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THEORETICAL REVIEW

Bayesian techniques for analyzing group differences
in the Iowa Gambling Task: A case study of intuitive
and deliberate decision-makers

Helen Steingroever1 ·Thorsten Pachur2 ·Martin Šmı́ra1,3 ·Michael D. Lee4

© The Author(s) 2017. This article is an open access publication

Abstract The Iowa Gambling Task (IGT) is one of the
most popular experimental paradigms for comparing com-
plex decision-making across groups. Most commonly, IGT
behavior is analyzed using frequentist tests to compare
performance across groups, and to compare inferred param-
eters of cognitive models developed for the IGT. Here, we
present a Bayesian alternative based on Bayesian repeated-
measures ANOVA for comparing performance, and a suite
of three complementary model-based methods for assess-
ing the cognitive processes underlying IGT performance.
The three model-based methods involve Bayesian hierarchi-
cal parameter estimation, Bayes factor model comparison,
and Bayesian latent-mixture modeling. We illustrate these
Bayesian methods by applying them to test the extent to
which differences in intuitive versus deliberate decision
style are associated with differences in IGT performance.
The results show that intuitive and deliberate decision-
makers behave similarly on the IGT, and the modeling
analyses consistently suggest that both groups of decision-
makers rely on similar cognitive processes. Our results
challenge the notion that individual differences in intu-
itive and deliberate decision styles have a broad impact
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on decision-making. They also highlight the advantages
of Bayesian methods, especially their ability to quantify
evidence in favor of the null hypothesis, and that they
allow model-based analyses to incorporate hierarchical and
latent-mixture structures.

Keywords Cognitive modeling · Reinforcement learning
models · Bayes factors · Product space method ·
Latent-mixture modeling

The Iowa Gambling Task (IGT; Bechara et al., 1994) is
arguably the most popular neuropsychological paradigm
for assessing complex, experience-based decision-making
(Toplak et al., 2010). In the IGT, participants are asked
to choose successively from four decks. Two of the decks
are bad decks, because they result in negative long-term
outcomes, while the remaining two decks are good decks,
because of their positive long-term outcomes. Successful
performance hinges on initially exploring all of the decks
and then moving to the two good decks. There is consider-
able evidence that the IGT performance of healthy decision-
makers (i.e., participants who do not have any neurological
impairments) differs from that of clinical populations, such
as patients with lesions to the ventromedial prefrontal cor-
tex (Bechara et al., 1998; Bechara et al., 1999; Bechara
et al., 2000), pathological gambling (Cavedini et al., 2002),
obsessive–compulsive disorder (Cavedini et al., 2002), psy-
chopathic tendencies (Blair et al., 2001), or schizophrenia
(Bark et al., 2005; Martino et al., 2007).

To compare groups in IGT performance, these studies
have mainly relied on an analysis of the proportion of
choices from the good decks as compared to the bad decks,
with conclusions based on frequentist techniques, such as
t tests and analyses of variance (ANOVAs). In addition, to
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investigate the psychological processes that underlie peo-
ple’s performance, several reinforcement-learning (RL)
models have been proposed. These models assume that card
selection on the IGT results from an interaction between dis-
tinct psychological processes including motivation, mem-
ory, and response consistency (Busemeyer et al., 2003).
Using these models, it has been possible to reveal group dif-
ferences in cognitive processes despite an absence of group
differences in IGT choices (e.g., Yechiam et al., 2008). Pop-
ular RL models for IGT data are the Expectancy Valence
model (EV; Busemeyer & Stout, 2002; Yechiam et al., 2008)
and the Prospect Valence Learning model (PVL; Ahn et al.,
2008; Ahn et al., 2011; see Steingroever et al., 2013a, for
additional references and a detailed description of the EV
and PVL models). More recently, it has been shown that
a hybrid version of the EV and PVL models—the PVL-
Delta model—outperforms the EV and PVL model in many
model comparison analyses (Ahn et al., 2008; Fridberg
et al., 2010; Steingroever et al., 2013b; Steingroever et al.,
2014, but see also Worthy et al., 2013, for the Value-Plus-
Perseveration model, and Dai et al., 2015, for the PVL2
model).

