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Abstract—The modeling of microwave antennas and devices typically
requires that non-linear input-output mappings be determined between a
set of variable parameters (such as geometry dimensions and frequency),
and the corresponding scattering parameter(s). Support vector regression
(SVR) employing an isotropic Gaussian kernel has been widely used
for such tasks; this kernel has one tunable hyperparameter that can be
optimized (along with the penalty constant ) using a standard procedure
that involves a parameter grid search combined with cross-validation.
The isotropic kernel however suffers from limited expressiveness, and
might provide inadequate predictive accuracy for nonlinear mappings
that involve multiple tunable input variables. The present study shows
that Bayesian support vector regression using the inherently more flex-
ible Gaussian kernel with automatic relevance determination (ARD) is
eminently suitable for highly non-linear modeling tasks, such as the input
reflection coefficient magnitude of broadband and ultrawideband
antennas. The Bayesian framework enables efficient training of the mul-
tiple kernel ARD hyperparameters—a task that would be computationally
infeasible for the grid search/cross-validation approach of standard SVR.

Index Terms—Gaussian processes, regression, slot antennas, support
vector machines.

1. Introduction
The modeling of microwave antennas and devices requires the accu-

rate prediction of latent underlying non-linear input-output mappings,
where the input might be tunable geometry parameters and frequency,
and the output one or more scattering parameters. Optimization proce-
dures such as genetic algorithms might require thousands of analyses of
different geometries of the antenna/structure to be optimized [1]—use
of a model, as opposed to direct full-wave simulations, can produce
considerable computational savings. In recent years, regression with
support vector machines (SVMs) has been frequently used for such
modeling tasks—structures that have been characterized in this manner
include printed microstrip and slot antennas [2], [3], printed transmis-
sion lines [4], [5], and vertical interconnects in microwave packaging
structures [6]. Advantages of the SVM formulation include a convex
quadratic optimization problem (unlike neural networks, SVMs do not
suffer from local minima), and sparseness of solutions (i.e., regression
estimates) that are fully characterized by the set of support vectors, a
subset of the training set.

In the standard non-linear support vector regression (SVR) formula-
tion, input vectors are projected into a high dimensional feature space
by means of a set of basis functions; linear regression is then carried
out in this space. A kernel function is used to compute inner products
between projections of input vectors in feature space. Performance of
the algorithm on a particular data set crucially depends on the choice
of kernel; common examples are the linear, polynomial, sigmoid, and
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Gaussian or radial basis function kernels [7]. A kernel that has been
widely used within standard SVR for microwave modeling applications
(e.g., [2]–[6]) is the isotropic Gaussian kernel [7]
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where �� and �� are the �th and �th input vectors of dimension �,
� � ������� is an adjustable hyperparameter with � the kernel width,
and ���� denotes the Euclidean norm (this kernel has also been used in
array [8] and direction of arrival [9] applications). Use of the isotropic
Gaussian kernel requires that only two hyperparameters need to be op-
timized during the SVM “training” phase, namely the kernel hyperpa-
rameter � and the penalty constant	 . This is usually done by means of
a standard procedure that involves a parameter grid search combined
with cross-validation [7], [10].

A form of the Gaussian kernel that is inherently more flexible than
the isotropic kernel is
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where 
� � 	 is an automatic relevance determination (ARD) hyperpa-
rameter that determines the relevance of the �th component of the input
vectors �� and �� (i.e., ��� and ���) for the prediction of the output.
ARD therefore can be viewed as an in-built mechanism for feature se-
lection. However, optimizing more than two hyperparameters using the
above grid search/cross-validation approach is usually not feasible be-
cause of exponentially increasing computational costs associated with
the multi-dimensional parameter grid.

