0) =
∏

σi∈S i

∏

x∈X

p(x|σi)
n(σix|σi,0). (5)

The development of Eq. (5) and the simple example provided
in Sec. II lay the groundwork for our application of Bayesian
methods. That is, given topology Mi and start state σi,0,
the probability of observed data D0:T and hidden dynamics
S0:T +1 can be calculated. For the purposes of inference, the
combination of observed and hidden sequences is our data
D = (D0:T ,S0:T +1).

A. Inferring transition probabilities

The first step is to infer transition probabilities for a single
uHMM or topological ǫ-machine Mi . As noted above, we
must assume a start state σi,0 so edge counts n(σi,x|σi,0)
can be obtained from D0:T . This requirement means that the
inferred transition probabilities also depend on the assumed
start state. At a later stage, when comparing model topologies,
we demonstrate that the uncertainty in start state can be
averaged over.

The set {θi} of parameters to estimate consists of those
transition probabilities defined to be neither one nor zero
by the assumed topology: θi = {0 < p(x|σi,σi,0) < 1 : σi ∈

S∗
i ,σi,0 ∈ S i}, where S∗

i ⊆ S i is the subset of hidden states
with more than one outgoing edge. The resulting likelihood
follows directly from Eq. (5):

P(D|θi,σi,0,Mi) =
∏

σi∈S i

∏

x∈X

p(x|σi,σi,0)n(σi ,x|σi,0). (6)

We note that the set of transition probabilities used in the above
expression are unknown when doing statistical inference.
However, we can still write the probability of the observed
data given a setting for these unknown values, as indicated
by the notation for the likelihood: P(D|θi,σi,0,Mi). Although
not made explicit above, there is also a possibility that the
likelihood vanishes for some, or all, start states if the observed
data is not compatible with the topology. For example, if we
attempt to use Fig. 1(d) for the observed data in Eq. (1) we
find that neither σi,0 = A nor σi,0 = B leads to viable paths
for the observed data, resulting in zero likelihood. For later
use, we denote the number of times a hidden state is visited by
n(σi • |σi,0) =

∑

x∈X n(σi,x|σi,0).
Equation (6) exposes the Markov nature of the dynamics

on the hidden states and suggests adapting the methods we
previously developed for Markov chains [36]. Said simply,
states that corresponded there to histories of length k for
Markov chain models are replaced by a hidden state σi .
Mirroring the earlier approach, we employ a conjugate prior for
transition probabilities. This choice means that the posterior
distribution has the same form as the prior but with modified
parameters. In the present case, the conjugate prior is a product
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of Dirichlet distributions as follows:

P(θi |σi,0,Mi) =
∏

σi∈S∗
i

{

Ŵ(α(σi • |σi,0))
∏

x∈X Ŵ(α(σix|σi,0))

× δ

(

1 −
∑

x∈X

p(x|σi,σi,0)

)

×
∏

x∈X

p(x|σi,σi,0)α(σix|σi,0)−1

}

, (7)

where α(σi • |σi,0) =
∑

x∈X α(σix|σi,0). In the examples to
follow we take α(σix|σi,0) = 1 for all parameters of the prior.
This results in a uniform density over the simplex for all
transition probabilities to be inferred, irrespective of start
state [39].

The product of Dirichlet distributions includes transition
probabilities only from hidden states in S∗

i because these states
have more than one outgoing edge. For transition probabilities
from states σi �∈ S∗

i there is no need for an explicit prior since
the transition probability must be zero or 1 by definition of
the uHMM topology. As a result, the prior expectation for
transition probabilities is as follows:

Eprior[p(x|σi,σi,0)] =
α(σix|σi,0)

α(σi • |σi,0)
, (8)

for states σi ∈ S∗
i .

Next, we employ Bayes’s theorem to obtain the posterior
distribution for the transition probabilities given data and prior
assumptions. In this context, it takes the following form:

P(θi |D,σi,0,Mi) =
P(D|θi,σi,0,Mi)P(θi |σi,0,Mi)

P(D|σi,0,Mi)
. (9)

The terms in the numerator are already specified above as the
likelihood and the prior, Eqs. (6) and (7), respectively.

The normalization factor in Eq. (9) is called the evidence
or marginal likelihood. This term integrates the product of
the likelihood and prior with respect to the set of transition
probabilities θi as follows:

P(D|σi,0,Mi) =

∫

dθi P(D|θi,σi,0,Mi)P(θi |σi,0,Mi)

=
∏

σi∈S∗
i

{

Ŵ(α(σi • |σi,0))
∏

x∈X Ŵ(α(σix|σi,0))

×

∏

x∈X Ŵ(α(σix|σi,0) + n(σix|σi,0))

Ŵ(α(σi • |σi,0) + n(σi • |σi,0))

}

,

(10)

resulting in the average of the likelihood with respect to the
prior. In addition to normalizing the posterior distribution
[Eq. (9)], the evidence is important in our subsequent applica-
tions of Bayes’s theorem. In particular, the quantity is central
to the model selection to follow and is used to (i) determine the
start state given the model and (ii) compare model topologies.

As discussed above, conjugate priors result in a posterior
distribution of the same form, with prior parameters modified

by observed counts as follows:

P (θi |D,σi,0,Mi)

=
∏

σi∈S∗
i

{

Ŵ(α(σi • |σi,0) + n(σi • |σi,0))
∏

x∈X Ŵ(α(σix|σi,0) + n(σix|σi,0))

× δ

(

1 −
∑

x∈X

p(x|σi,σi,0)

)

×
∏

x∈X

p(x|σi,σi,0)α(σix|σi,0)+n(σix|σi,0)−1

}

. (11)

Comparing Eqs. (7) and (11)—prior and posterior,
respectively—shows that the distributions are very similar:
α(σix|σi,0) (prior only) is replaced by α(σix|σi,0) + n(σix|σi,0)
(prior plus data). Thus, one can immediately write down the
posterior mean for the transition probabilities:

Epost[p(x|σi,σi,0)]

=
α(σix|σi,0) + n(σix|σi,0)

α(σi • |σi,0) + n(σi • |σi,0)
, (12)

for states σi ∈ S∗
i . As with the prior, probabilities for transi-

tions from states σi /∈ S∗
i are zero or 1, as defined by the model

topology.
Notably, the posterior mean for the transition probabilities

does not completely specify our knowledge since the uncer-
tainty, reflected in functions of the posterior’s higher moments,
can be large. These moments are available elsewhere [39].
However, using methods detailed below, we employ sampling
from the posterior at this level, as well as other inference levels,
to capture estimation uncertainty.