The current standard approach for comparing model
parameters between groups is to (1) estimate the parame-
ters for each participant separately using maximum likeli-
hood, (2) average the individual point estimates to obtain
a group estimate, and (3) use frequentist statistical tests,
such as independent-samples t-tests, Jonckheere–Terpstra
tests, or Mann–Whitney U tests, to compare the estimates
across groups (e.g., Cella et al., 2012; Escartin et al.,
2012; Yechiam et al., 2008). This approach, however, has
several limitations. First, individual-level maximum like-
lihood results in less precise and less stable parameter
inferences compared to Bayesian hierarchical parameter
estimation (Ahn et al., 2011; Scheibehenne & Pachur, 2015;
Shiffrin et al., 2008; Wetzels et al., 2010). Second, the
group averaging procedure risks underestimating the vari-
ability of the group estimate because individual parameter
estimates, which often have high variance, are integrated
into a group average that has a much lower variance
than the individual point estimates (Wetzels et al., 2010).
Third, the group averaging procedure ignores commonali-
ties across participants of the same group (Wetzels et al.,
2010). Fourth, and more generally, there are several well-
known problems inherent with frequentist tests, such as
p values overstating the evidence against the null hypoth-
esis (Berger & Delampady, 1987; Edwards et al., 1963;
Johnson, 2013; Sellke et al., 2001), classical hypothesis
testing not being able to quantify evidence in favor of the
null hypothesis, and frequentist sequential testing, com-
pared to Bayesian sequential testing (Rouder, 2014), being
much less flexible, since it requires researchers to specify in
advance the total duration of the data collection period (e.g.,

Reboussin et al., 2000) and the number of interim analyses
(e.g., Pocock, 1977).1

Here, we present a Bayesian approach to examine
whether two groups differ in their IGT performance, encom-
passing both behavioral and model-based analyses. We
illustrate our Bayesian approach by comparing IGT perfor-
mance of decision-makers who report preferring an intuitive
(affective) decision style and those preferring a deliber-
ate (planned) decision style. Based on existing self-report
instruments, a relationship between decision style and deci-
sion performance has been demonstrated (Phillips et al.,
2016). It is currently unclear, however, to what extent
this also holds for the IGT. A comparison of IGT perfor-
mance of people with intuitive versus deliberate decision
styles seems particularly interesting because the prominent
somatic marker hypothesis (Bechara et al., 1997; Dama-
sio et al., 1991; Damasio, 1994) suggests that intuitive,
affective processes may be of particular importance for suc-
cessful performance on the IGT. To conduct such a group
comparison, we apply a Bayesian repeated-measurement
ANOVA and illustrate three complementary cognitive anal-
yses for comparing the groups on parameters estimated with
the PVL-Delta model: (1) Bayesian hierarchical parame-
ter estimation, (2) Bayes factor model comparison, and
(3) Bayesian latent-mixture modeling (see also Lee et al.,
2015). All our analyses were conducted using JASP (JASP
Team, 2015), R (R Core Team, 2015), and the Stan soft-
ware (Hoffman & Gelman, 2014; Stan Development Team,
2014a, b, c), all of which are freely available. We make
the relevant R and Stan code available online, and it can
be adapted for similar IGT models and similar decision-
making tasks.

The outline of this article is as follows. The next section
describes the IGT, the PVL-Delta model, and its Bayesian
hierarchical implementation, together with a brief review of
Bayesian statistics. The following sections then present the
proposed methodology and its application to IGT data of
intuitive and deliberate decision-makers. In the final section,

1For philosophical and fundamental differences between the Bayesian
and frequentist approach see Lee and Wagenmakers (2005) and
Wetzels et al. (2011). Most crucially, these articles contrast the
Bayesian approach with the frequentist approach by arguing that the
two allow for completely different kinds of inferences. The frequentist
approach, on the one hand, provides the probability of encountering
data at least as extreme as those that were observed, given that the null
hypothesis is true and the sample was generated according to a spe-
cific intended procedure. The Bayesian approach, on the other hand,
provides the relative plausibility of the hypotheses under consideration
after having observed the data. However, only the latter kind of infer-
ence is useful for the research question we investigate in this article, but
also for research questions in psychology more generally. This under-
scores the superiority of the Bayesian approach. Additional discussions
can be found in Andrews and Baguley (2013), Bayarri et al. (2016),
Rouder et al. (2009), Sellke et al. (2001), and Wagenmakers (2007).
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we summarize our findings and discuss the methodological
contribution of our proposed analysis approach and impli-
cations for the notion of intuitive and deliberate decision
styles.