The present communication demonstrates the applicability to highly
non-linear antenna modeling problems of an extended SVR formula-
tion which allows for the hyperparameters of the ARD kernel (2) to be
optimized in an efficient and principled manner, namely the Bayesian
support vector regression algorithm of Chu et al. [11] (henceforth re-
ferred to as BSVR). Their approach combines the Bayesian framework
for Gaussian process regression (GPR) [12] with standard SVR [7],
retaining benefits of both methods such as the convex quadratic pro-
gramming of SVR; and the GPR-like property that the ARD hyperpa-
rameters can be inferred by minimizing the negative log probability of
the data given the hyperparameters.

The modeling capability of BSVR (which relies on the effectiveness
of its kernel hyperparameter optimization) is demonstrated by means of
two case studies involving CPW-fed slot antennas: a square slot with
T-shaped tuning stub intended for broadband operation [13], and an
ultrawideband (UWB) slot antenna with U-shaped tuning stub [14]. In
both cases, highly non-linear underlying functions map several tunable
antenna dimensions and frequency to ��. Previously it was shown
that GPR could model the UWB antenna with sufficient accuracy for a
genetic algorithm based design procedure using this model to achieve
a rigorous bandwidth specification [15]—hence an objective was to
establish whether BSVR could achieve similar or better accuracy on
this modeling task.

The layout of the article is as follows. Section II briefly provides the-
oretical background to standard SVR [7], BSVR [11], and GPR [12];
key steps and equations are given. Section III describes the implemen-
tation of BSVR (as well as GPR and standard SVR for comparison) to-
wards modeling ���� as a function of the tunable dimensions of each
antenna and frequency, and results are discussed. Conclusions are pre-
sented in Section IV.
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2. Theoretical Overview

A. Standard Support Vector Regression

Consider a training data set of � observations, � � ����� ����� �
�� � � � � ��. The inputs �� are column vectors of dimension �, while
the corresponding output targets �� are scalars. Assume that a linear
underlying function ���� � ���� �, needs to be estimated and that
the loss due to predicting ���� instead of � is given by the �-insensitive
loss function [7]

	� ��� �� ����� � ��	 �
� �� � ����� � �� (3)

where � is the radius of the regression tube. Use of slack variables 
�
and 
�� [7] leads to the “soft margin” primal constrained optimization
problem [7]
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subject to ���� � � � �� � � � 
�, �� � ���� � � � � � 
�� ,
and 
�� 
�� � 
, � � �� � � � � �; in the above, “�” denotes the transpose
operator, and � � 
 is a constant determining the trade-off between
the complexity of � and the extent to which deviations larger than � can
be allowed. Introducing Lagrange parameters �� leads to the dual
problem for non-linear, kernel-based regression [7]:
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where � is a �	� matrix with ��� � �������� and ��
� is the kernel
function. The regression estimate evaluated at a test data point �� is
given by [7]
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and in effect only takes training points that are support vectors into
account.

B. Bayesian Support Vector Machine Regression

The BSVR formulation [11] follows the standard Bayesian regres-
sion framework which assumes that targets �� can be expressed as
�� � ����� � ��, where the �� are independent, identically distributed
noise variables, and the underlying function � is considered a random
field. For � � ������ ����� � � � ������, Bayes’s theorem gives the
posterior probability of � given the training data � as
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with ���� the prior probability of � , ������ the likelihood, and ����
the evidence. The likelihood can be expressed as
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Furthermore, ����� � �	����	����� with 	���� a loss function and �
a constant; in standard GPR [12] the loss function is quadratic. The cru-
cial point in the BSVR formulation is that a new loss function, the soft
insensitive loss function, is introduced in the likelihood, combining ad-
vantageous properties from the �-insensitive loss function (3) (sparse-
ness of solutions) and Huber’s loss function (differentiability). It is de-
fined as [11]
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where 
 � � � �, and � � 
.
Solving for the maximum a posteriori (MAP) estimate of the func-

tion values then becomes equivalent to solving a new primal problem
[11, Eqs. (19)–(21)], with the corresponding dual problem given by
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subject to 
 � �, �� � � , � � �� � � � � �. The regression estimate at a
test input �� can be expressed as ����� � �

��� ������
������� �;