B. Inferring start states

The next task is to calculate the probabilities for each start
state given a proposed machine topology and observed data.
Although we are not typically interested in the actual start
state, introducing this latent variable is necessary to develop the
previous section’s analytic methods. And, in any case, another
level of Bayes’s theorem allows us to average over uncertainty
in the start state to obtain the probability of observed data for
the topology, independent of start state.

We begin with the evidence P(D|σi,0,Mi) derived in Eq. (10)
to estimate transition probabilities. When determining the
start state, the evidence (marginal likelihood) from inferring
transition probabilities becomes the likelihood for start-state
estimation. As before, we apply Bayes’s theorem, this time
with unknown start states, instead of unknown transition
probabilities,

P(σi,0|D,Mi) =
P(D|σi,0,Mi)P(σi,0|Mi)

P(D|Mi)
. (13)

This calculation requires defining a prior over start states
P(σi,0|Mi). In practice, setting start states as equally probable
a priori is a sensible choice in light of the larger goal of
structural inference. The normalization P(D|Mi), or evidence,
at this level follows by averaging over the uncertainty in σi,0,

P(D|Mi) =
∑

σi,0∈S i

P(D|σi,0,Mi)P(σi,0|Mi). (14)
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The result of this calculation no longer explicitly depends on
start states or transition probabilities. The uncertainty created
by these unknowns has been averaged over, producing a very
useful quantity for comparing different topologies: P(D|Mi).
However, one must not forget that inferring transition and
start-state probabilities underlies the structural comparisons
to follow. In particular, the priors set at the levels of
transition probabilities and start states can impact the structures
detected due to the hierarchical nature of the inference:
P(D|θi,σi,0,Mi) → P(D|σi,0,Mi) → P(D|Mi).

C. Inferring model topology

So far, we inferred transition probabilities and start states for
a given model topology. Now we are ready to compare different
topologies in a set M of candidate models. As with inferring
start states given a topology, we write down yet another version
Bayes’s theorem, except one for model topology,

P(Mi |D,M) =
P(D|Mi,M)P(Mi |M)

P(D|M)
, (15)

writing the likelihood as P(D|Mi,M) to make the nature
of the conditional distributions clear. This is exactly the
same, however, as the evidence derived above in Eq. (14):
P(D|Mi) = P(D|Mi,M). Equality holds because nothing in
calculating the previous evidence term directly depends on
the set of models considered. The evidence P(D|M), or
normalization term, in Eq. (15) has the following general form:

P(D|M) =
∑

Mj ∈M

P(D|Mj ,M)P(Mj |M). (16)

To apply Eq. (15) we must first provide an explicit prior
over model topologies. One general form, tuned by single
parameter β, is

P(Mi |M) =
exp ( − βφ(Mi))

∑

Mj ∈M
exp ( − βφ(Mj ))

, (17)

where φ(Mi) is some desired function of model topology.
In the examples to follow we use the number of causal
states—φ(Mi) = |Mi |—thereby penalizing for model size.
This is particularly important when a short data series is being
investigated. However, setting β = 0 removes the penalty,
making all models in M a priori equally likely. It is important
to investigate the effects of choosing a specific β for a given set
of candidate topologies. Below, we first demonstrate the effect
of choosing β = 0, 2, or 4. After that, however, we employ
β = 4 since this value, in combination with the set of one- to
five-state binary-alphabet topological ǫ-machines, produces
a preference for one- and two-state machines for short data
series and still allows for inferring larger machines with only
a few thousand symbols. Experience with this β shows that it
is structurally conservative.

In the examples we explore two approaches to using the
results of structural inference. The first takes into account all
model topologies in the set considered, weighted according to
the posterior distribution given in Eq. (15). The second selects
a single model Mmap that is the maximum a posteriori (MAP)
topology,

Mmap = argmax
Mi∈M

P(Mi |D,M). (18)

The difference between these methods is most dramatic
for short data series. Also, using the MAP topology often
underestimates the uncertainty in functions of the model
parameters, which we discuss shortly. Of course, since one
throws away any number of comparable models, estimating
uncertainty in any quantity that explicitly depends on the
model topology cannot be done properly if MAP selection
is employed. However, we expect some will want or need to
use a single model topology, so we consider both methods.

D. Estimating functions of model parameters

A primary goal in inference is estimating functions that
depend on an inferred model’s parameters. We denote this
f (θi) to indicate the dependence on transition probabilities.
Unfortunately, substituting the posterior mean for the tran-
sition probabilities into some function of interest does not
provide the desired expectation. In general, obtaining analytic
expressions for the posterior mean of desired functions is quite
difficult; see, for example, Refs. [40,41]. Deriving expressions
for the uncertainty in the resulting estimates is equally involved
and typically not done; although see Ref. [40].

