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Bayesian Tailored Testing and the Influence
of Item Bank Characteristics

Carl J. Jensema

Gallaudet College

Owen’s (1969) Bayesian tailored testing method is
introduced along with a brief review of its deriva-
tion. The characteristics of a good item bank are
outlined and explored in terms of their influence on
the Bayesian tailoring process. The results clearly
demonstrate importance of a good item bank; one
having a sufficient number of items with high dis-
crimination, low guessing probability, and a uniform
distribution of difficulty.

Conventional tests are generally constructed to dis-
criminate over a rather wide range of examinee ability. One
of the consequences of this approach is that a conventional
test usually contains many items which are not appropriate
for a particular level of ability. Psychometricians have long
been aware of this and in recent years they have increas-
ingly turned their attention to the possibility of program-
ming computers to design and administer tests.

Of the many computerized testing methods which have
been proposed, the Bayesian process developed by Owen
(1969) seems to be the most elegant and intuitively appeal-
ing method. It assumes locally independent binarily scored
items and a normal ogive model (Lord and Novick, 1968,
Ch. 16) in which the probability of passing a free response
item g at ability level 0 is expressed as

If the item is not of the free response type and ~g is the
probability of guessing correctly, the probability of passing
becomes

The derivation of Owen’s Bayesian tailoring process has
been described several times in the literature (Owen, 1969;
Urry, 1971; Jensema, 1974a). We will briefly run through
the fundamental formulas here for the sake of complete-
ness.

Suppose N(B~,op2) expresses our knowledge of an ex-
aminee having ability 0. If we administer free response item
g, which has discrimination and difficulty parameters a and
b, and if the examinee responds correctly, Bayes’ theorem
specifies that the information available is

where Pg(8) is defined by (1) and k is such that

The solution is

where erf D is the error function
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and

The expectation of the posterior mean is

and the variance is

Similarly, if the examinee gives a wrong response to item g
we have

and

To expand this discussion a little further assume that

item g is not a free response item and that it has a probabil-
ity Cg of guessing correctly. If the examinee gives a correct
response we have

and

where the prime is used to signify the effect of guessing,
P ’(0) is defined by (2), and we take

If the examinee gives a wrong response the formulas in

(10), (11), and (12) hold, since our information, that the
examinee does not know the correct answer, is the same as

in the free response case.

Now assume we have n items and want to select the best

one for administration. The expected posterior variance of
8 after administration of a particular item is

when items are of the free response type and

when the items are affected by guessing. In (19) and (20) u
refers to the correctness of the examinee’s response and is

taken as 1 or 0. The item which leads to the smallest ex-

pected posterior variance is the most desirable one to ad-

minister. It is sufficient to select the item with the smallest

value a where
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for free response items and

when guessing is present.

If we have a pool of n items and estimates of the normal

ogive model parameters for each item, we may use a

Bayesian sequential procedure to select items for adminis-
tration to a particular examinee. Let 6~m~ and ’(12 (m) be an
estimate of the examinee’s ability and its variance where m
indicates the number of items administered. Assume the

population has ability distributed as N(0,1) and take 9to1
and ^’2 g (,) as 0 and 1. Calculate cei values for all (unused)
items, i = 1,2,....., (n-m), using (22). (We will assume

that the items are Pot free-response.) The examinee is ad-

ministered the item with the smallest al value. If an incor-
rect response is given, 9 

~ 
and Q ~m+1~ are calculated

from ( I I ) and ( 12). If th&dquo;’rlsflonse is correct, ( 14) and ( 15)
are used. This cycle is repeated until 8~,,~ ~ is within some

pre~sclected limit. The selection of a 3g~~value for termi-
nation is, of course, arbitrary. It is usually selected to yield
some expected level of validity according to

The characteristics of an item bank used for tailored

testing are very important to the efficiency and accuracy of
the process. There are four basic requirements for a good
item bank. These have been mentioned in whole or part in a
number of publications (i.e. Urry, 1970, 1971, 1971b,
1974; Jensema, 1972, 1974a, 1974b; etc.) and may be sum-
marized as follows:

1) Item discrimination should be as high as possible and
should not be less than .8.