(10) reduces to the �-insensitive dual problem (5) when � � 
.
Assume the use of an ARD kernel given by
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with hyperparameters ��� ; � , � � �� � � � � � (the so-called length-scale
parameters); and �. (This kernel was used in all BSVR and GPR re-
gressions reported below). The length-scale associated with a particular
input dimension can be viewed as the distance that has to be traveled
along that dimension before the output can change significantly [12].
Then the hyperparameter vector ���, which includes the kernel hyper-
parameters as well as � and �, can be determined by minimizing the
negative log probability of the data given the hyperparameters [11],
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with ��� � �������� an �	� submatrix of � corresponding
to the off-bound support vectors, � the �	� identity matrix, and ��
defined as [11, Eq. (15)].

C. Gaussian Process Regression

In the function space approach to GPR [12], predictions are made by
assuming a jointly Gaussian distribution over the � random variables
which represent the training outputs, and the �� random variables rep-
resenting the test outputs. The distribution of the test outputs condi-
tioned on the known training outputs � (the posterior distribution) is
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again multivariate Gaussian, with mean vector � and covariance ma-
trix � [12]

� �����
� ����������� (13)

� �����
��
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with������� the���� matrix of covariances, evaluated using (11),
between all possible pairs of� training and�� test outputs (the columns
of the � � � matrix � are the training input vectors, and �� con-
tains the test input vectors;������,�������, and�������� are
similarly defined). � contains the regression estimate associated with
the test inputs, and the diagonal of � gives the predictive variances.
These equations show an exact correspondence with the weight-space
approach to GPR involving Bayesian linear regression in feature space
[12].

The hyperparameters of (11) may be determined by minimizing the
negative log marginal likelihood [12]:
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where ��� is the determinant of ������.

3. Application to Antenna Modeling

A. Broadband CPW-Fed Square Slot Antenna With T-Shaped Tuning
Stub

Fig. 1 shows a CPW-fed square slot antenna with T-shaped tuning
stub on a single dielectric layer substrate, intended for broadband
operation [13]. BSVR, GPR and standard SVR were used to model
the magnitude of the antenna input reflection coefficient ����� over
a four-dimensional input space spanned by the three tunable stub
dimensions 	�, 	�, and 	�, and frequency 
 . Parameter ranges were
��� � 	� � 
�� ��, ��� � 	� � �� ��, ���
 � 	� � �� ��,
and ���� � 
 � 
� ���. (Fixed dimensions and parameters were
� � ��� ��, � � 
�
�, � � �� ��, � � �� ��, � � ��
 ��,
and � � ��� ��.) Visual inspection at randomly selected locations
throughout the multi-dimensional geometry space revealed notable
variability of �����-against-frequency responses. For example, in
addition to single-band responses exhibiting relatively wide �10 dB
bandwidths, narrower responses located towards either end of the
frequency range, dual-band responses, and responses that were larger
than �10 dB throughout the frequency range were observed. �������
and �������, the real and imaginary parts of ���, were modeled
separately. This was preferred to setting up a single regression model
for �����, as GPR with a Gaussian kernel performs best on stationary
smooth functions [12] (numerical experiments confirmed that this also
holds for BSVR).

For training data, 400 geometries comprised of sets of tunable
dimensions were uniformly randomly sampled from the input space,
with two randomly selected frequencies per geometry (i.e., different
frequencies were independently selected for each geometry). This
resulted in a set of � � ��� training input vectors of the form
�� � �	��� 	��� 	��� 
��

�, � � �� � � � � � (where 
� is the �th frequency
value). The corresponding output target scalars �� (either ������� or
�������) were determined using IE3D [16], a moment-method-based
full-wave simulator. Test data were comprised of 150 new randomly
selected geometries, with 37 equally spaced frequencies over the range
1.2 to 3 GHz per geometry, resulting in a total of 5550 test points.

During training, the hyperparameters of (11) were determined for
each of the BSVR and GPR models by minimizing (12) and (15)
respectively. A standard SVR model with isotropic kernel (1) was also

Fig. 1. CPW-fed square slot antenna with T-shaped tuning stub for broadband
operation (top and side views). The slot aperture is shaded.