Above, the inference method required inferring transition
probabilities, start state, and topology. Function estimation,
as a result, should take into account all these sources
of uncertainty. Instead of deriving analytic expressions for
posterior means (if possible), we turn to numerical methods to
estimate function means and uncertainties in great detail. We
do this by repeatedly sampling from the posterior distribution
at each level to obtain a sample ǫ-machine and evaluating
the function of interest for the sampled parameter values.
The algorithms in Fig. 2 detail the process of sampling f (θi)
using all candidate models M (Algorithm 1) or the single
MMAP model (Algorithm 2). Given a set of samples of the
function of interest, any summary statistic can be employed. In
the examples, we generate Ns = 50 000 samples from which
we estimate a variety of properties. More specifically, these
samples are employed to estimate the posterior mean and the

ALGORITHM 1: Sample using all topologies in M

for n in (1, Ns) do:
M∗

i ∼ P(Mi|D,M) # sample topology
σ∗

i,0 ∼ P(σi,0|D, M∗

i ) # sample start state
θ∗i ∼ P(θi|D, σ∗

i,0, M
∗

i ) # sample parameters
fn = f(θ∗i ) # store sample

ALGORITHM 2: Sample using MAP topology

Mmap = argmaxMi∈M P (Mi|D, M) # find MAP topology

for n in (1, Ns) do:
σ∗

i,0 ∼ P(σi,0|D, Mmap) # sample start state
θ∗i ∼ P(θi|D, σ∗

i,0, Mmap) # sample parameters
fn = f(θ∗i ) # store sample

FIG. 2. Pseudocode for generating Ns samples of a function f (θi)

of model parameters {θi}. Algorithm 1 samples a topology each time

through the loop, whereas Algorithm 2 uses the MAP topology for all

iterations. The sampling at each stage allows for the creation of a set

of samples {fn} that accurately reflect the many sources of uncertainty

in the posterior distribution.

042119-7



CHRISTOPHER C. STRELIOFF AND JAMES P. CRUTCHFIELD PHYSICAL REVIEW E 89, 042119 (2014)

95%, equal-tailed, credible interval (CI) [30]. This means there
is a 5% probability of samples being outside the specified
interval, with equal probability of being above or below the
interval. Finally, a Gaussian kernel density estimation (Gkde)
is used to visualize the posterior density for the functions of
interest.

The examples demonstrate estimating process randomness
and structure from data series using the two algorithms
introduced above. For a known ǫ-machine topology Mi , with
specified transition probabilities {p(x|σi)}, these properties are
quantified using the entropy rate hμ and statistical complexity
Cμ, respectively. The entropy rate is

hμ = −
∑

σi∈S i

p(σi)
∑

x∈X

p(x|σi) log2 p(x|σi) (19)

and the statistical complexity is

Cμ = −
∑

σi∈S i

p(σi) log2 p(σi). (20)

In these expressions, the p(σi) are the asymptotic state
probabilities determined by the left eigenvector (normalized
in probability) of the internal Markov chain transition matrix
T =

∑

x∈X T (x). Of course, hμ and Cμ are also functions of the
model topology and transition probabilities, so these quantities
provide good examples of how to estimate functions of model
parameters in general.

V. EXAMPLES

We divide the examples into two parts. First, we demon-
strate inferring transition probabilities and start states for a
known topology. Second, we focus on inferring ǫ-machine
topology using the set of all binary, one- to five-state topolog-
ical ǫ-machines, consisting of 36 660 candidates; see Table I.
We use the convergence of estimates for the information-
theoretic values hμ and Cμ to monitor structure discovery.
However, estimating model parameters is at the core of the
later examples and so we start with this procedure.

For each example we generate a single data series D0:T

of length T = 217. When analyzing convergence, we consider
subsamples D0:L of lengths L = 2i , using i = 0,1,2, . . . ,17.
For example, a four-symbol sequence starting at the first data
point is designated D0:4 = x0x1x2x3. The overlapping analysis
of a single data series gives insight into convergence for the
inferred models and for the statistics estimated.

A. Estimating parameters

1. Even Process

We first explore a single example of inferring properties
of a known data source using Eqs. (6)–(11). We generate
a data series from the Even Process and then, using the
correct topology (Fig. 3), we infer start states and transition
probabilities and estimate the entropy rate and statistical
complexity. We do not concentrate on this level of inference in
subsequent examples, preferring to focus instead on model
topology and its representation of the unknown process
structure. Nonetheless, the procedure detailed here underlies
all of the examples.

A Bp(0|A)|0

1 − p(0|A)|1

1|1

FIG. 3. (Color online) State-transition diagram for the Even Pro-

cess’s ǫ-machine topology. The “true” value of the unspecified

transition probability is p(0|A) = 1/2. For this topology, Seven =

{A,B} and S∗
even = {A} because state B has only one outgoing

transition.

The Even Process is notable because it has infinite Markov
order. This means no finite-order Markov chain can reproduce
its word distribution [36]. It can be finitely modeled, though,
with a finite-state unifilar HMM—the ǫ-machine of Fig. 3.
A single data series was generated using the Even Process
ǫ-machine with p(0|A) = 1/2. The start state was randomized
before generating sequence data of length T = 217. As it turned
out, the initial segment was D0:T = 100 . . ., indicating that
the unknown start state was B on that realization. This is so
because the first symbol is a 1, which can be generated starting
in either state A or B, but the sequence 10 is only possible by
starting at node B.

Next, we estimate the transition probabilities from the
generated data series using length-L subsamples D0:L =

x0x1 . . . xL−1 to track convergence. Although the mean and
other moments of the Dirichlet posterior can be calculated
analytically [39], we sample values using Algorithm 2 in Fig. 2.
However, in this example we employ Meven instead of Mmap

because we are focused on the model parameters for a known
topology. The posterior density for each subsample D0:L is
plotted in Fig. 4 using Gaussian kernel density estimation
(Gkde). The true value of p(0|A) is shown as a black, dashed
line and the posterior mean as a solid, gray line. (Both lines
connect values evaluated at each length L = 20,21, . . . 217.)
The convergence of the posterior density to the correct value of

00.20.40.60.81

24
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p(0|A)
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+
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D

:L
,M
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FIG. 4. (Color online) Convergence of posterior density

P(p(0|A)|D0:L,Meven) as a function of subsample length L = 2i ,

i = 0,1,2, . . . ,17. Each posterior density plot uses a Gaussian kernel

density estimator with 50 000 samples from the posterior. The true

value of p(0|A) = 1/2 appears as a black, dashed line and the

posterior mean as a gray, solid line. A natural logarithm is used in

plotting probability densities.