2) Item guessing probabilities should be as low as pos-
sible.

3) The item bank must consist of a sufficiently large
number of items.

4) Item difficulties should have a rectangular distribu-
tion.

The remainder of this paper will concentrate on demon-

strating the importance of each of these four requirements.
Assume that an infinitely large item bank exists and that

all items have the same discriminatory power and the same
probability of guessing correctly. The assumption of an
infinitely large item bank allows the selection of an item i
having a difficulty level exactly equal to any given estimate
of ability. When this ~can be done many of the formulas
may be greatly simplified since we have:

and

The equations for â2 (m + 1) 
for correct and incorrect

responses become

and

where m is the number of items previously administered.
An item i’s difficulty is the point at which the probabil-

ity of knowing the correct answer is exactly .5. If guessing
is in effect the probability of responding correctly is equal
to the probability of knowing the answer plus the probabil-
ity of guessing correctly. Then Qz~m+1~ may be expected
to be the sum of (26) and (27) weighted by the probabili-
ties of a correct or incorrect response:

A little algebraic manipulation reduces this to

Inserting appropriate values for at and c, in equation
(29) and plotting the results against the number of items
administered demonstrates the influence of item discrimina-

tion and guessing probability on the tailoring process.

Figure 1 plots the expected standard error of the estimate

ea~,n+1~ by the number of items administered for five

levels of discrimination whcn guessing probability is zero

and an infinite number of items are available. Notice the

sharp difference in the numbcr of items needed at different
levels of discrimination. For example, if the items have dis-
crininatory powers of 2.5 only 4 or 5 items are needed to
reach a standard error of the estimate of .30 while 17 or 18 8

items are needed to reach this level when item discrimina-

tion is only 1.0.
Now suppose we take item discrimination to be 1.0, a

rather low value which is easily obtained. Figure 2 plots the
expected standard error of the estimate for various guessing
values by the number of items administered. The guessing
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Figure 1

Expected standard error of the estimate according to number of items administered at five levels of item dis-
crimination.
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Figure 2

Expected standard error of the estimate according to number of items administered at six guessing probabil-
ities.
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Figure 3

Expected standard error of the estimate for three item banks according to number of items administered.
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values range from .5 (i.e. true-false items) to 0.0 (i.e. free

response items.) The greater the probability of guessing, the
more items required to reach a specific standard error of
the estimate.

To give a clear example of the combined effects of dis-
crimination and guessing on the tailoring process, suppose
we have three item banks which, for convenience, are

referred to as I, II, and III. Assume Bank I items have dis-
crimination and guessing paramenters of .5 and .33. Bank
11’s parameters are 1.0 and .25 while Bank III has parameter
values of 2.0 and .20. These banks may be roughly
classified as unacceptable, fair, and excellent for tailored

testing purposes. Assuming that each bank has an infinite
number of items and plotting the expected standard error
of the estimate against the number of items administered,
the three curves in Figure 3 are obtained.

In Figure 3, notice that Bank I wouid give unacceptable
results. After 30 items the expected standard error of the
estimate is only .56 (i.e. reliability = .69, validity = .83). In
contrast an excellent item bank, such as Bank III, would
reach this level after only 3 or 4 items. The advantage of

high discrimination and low guessing probability in an item
bank is obvious.

Up to this point we have discussed the behavior of

Bayesian tailored testing when the item bank is assumed to
be of unlimited size. The obvious question which follows is
what happens when item bank sizes are within practical
limits? To answer this question, Monte-Carlo data for 200
items are generated for each of 100 &dquo;examinees&dquo; using
Urry’s (1970) &dquo;LOGIST&dquo; program. The parameters for

discrimination (1.0) and guessing (.25) were the same as for
Bank II mentioned earlier. Eight sets of 25 difficulty values