TABLE I
%RMSE AND CORRELATION COEFFICIENT � FOR TEST DATA PREDICTIONS

Fig. 2. ���� � against frequency of broadband slot antenna corresponding to
test geometry �� � � � � � � ���� ����� 	�
� ��.

trained; its hyperparameters ��� �� optimized using a 5-fold cross-val-
idation procedure were ����� ������ for ������� and ����� ���� for
������� with  � ����. Predictions were then made for the test
data set. Table I gives for each method the percentage normalized
root mean square error (%RMSE) for the test set (predictions were
normalized with respect to the range of the target values), as well as
the linear correlation coefficient � for predictions and targets. BSVR
and GPR achieved highly accurate results throughout, with normalized
����� � ���� in all cases, and correspondingly high correlation
coefficients. In contrast, normalized RMSEs for SVR ������� and
������� test predictions were significantly worse (at 4.50% and 5.37%
respectively).

Figs. 2 and 3 pertain to a test geometry �	�� 	�� 	�� �
�� � ����� ���� �� that exhibited a near-optimal fractional �10
dB bandwidth of 67% with respect to the centre of the band at 2.1
GHz. Fig. 2 shows ������� against frequency as predicted by BSVR,
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Fig. 3. Magnitude of reflection coefficient �� � against frequency for broad-
band slot antenna.

Fig. 4. Ultrawideband CPW-fed slot antenna with U-shaped tuning stub (top
view only). The slot aperture is shaded.

GPR, and standard SVR [10]; and the full-wave simulated target
values. Fig. 3 shows the corresponding ����� plots constructed from
the ������� and ������� predictions (the normalized RMSEs for
the 37 ������� test predictions were 0.51%, 0.60%, and 4.48% for
BSVR, GPR, and SVR respectively; and 0.16%, 0.37%, and 3.75%
for the corresponding ������� predictions). While BSVR and GPR
predictive curves correspond closely to full-wave simulations, the
limited expressiveness of the isotropic kernel can be seen in the failure
of the SVR curves to replicate the local peaks and valleys of the target
curves.

It may be noted that both the BSVR and GPR formulations provide
the option of plotting confidence regions about the mean, which is a
consequence of their probabilistic frameworks. For the sake of clarity
these have been omitted from Fig. 2; given the high accuracy of the
predictions the confidence regions were in any event very narrow about
the respective means.

B. Ultrawide-Band CPW-Fed Slot Antenna With U-Shaped Tuning
Stub

Fig. 4 shows a CPW-fed rectangular slot antenna with U-shaped
tuning stub intended for ultrawideband operation [14]. The substrate
was a single dielectric layer with height � � 	�
�� �� and dielec-
tric constant �� � ���
. BSVR and GPR were used to model ��� over
a six-dimensional input space spanned by the five tunable U-stub di-
mensions �, �, �, �, and 	, and frequency 
 . Parameter ranges were
� � � � ��� ��, � � � � ��� ��, 	�� � � � ���� ��,
	�� � � � ���� ��, 	�� � 	 � ���� ��, and � � 
 �
�	� ��� (fixed dimensions were � � ���� ��, � � ���� ��,
 � ��

 �� and � � 	���� ��; infinite ground planes and di-
electrics were assumed). Preliminary inspection revealed substantial
variability of �����-against-frequency responses throughout the geom-
etry input space.

Fig. 5. �� � against frequency for ultrawideband slot antenna constructed
from the regression models for the real and imaginary parts of � for the test
geometry ��� �� �� �� �� � ���� �� �� �� �� ��.

Training data consisted of 625 geometries (randomly sampled sets
of tunable dimensions), with seven frequencies per geometry selected
randomly as before, resulting in 4375 training points (more frequencies
per geometry were required, as ������� and ������� responses were
less smooth compared to the broadband case). Test data consisted of
176 randomly selected geometries not used for training, with 81 equally
spaced frequencies over the range 2 to 10 GHz per geometry, giving a
total of 14256 test points.