042119-8



BAYESIAN STRUCTURAL INFERENCE FOR HIDDEN . . . PHYSICAL REVIEW E 89, 042119 (2014)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

hµ

C
µ

0

1

2

3

4

5
lo

g
(1

+
P
(h

µ
|D

:L
,M

ev
en

))

0 1 2 3 4 5

log(1 + P(Cµ|D:L, Meven))

FIG. 5. (Color online) Convergence of randomness (hμ) and structure (Cμ) calculated with transition probabilities and start states estimated

from Even Process data, assuming the correct topology. Fifty thousand samples were taken from the joint posterior P(hμ,Cμ|D0:L,Meven). (Lower

left) A subsample of size 5000 for data sizes L = 1 [(light) beige], L = 64 [(medium) orange], and L = 16 384 [(dark) black]. Gaussian kernel

density estimates (using all 50 000 samples) of the marginal distributions P(hμ|D0:L,Meven) (top) and P(Cμ|D0:L,Meven) (right) for the same

values of L. Dashed lines indicate the true values of hμ and Cμ for the Even Process. The distinctive arc traced out by the (light) beige samples

in the hμ-Cμ plane reflect the constrained nature of the structure-randomness relationship that the topology in Fig. 3 creates as p(0|A) is varied

between zero and 1. A natural logarithm is used in plotting probability densities.

p(0|A) = 1/2 with increasing data size is clear and, moreover,
the true value is always in a region of positive probability.

For our final example using a known topology we estimate
hμ and Cμ from the Even Process data. This illustrates
estimating these functions of model parameters when the
ǫ-machine topology is known but there is uncertainty in start
state and transition probabilities. As above, we use Algorithm 2
in Fig. 2 and employ the known machine structure. We sample
start states and transition probabilities, followed by calculating
hμ and Cμ—via Eqs. (19) and (20), respectively—to build a
posterior density for these quantities.

Figure 5 presents the joint distribution for Cμ and hμ along
with the Gkde estimation of their marginal densities. Samples

from the joint posterior distribution are plotted in the lower
left panel for subsample lengths L = 1,64, and 16 384. Only
5000 of the available samples are displayed in this panel to
minimize the graphic’s size. The marginal densities for hμ

(top panel) and Cμ (right panel) are plotted using a Gkde
with all 50 000 samples. Small data size [L = 1, indicated by
(light) beige points] samples allow a wide range of structure
and randomness. The arc in the hμ-Cμ plane reflects the flat
priors set for start states and transition probabilities. These
priors allow for almost uniform samples (modified by L = 1
data point) of the p(0|A) transition probability. The resulting
values of Cμ and hμ create an arc that is only constrained by
the model topology. We note that a uniform prior distribution
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over transition probabilities and start states does not produce a
uniform distribution over hμ or Cμ. Increasing the size of the
data subsample to L = 64 [(medium) orange points] results in
a considerable reduction in the uncertainty for both functions.
For this amount of data, the possible values of entropy rate and
statistical complexity curve around the true value in the hμ-Cμ

plane and result in a shifted peak for the marginal density for
hμ. For subsample length L = 16 384 [(dark) black points] the
estimates of both functions of model parameters converge to
the true values, indicated by the black, dashed lines.

B. Inferring process structure

We are now ready to demonstrate BSI’s efficacy for
structural inference via a series of increasingly complex
processes, monitoring convergence using data subsamples up
to a length of L = 217. In this, we determine the number of
hidden states, number of edges connecting them, and symbols
output on each transition. As discussed above, we use the set
of topological ǫ-machines as candidates because an efficient
and exhaustive enumeration is available.

For comparison, we first explore the organization of the
prior over the set of candidate ǫ-machines using intrinsic
informational coordinates—the process entropy rate hμ and
statistical complexity Cμ. We focus on their joint distribution,
as induced by various settings of the prior parameter β. The
results lead us to use β = 4 for the subsequent examples. This
value creates a preference for small models when few data
are available but allows for a larger number of states when
reasonable amounts of data support it.

We establish the BSI’s effectiveness by inferring the
structure of a finite-order Markov (Golden Mean) Process, an
infinite-order Markov (Even) Process, and an infinite memory
process (SNS). Again, the proxy for convergence is estimating
structure and randomness as a function of the data subsample
length L. Comparing these quantities’ posterior distributions
with their prior ones illustrates uncertainty reduction as more
data are analyzed.

1. Priors for structured processes

Here, we use a prior over all binary-alphabet, topological
ǫ-machines with one to five states (recall Table I). We denote
the set of topological ǫ-machines detailed in Table I as M.
Equation (17) allows specifying a preference for smaller
ǫ-machines by setting β > 0 and defining the function of
model structure to be the number of states: φ(Mi) = |Mi |.
Beyond setting this explicitly, there is an inherent bias to
smaller models inversely proportional to the parameter space
dimension. The parameter space is that of the estimated
transition probabilities. Its dimension is the number of states
with more than one out-going transition. However, candidate
ǫ-machine topologies with many states and few transitions
result in a small parameter space and so may be assigned
high probability for short data series. In addition, the prior
over topologies must take into account the increasing number
of candidates as the number of states increases. Setting β

sufficiently high so large models are not given high probability
under these conditions is reasonable, as we would like to
approach structure estimates (Cμ) monotonically from below,
as data size increases.