(-2.4, -2.2, ... , 0.0, ... , 2.2, 2.4) were employed.
Bayesian tailored testing was simulated with this data using
50, 75, 100, 150, and 200 items in the bank. Since

difficulty had been specified in sets of 25 values, the item
banks had 2, 3, 4, 6, and 8 items at each of the 25

difficulty levels respectively.
For each of the five item banks and for’each of the 100

examinees, tailoring was simulated until 30 items had been
&dquo;administered&dquo;. As each item was &dquo;administered&dquo; the new

estimate of ability was recorded. Since the data was

randomly generated, true ability (distributed as N(0,J ) was
known and could be correlated with estimated ability.
Table I gives the validity (correlation between true and

estimated ability) for each item bank by the number of

items &dquo;administered&dquo;. The last column in Table I gives the

expected validities for an item bank of infinite size as

calculated from equation (32) and (23).
The Monte-Carlo data above represents items which are

passable but not especially good for tailored testing. To see
how item bank size would influence validity when the bank
was composed of excellent items, the Monte-Carlo data

tailoring simulation was repeated with higher discrimination

(2.0) and lower guessing (.20) parameter values. These

configttrations correspond to Bank III mentioned earlier.

The results of the simulated tailoring with this new data are

given in Table 2, .

For practical application it is apparent that a very large
number of items is not a critical item bank characteristic if

the bank is good in other respects. In both Table 1 and

Table 2 the Monte-Carlo data validities obtained for the five
banks closely match each other and they also parallel the
validities to be expected from a corresponding item bank of
infinite size. However, it must be remembered that this was
Monte-Carlo data and the tailoring simulation used known
parameter values for discrimination, difficulty, and

guessing. With real data involving imprecise parameter
estimates and a possible non-uniform distribution of

difficulty, it would be wise to be a bit cautious if a bank

had, say, fewer than 75 items. In connection with this,
there are some practical problems which arise if an item

bank is too large. A large bank has more items available for
administration, but the storage requirements and the

increased computer processing needed for item selection
also slow things down while adding to overall computer
costs. (Some good cost-efficiency studies are needed on

this!)
The last item bank requirement is uniform distribution

of difficulty. The exact results of violating this rule are
difficult to predict, since they would necessarily depend on
the actual distribution of i!em difficulty, the discrimination
and guessing parameter values, the number of items in the
bank, and the criteria used to terminate the tailoring
process. The essential point to remember is that the

Bayesian tailoring procedure attempts to select for
administration the item which will yield the most

information. If, at a particular level of difficulty, there are
no items available, the Bayesian process will be forced to
select an item which is not appropriate and which will yield
less than an optimal amount of information.

To summarize, this paper has outlined a Bayesian
approach to item selection for tailored testing. Four basic
requirements of a good item bank for this process have

been discussed. If these requirements are met, Bayesian
tailored testing will yield excellent results. The key to the
process lies in careful construction of item banks. If

attention is given to this, the Bayesian tailoring process
gives us a fundamental tool for practical application of
latent trait mental test theory.
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(Continued from page 50)

ing and reporting program. The program has been written using standard FORTRAN language and
includes a sufficient number of comment cards to allow individuals with limited programming know-
ledge to process data efficiently.

In order to use TESTRPT, response data must appear in punched form. This limitation requires
that individual score sheets, or score cards, administered in optical scan format must be converted to

punched format by means of a user supplied editing procedure. Input to the program consists of the

responses of N individuals to each of k items comprising the test. In its present form, TESTRPT is in-
tended for use with a maximum of 1 SO individuals responding to a maximum of 1 SO test items.
TESTRPT is available presently in card form and may be obtained by writing to: Dr. Samuel

Marks, Purdue Research Foundation, Purdue University, West Lafayette, Indiana 47907. Documen-
tation, including a sample set of data, also is provided with each request. The present cost for
TESTRPT materials and documentation is $50.00. A copy of a paper presented at the 1976 Conven-
tion of the American Psychological Association which describes the rationale and illustrates the out-

put of TESTRPT may be obtained without cost from Kathryn W. Linden, Educational Psychology
and Research, South Campus Courts-G, Purdue University, West Lafayette, Indiana 47907.
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