Table I gives the %RMSE and � for each regression (including stan-
dard SVR with an isotropic kernel). For both BSVR and GPR the pre-
dictive accuracy was very good given the highly non-linear underlying
function that had to be fitted, with normalized ����� � ���� in all
cases. Not unexpectedly—given the limited expressivity of its isotropic
kernel with respect to the multi-dimensional input space—standard
SVR fared substantially worse, with normalized RMSEs for �������
and ������� of respectively 8.81% and 9.60%. Fig. 5 shows �����
against frequency, constructed from the ������� and ������� values
predicted by BSVR and GPR, for a geometry that displays ultra-
wideband behavior, namely ��� �� �� �� 	� � ���� �� �� �� �� ��
(the normalized RMSEs for the 81 ������� test predictions were
0.83% and 1.04% for BSVR and GPR; and 1.00% and 0.93%
for the corresponding ������� predictions). Very good agreement
with the full-wave-simulated results is exhibited by both methods.
The BSVR kernel length-scale parameters for the ������� re-
gression corresponding to input variables ��� �� �� �� 	� 
 � were
���� ��� ��� ��� ��� ��� � ����
�� ��	��� ������ ��
�
� ������ 	��	��,
and [1.299, 1.095, 4.760, 2.918, 3.134, 0.204] for �������, indicating
that the input dimensions most influential on output predictions were
frequency and the stub vertical and horizontal dimensions � and �.

4. Conclusion
Results were presented confirming that Bayesian support vector re-

gression (which is an extended formulation of the widely used standard
SVR) with a Gaussian ARD kernel is eminently suitable for highly non-
linear regression problems such as modeling the input reflection coef-
ficient of antennas with multiple tunable geometry variables. BSVR
provides a systematic and efficient mechanism for inferring the mul-
tiple ARD kernel hyperparameters (i.e., minimization of the negative
log probability of the data given the hyperparameters)—a task which is
computationally infeasible for standard SVR with its grid search/cross-
validation approach to hyperparameter optimization.

While BSVR achieved predictive accuracies similar to those ob-
tained from GPR for these particular two antennas, the BSVR formu-
lation has (because of its SVR-related properties) certain general ad-
vantages over GPR that are of direct interest for antenna modeling.
The first pertains to efficiency in handling large training data sets: the
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basic computational cost of GPR is ����� [12], due to the fact that
an � � � matrix needs to be inverted for both the gradient calcula-
tions required for hyperparameter optimization [12, eq. (5.9)]; and in-
ference (13). This computational expense may become prohibitive for
large �. In contrast, even though hyperparameter optimization under
BSVR likewise requires matrix inversion for computing the gradient
of the evidence [11, eqs. (39)–(41)]), this involves the � �� matrix
�� (cf. (12)), where� usually is considerably smaller than � [11]. To
make predictions, BSVR does not require matrix inversion, but rather
solving of the convex quadratic optimization problem (10), for which
multiple efficient techniques exist [7]. Second, the sparseness property
of BSVR can be used towards adaptive data selection when training
data is expensive to generate. The sparseness property alludes to the
fact that the predictive function can be expressed as a weighted sum
of kernel functions centered at the support vectors (SVs), where the
SVs are a (usually significantly) reduced subset of the training input
vectors. Suppose that a “coarse” regression model using many inex-
pensive coarsely simulated training data points is set up, and that SVs
are identified. It has been shown that the SVs, re-simulated at a high
meshing density, can form a sufficient training set for an accurate “fine”
model [17]—resulting in substantial computational savings compared
to when the full original training set is simulated at the high meshing
density. Finally, BSVR’s soft insensitive loss function (9) is not overly
sensitive to outliers that might arise if training data were obtained from
noisy measurements. In contrast, outliers contribute disproportionally
to the quadratic loss function in GPR—to the extent that relatively few
outliers could adversely affect the solution [11].

It is anticipated that BSVR might be applied with good effect to
other antenna-related regression problems that involve non-linear
input-output relationships and multi-dimensional inputs.
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