Figure 6 plots samples from the resulting joint prior for
(hμ,Cμ) as well as the corresponding Gkde for marginal
densities of both quantities. The data are generated by using the
method of Sec. IV D and replacing the posterior density with
the prior density. Specifically, rather than sampling a topology
Mi from P(Mi |D,M), we sample from P(Mi |M). Similar
substitutions are made at each level, using the distributions
that do not depend on observed data, resulting in samples from
the prior. Each color in the figure reflects samples using all
ǫ-machines in M with different values for the prior parameter:
β = 0 [(light) beige], β = 2 [(medium) orange], and β = 4
[(dark) black]. We note that there is substantial overlap in the
β = 0 and β = 2, resulting in distributions that are difficult to
distinguish in many ways. While β = 0 has many samples at
high Cμ, reflecting the large number of five-state ǫ-machines,
increasing to β = 2 results in noticeable bands in the hμ-Cμ

plane and peaks at Cμ = log2 1, Cμ = log2 2, Cμ = log2 3 bits,
and so on. This reflects the fact that larger β makes smaller
machines more likely. As a consequence, the emergence of
patterns due to one-, two-, and three-state topologies is seen.
Setting β = 4 shows a stronger a priori preference for one- and
two-state machines, reflected by the strong peaks at Cμ = 0
bits and Cμ = 1 bit. Again, the dark lines and curves in the
hμ-Cμ are created by repeated sampling of the single-state
IID process, resulting in the Cμ = 0 line, and various two-
state machines (compare with Fig. 5). Interestingly, the prior
distribution over hμ and Cμ is quite similar for β = 0 and 2,
with more distributional structure due to smaller ǫ-machines
at β = 2. However, the prior distribution for hμ and Cμ differs
markedly for β = 4, creating a strong preference for one- and
two-state topologies. This results in an a priori preference
for low Cμ and high hμ that, as we demonstrate shortly, is
modified for moderate amounts of data. We employ β = 4
as a reasonable value in all subsequent examples. In practice,
sensitivity to this choice should be tested in each application
to verify that the resulting behavior is appropriate. We suggest
small, nonzero values as reasonable starting points. As always,
sufficient data make the choice relatively unimportant for the
resulting inference.

2. Markov example: The Golden Mean Process

The first example of structural inference explores the
Golden Mean Process, pictured in Fig. 7. Although it is
illustrated as an HMM in the figure, it is effectively a
Markov chain with no hidden states: observing a 1 corresponds
to state A, whereas observing 0 means the process is in
state B. Previously, we showed that this data source can be
inferred using the model class of kth order Markov chains,
as expected [36]. However, the Golden Mean Process is
also a member of the class of binary-alphabet, topological
ǫ-machines considered here. As a result, structural inference
from golden mean data is an example of in-class modeling.

We proceed using the approach laid out above for the Even
Process transition probabilities and start states. We generated
a single data series by randomizing the start state and creating
a symbol sequence of length T = 217 using the Golden Mean
Process ǫ-machine. As above, we monitor the convergence
using subsamples D0:L = x0x1 . . . xL−1 for lengths L = 2i ,
i = 0,1, . . . 17. The candidate machines M consist of all
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FIG. 6. (Color online) Model prior dependence on penalty parameter β: Fifty thousand samples were taken from the joint prior P(hμ,Cμ|M)

using all binary-alphabet, topological ǫ-machines with one to five states and parameters: β = 0 [(light) beige], β = 2 [(medium) orange], and

β = 4 [(dark) black]. (Lower left) A subsample of size 5000 from the joint distribution is shown for each value of β. A Gaussian kernel density

estimation, using all 50 000 samples for each value of β, of the marginal distributions P(hμ|M) (top) and P(Cμ|M) (right) are also provided.

Visible arcs and lines in the hμ-Cμ plane for β = 4 are created by high prior probability of the single-state topology, creating the Cμ = 0 line,

and two-state models, creating the parabolic arc. For values β = 0 and 2, many model topologies are sampled creating overlapping and diffuse

clouds of samples at higher Cμ and moderate hμ. In these cases, no single model topology is sufficiently resampled to create the distinctive

curves visible for β = 4. A natural logarithm is used in plotting probability densities.

36 600 ǫ-machine topologies in Table I. Estimating hμ and
Cμ aids in monitoring convergence of inferred topology and
related properties to the correct values. In addition, we provide

A B
1

2
|1

1

2
|0

1|1

FIG. 7. (Color online) Golden Mean Process’s ǫ-machine.

supplementary tables and figures, using both M and the
maximum a posteriori model MMAP at each data length L to
give a detailed view of structural inference (See Supplemental
Material [42]).

Figure 8 plots samples from the joint posterior over
(hμ,Cμ), as well as their marginal distributions, for three
subsample lengths. As in Fig. 5, we consider L = 1 [(light)
beige], L = 64 [(medium) orange], and L = 16 384 [(dark)
black]. However, this example employs the full set M

of candidate topologies. For small data size (L = 1) the
distribution closely approximates the prior distribution for
β = 4, as it should. At data size L = 64, the samples of both
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FIG. 8. (Color online) Convergence of randomness (hμ) and structure (Cμ) calculated with model topologies, transition probabilities, and

start states estimated from Golden Mean Process data, using all one- to five-state topological ǫ-machines. Fifty thousand samples were taken

from the joint posterior distribution P(hμ,Cμ|D0:L,M). (Lower left) Subsample of size 5000 for data sizes L = 1 [(light) beige], L = 64

[(medium) orange], and L = 16 384 [(dark) black]. Gaussian kernel density estimates of the marginal distributions (using all 50 000 samples)

P(hμ|D0:L,M) (top) and P(Cμ|D:L,M) (right) are also provided for the same values of L. Dashed lines indicate the true values of hμ and Cμ

for the Golden Mean Process. As discussed in Figs. 5 and 6, the distinctive arcs visible for L = 1 are due to repeated samples of single-state

and two-state model topologies at small L. A natural logarithm is used in plotting probability densities.

the hμ and Cμ are still broad, resulting in multimodal behavior
with considerable weight given to both two- and three-state
topologies. Consulting Table S2 in the Supplemental Material,
we see that this is the shortest length that selects the correct
topology for the Golden Mean Process (denoted n2k2id5 in
Table S2). For smaller L, the single-state, two-edge topology
is preferred (denoted n1k2id3). However, the probability of the
correct model is only 78.7%, leaving a substantial probability
for alternative candidates. The uncertainty is further reflected
in the large credible interval for Cμ provided by the complete
set of models M (see Table S1), ranging from 0.8235 bits as
the lower bound to 1.797 bits as the upper bound. However,
by subsample length L = 16 384 the probability of the correct

topology is 99.998%, given the set of candidate machines M,
and estimates of both hμ and Cμ have converged to accurately
reflect the correct values.

In addition to Tables S1 and S2, the Supplemental Material
provides Fig. S1, showing the Gkde estimates of both hμ and
Cμ using M and MMAP as a function of subsample length.
The four panels clearly show the convergence of estimates
to the correct values as L increases. For long data series,
there is little difference between the inference made using the
maximum a posteriori (MAP) model and the posterior over
the entire candidate set. However, this is not true for short
time series, where using the full set more accurately captures
the uncertainty in estimation of the information-theoretic
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quantities of interest. We note that the Cμ estimates approach
the true value from below, preferring small topologies when
there is little data and selecting the correct, larger topology
only as available data increases. This desired behavior results
from setting β = 4 for the prior over M. Setting β = 2,
shown in Fig. S2, does not have this effect. This value of
β is insufficient to overcome the large number of three-, four-,
and five-state ǫ-machines. Finally, Fig. S3 plots samples from
the joint posterior of hμ and Cμ using only the MAP model
for subsample lengths L = 1,64, and 16 384. This should be
compared with Fig. 8 where the complete set M is used.
Again, there is a substantial difference for short data series
and much in common for larger L.

Before moving to the next example, let us briefly return to
consider start-state inference. The data series generated to test
inferring the Golden Mean Process started with the sequence
D0:T = 1110 . . .. We note that the correct start state, which
happens to be state A in that realization, cannot be inferred
and has lower probability than state B due to the process’s
structure, P(σgm,0 = A|D0:T = 1110 . . . ,Mgm) ≈ 0.3328, us-
ing Eq. (13). The reason for the inability to discern the start
state is straightforward. Consulting Fig. 7, we can see that
the string 1110 can be produced beginning in both states
A and B. On the one hand, assuming σgm,0 = A, the state
path would be AAAAB with probability p(1|A)3p(0|A) =

(1/2)4. On the other hand, assuming σgm,0 = B, the state
path is BAAAB with probability p(1|B)p(1|A)2p(0|A) =

1 × (1/2)3. The only difference in the probabilities is a factor
of p(1|A) = 1/2 versus p(1|B) = 1 resulting in the following:

P(σi,0 = A|D = 1110,Mgm) =
(1/2)4

(1/2)4 + (1/2)3

= 1/3.

This calculation agrees nicely with the result stated above,
using finite data and the inference calculations from Eq. (13).

It turns out that any observed data series from the Golden
Mean Process that begins with a 1 will have this ambiguity in
start state. However, observed sequences that begin with a 0
uniquely identify A as the start state since a 0 is not allowed
leaving state B. Despite this, the correct topology is inferred
and accurate estimates of hμ and Cμ are obtained.

3. Infinite-order Markov example: The Even Process

Next we consider inferring the structure of the Even Process
using the same set of binary-alphabet, one- to five-state,
topological ǫ-machines. To be clear, this example differs from
Sec. V A 1, where the correct topology was assumed. Now we
explore Even Process structure using M. As noted above, the
Even Process is an infinite-order Markov process and inference
requires the set of topological ǫ-machines considered here.
(However, see out-of-class inference of the Even Process using
kth-order Markov chains in Ref. [36].) As a result, this is an
example of in-class inference since the Even Process topology
is contained within the set M. As with the previous example,
a single data series was generated from the Even Process.

Figure 9 shows samples from the posterior distribution over
(hμ,Cμ) using three subsample lengths L = 1,64, and 16 384
as before. An equivalent plot using only the MAP model is
provided in the Supplemental Material for comparison; see

Fig. S6. Again, for short data series the samples mirror the
prior distribution as they should. [See (light) beige points for
L = 1.] At subsample length L = 64 the values of hμ and
Cμ are much more tightly delineated. Comparing samples for
the Golden Mean Process in Fig. 8 shows that there is much
less uncertainty in structure for the Even Process at this data
size. Consulting Table S4, the MAP topology for this value
of L already identifies the correct topology (denoted n2k2id7)
and assigns a probability of 99.41%. This high probability
is reflected by the smaller spread, when compared with the
golden mean example, of the samples of hμ and Cμ. At
subsample length L = 16 384 the probability of the correct
topology has grown to 99.998%. Estimates of both hμ and Cμ

are also very accurate, with small uncertainties, at this L; see
Table S3.

The Supplemental Material provides Figs. S4 and S5 to
show the convergence of the posterior densities for hμ and
Cμ as a function of subsample length. Figure S4 shows
estimates using both M and MMAP for β = 4. Whereas Fig.
S5 demonstrates the effects of using a small penalty (β = 2)
for model size. As seen with the Golden Mean Process, the
difference is most apparent at small data sizes. At large L,
the difference between using the complete set M of models
versus the MAP model is minor, as is the effect of choosing
β = 4 or β = 2. However, at small data sizes the choices
affect the resulting inference. In particular, the choice of β = 4
allows the inference machinery to approach the correct Cμ

from below, whereas the choice of β = 2 approaches Cμ from
above; see Figs. S4 and S5. This behavior, which we believe
is desirable, is similar to the inference dynamics observed for
the Golden Mean Process, further strengthening the apparent
suitability of using β = 4.

Unlike the previous example, the start state for the correct
structure is inferred with little data. In this example, the data
series begins with the symbols D0:T = 10 . . ., which can be
generated only from state B. So, at L = 2 the start state for
the correct topology is determined, but it takes more data—32
symbols in this case—for this structure to become the most
probable in the set considered.

4. Out-of-class structural inference: The Simple

Nonunifilar Source

The SNS is our final and most challenging example of
structural inference due its being out-of-class. The SNS is not
only infinite-order Markov; any unifilar presentation requires
an infinite number of states. In particular, its ǫ-machine,
the minimal unifilar presentation, has a countable infinity of
causal states [43]. We can see the difference between the
SNS and previous processes by inspecting state A, where
both out-going edges emit a symbol “1.” (See Fig. 10 for a
hidden Markov model presentation that is not an ǫ-machine.)
This makes the SNS a nonunifilar topology, as the name
suggests. Importantly, even if we assume a start state, there
is no longer a single, unique path through the hidden states for
an observed output data series. This completely differs from
the unifilar examples previously considered, where an assumed
start state and observed data series either determined a unique
path through hidden states or was disallowed. As a result, the
inference tools developed here cannot use the HMM topology
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FIG. 9. (Color online) Convergence of randomness (hμ) and structure (Cμ) calculated with model topologies, transition probabilities, and

start states estimated from Even Process data, using all one- to five-state topological ǫ-machines. Fifty thousand samples from the joint posterior

P(hμ,Cμ|D:L,M). (Lower left) A subsample of 5000 for data sizes L = 1 [(light) beige], L = 64 [(medium) orange], and L = 16 384 [(dark)

black]. Gaussian kernel density estimates of the marginal distributions (using all 50 000 samples) P(hμ|D:L,M) (top) and P(Cμ|D0:L,M)

(right) are shown for the same values of L. Dashed lines indicate the true values of hμ and Cμ for the Even Process. Consult captions of

previous figures for a discussion of visible arcs of samples in the hμ-Cμ plane. A natural logarithm is used in plotting probability densities.

of Fig. 10. Concretely, this class of representation breaks our
method for counting transitions.

Our goal, though, is to use the set of unifilar, topological
ǫ-machines at our disposal to infer properties of the Simple
Nonunifilar Source. (One reason to do this is that unifilar
models are required to calculate hμ.) Typical data series
generated by the SNS model are accepted by many of the
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FIG. 10. (Color online) The Simple Nonunifilar Source.

unifilar topologies in M and a posterior distribution over
these models can be calculated. As with previous examples, we
demonstrate estimating hμ and Cμ for the data source. Due to
the nonunifilar nature of the source, we expect Cμ estimates to
increase with the size of the available data series. However, the
ability to estimate hμ accurately is unclear a priori. Of course,
in this example we cannot find the correct model topology
because infinite structures are not contained in M.

Figure 11 presents the joint posterior for (hμ,Cμ) for three
subsample lengths. As previously, a single data series of length
217 is generated using the SNS and analysis of subsamples
D0:L are employed to demonstrate convergence. The short
subsample (L = 1, light/beige points) is predictably uninter-
esting, reflecting the the prior distribution over models. For
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FIG. 11. (Color online) Convergence of randomness (hμ) and structure (Cμ) calculated with model topologies, transition probabilities, and

start states estimated from Simple Nonunifilar Source data, using all one- to five-state topological ǫ-machines. Sample sizes, colors and line

types mirror those in previous figures. See previous figure captions for a discussion of visible lines and arcs in samples from the hμ-Cμ plane.

A natural logarithm is used in plotting probability densities.

subsamples shorter than L = 64 the MAP model is the single-
state, two-edge topology. (Denoted n1k2id3 in Table S6.)
At L = 64 the Golden Mean Process topology becomes
most probable with a posterior probability of 53.01%. The
probability of the single-state topology is still 43.98%, though,
resulting in Cμ’s strongly bimodal marginal posterior observed
for L = 64. [See Fig. 11, (medium) orange points, right panel.]
Bimodality also appears in the marginal posterior for hμ,
with the largest peak coming from the two-state topology and
the high entropy rates being contributed by the single-state
model. At large data size [L = 16 384 (dark) black points]
hμ has converged on the true value, while Cμ has sharp,
bimodal peaks due to many nearly equally probable five-state
topologies. Consulting Table S6, we see that the MAP structure
for this value of L has five states (denoted n5k2id22979) and a

low posterior probability of only 8.63%. Further investigation
reveals that there are four additional ǫ-machine topologies
(making a total of five) with similar posterior probability.
These general details persist for longer subsamples sequences
including the complete data series at length 217. Although
estimating hμ converges smoothly, the inference of structure
as reflected by Cμ does not show signs of graceful convergence.

We provide supplementary plots in Figs. S7 and S8 that
show the convergence of hμ and Cμ using M and MMAP

for prior parameters β = 4 and β = 2, respectively. Again,
the choice of β matters most at small data sizes. While the
Cμ estimate increases as function of L for β = 4, the use of
β = 2 results in posterior means for Cμ that first decrease as
function of L and then increase. Again, this supports the use of
β = 4 for this set of binary-alphabet, topological ǫ-machines.
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The need to employ the complete model set M versus the
MAP topology is most evident at small data sizes; as was
also seen in previous examples. However, the Cμ inference
in this example is more complicated due to the large number
of five-state topologies with roughly equal probability. The
MAP method selects just one model, of course, and so cannot
represent the posterior distribution’s bimodal behavior. Given
that the data source is out-of-class, this trouble is perhaps not
surprising. Figure S9 shows samples from the joint posterior
of (hμ,Cμ) using only the MAP topology. Using the latter also
suffers from requiring one to select a single exemplar topology
for a posterior distribution that is simply not well represented
by a single ǫ-machine.

VI. DISCUSSION

The examples demonstrated structural inference using
the set of one- to five-state, binary-alphabet, topological
ǫ-machines. We found that in-class examples, including the
Golden Mean and Even Processes, were effectively and effi-
ciently discovered. That is, the correct topology was accorded
the largest posterior probability and estimates of information
coordinates hμ and Cμ were accurate. However, we found that
a sufficiently large value of β, providing the model size penalty,
was key to a conservative structural inference. Conservative
means that Cμ estimates approach the true value from below,
effectively counteracting the increasing number of topologies
with larger state sets. For the out-of-class example, given by
the Simple Nonunifilar Source, these broader patterns held
true. However, structure could not be captured as reflected
in the increasing number of states inferred as a function of
data length. Also, many topologies had relevant posterior
probability for the SNS data, reflecting a lack of consensus
and a large degeneracy with regard to structure. This resulted
in a multimodal posterior distribution for Cμ and a MAP model
with very low posterior probability.

One of the surprises was the number of accepting topologies
for a given data set. By this we mean the number of
candidate structures for which the data series of interest
has a valid path through hidden states, resulting in nonzero
posterior probability. In many ways, this aspect of structural
inference mirrors grammatical inference for deterministic
finite automaton [44,45]. As one might expect given this
comparison, the key property that determines if a data series
is accepted by a specific model topology is the support:
the set of strings or words that have nonzero probability.
If the support of a candidate model is the same or larger than
the support of the data source, the data will be “accepted”
and the model will have nonzero posterior probability. For
topological ǫ-machines this also means that there will be at
least one model with nonzero posterior probability: the IID
process, which has full support and accepts any sequence of
0’s and 1’s. Expanding the set of candidate model topologies
to include all uHMMs, as we will do in a sequel, considerably
increases the number of model topologies with full support.
This will guarantee a substantial set of viable candidate models
with nonzero posterior probability for any data series.

In the Supplemental Material we provide plots for the three
processes considered above showing the number of accepting
topologies in the set of one- to five-state ǫ-machines used for

M. (See Fig. S10 in the Supplemental Material.) For all of
these topologies, a rapid decline in the number of accepting
topologies occurs for the first 26 to 27 symbols, followed by a
plateau at a set of accepting topologies. For smaller topologies,
which come from the model class under consideration, this
pattern makes sense. Often, the smaller topology is embedded
within a larger set of states, some of which are never used.
For out-of-class examples like the SNS this behavior is less
transparent. The rejection of a data series by a given topology
provides a first level of filtering by assigning zero posterior
probability to the structure due to vanishing likelihood of
the data given the model. For the examples given above, of
the 36 660 possible topologies, 6225 accepted golden mean
data, 3813 topologies accepted Even Process data, and 6225
accepted SNS data when the full data series was considered.

In all of the examples the data sources were stationary, so
statistics did not change over the course of the data series.
This is important because stationarity is built into the model
class definition employed: the model topology and transition
probabilities did not depend on time. However, given a general
data series with unknown properties, it is unwise to assume
stationarity holds. How can this be probed? One method is to
subdivide the data into overlapping segments of equal length.
Given these, inference using M or MMAP should return similar
results for each segment. For in-class data sources like the even
and Golden Mean Processes, the true model should be returned
for each data subsegment. For out-of-class, but stationary,
models like the Simple Nonunifilar Source, the true topology
cannot be returned, but a consistent model within M should
be returned for each data segment.

However, one form of relatively simple nonstationarity—a
structural change-point problem such as switching between
the Golden Mean and Even Processes—can be detected by
BSI applied to subsegments. The inferred topology for early
segments returns the golden mean topology and later segments
return the even topology. Notably, the inferred topology using
all of the data or a subsegment overlapping the switch returns
a more complicated model topology reflecting both structures.
Of course, detection of this behavior requires sufficient data
and slow switching between data sources.

In a sequel we compare BSI to alternative structural
inference methods. The range of and differences with these
is large and so a comparison demands its own venue. Also, the
sequel addresses expanding the model candidates beyond the
set of topological ǫ-machines to the full set of unifilar hidden
Markov models. This change is a necessary step before useful
comparisons between methods can be explored.

VII. CONCLUSION

We demonstrated effective and efficient inference of topo-
logical ǫ-machines using a library of candidate structures and
the tools of Bayesian inference. Several avenues for further
development are immediately obvious. First, as just noted,
using full unrestricted ǫ-machines—allowing models outside
the set of topological ǫ-machines—is straightforward. This
will provide a broad array of candidates within the more
general class of unifilar hidden Markov models. In the present
setting, by way of contrast, processes with full support (all
words allowed) can map only to the single-state topology.
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Second, refining the eminently parallelizable Bayesian struc-
tural inference algorithms will allow them to take advantage of
large compute clusters and cloud computing to dramatically
expand the number of candidate topologies considered. For
comparison, the current implementation uses nonoptimized
PYTHON on a single thread. This configuration (running on
contemporary Linux compute node) takes between 0.6 and
1.6 h, depending on the number of accepting topologies, to
calculate the posterior distribution over the 36 660 candidates
for a data series of length 217. An additional 10 to 20 min is
needed to generate the 50 000 samples from the posterior to
estimate functions of model parameters, like hμ and Cμ.

We note that the methods of Bayesian structural inference
can be applied to any set of unifilar hidden Markov models
and, moreover, they do not have to employ a large, enumer-
ated library. For example, a small set of candidate 50-state
topologies could be compared for a given data series. This
ability opens the door to automated methods for generating
candidate structures. Of course, as always, one must keep in
mind that all inferences are then conditioned on the, possibly
limited or inappropriate, set of model topologies chosen.

Finally, let us return to the scientific and engineering
problem areas cited in the introduction that motivated struc-
tural inference in the first place. Generally, Bayesian struc-
tural inference will find application in fields, such as those
mentioned, that rely on finite-order Markov chains or the
broader class of (nonunifilar) hidden Markov models. It will
also find application in areas requiring accurate estimates of
various system statistics. The model class considered here
(ǫ-machines) consists of a novel set of topologies and usefully
allows one to estimate both randomness and structure using
two of the most basic informational measures, namely hμ and
Cμ. As a result, we expect Bayesian structural inference to
find an array of applications in bioinformatics, linguistics, and
dynamical systems.
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