The IGT and PVL-Delta model

The IGT

In the standard version of the IGT, participants are initially
given $2000 (hypothetically) and are presented with four
decks of cards with different payoffs (see also Steingroever
et al., 2013; Steingroever et al., 2013a; Steingroever et al.,
2013b; Steingroever et al., 2014; Steingroever et al., 2016).
Participants are instructed to choose, over several rounds,
cards in order to maximize their long-term net outcome
(Bechara et al., 1994; Bechara et al., 1997). Unbeknownst
to the participants, the task has a fixed number of (typically)
100 trials. After each card selection, participants receive
feedback on the rewards and losses (if any) associated with
that card, as well as their running tally of rewards and losses
over all trials so far.

A crucial aspect of the IGT is to what extent participants
eventually learn to prefer the good decks over the bad decks,
because only choosing from the good decks maximizes
their long-term net outcome. The good decks are typically
labeled as decks C and D, whereas the bad decks are labeled
as decks A and B. Table 1 presents a summary of the com-
mon payoff scheme as developed by Bechara et al. (1994).
This table illustrates that decks A and B yield high con-
stant rewards, but even higher unpredictable losses: hence,
the long-term net outcome is negative. Decks C and D, on
the other hand, yield low constant rewards, but even lower
unpredictable losses: hence, the long-term net outcome is
positive. In addition to having different payoff magnitudes,
the decks also differ in the frequency of losses: decks A

Table 1 Summary of the payoff scheme of the traditional IGT as
developed by Bechara et al. (1994)

Deck A Deck B Deck C Deck D

Bad deck Bad deck Good deck Good deck

with fre- with infre- with fre- with infre-

quent losses quent losses quent losses quent losses

Reward/trial 100 100 50 50

Number of 5 1 5 1

losses/10 cards

Loss/10 cards −1250 −1250 −250 −250

Net outcome/10
cards

−250 −250 250 250

and C yield frequent losses, while decks B and D yield
infrequent losses.

The PVL-Delta model

The PVL-Delta model formalizes people’s performance on
the IGT through the interaction of four parameters that have
natural psychological interpretations as representing dif-
ferent psychological processes (Ahn et al., 2008; Fridberg
et al., 2010; Steingroever et al., 2014; see also Steingroever
et al., 2013b; Steingroever et al., 2016). The first assump-
tion of the PVL-Delta model is that, after choosing a card
from deck k ∈ {1, 2, 3, 4} on trial t, people evaluate the net
outcome associated with the card and this evaluation can
be described by the utility function from prospect theory
(Tversky & Kahneman, 1992). Formally, the utility is given
by

uk(t) =
{

X(t)A if X(t) ≥ 0
−w · |X(t)|A if X(t) < 0.

(1)

In this equation, X(t) represents the net outcome on trial
t , which is the sum of the experienced reward and loss
(i.e., X(t) = W(t) − |L(t)|). The prospect utility function
contains the first two model parameters, namely the loss
aversion parameter w ∈ [0, 5], and the outcome sensitivity
parameter A ∈ [0, 1].

The loss aversion parameter w quantifies the relative
weight of net losses relative to net gains in people’s eval-
uation of the net outcome of a given card. A value of w

greater than one indicates a larger impact of negative than
of positive net outcomes, whereas a value of w approach-
ing one indicates a similar impact of negative and positive
outcomes. As w approaches zero, negative net outcomes are
neglected.

The outcome sensitivity parameter A quantifies the
extent to which the subjective utility corresponds to the
actual net outcome, X(t). As A approaches one, the sub-
jective utility uk(t) increases in proportion to the actual
net outcome. For values of A smaller than one, there is
less differentiation between different net outcomes. As A

approaches zero, the sensitivity to differences in the net out-
comes continues to decrease towards the limit in which there
is no sensitivity at all.

The PVL-Delta model also assumes that, having formed
the utility of the card as described in Eq. 1, people update
their expected utility of the just-chosen deck, but keep the
expected utilities of the remaining decks unchanged. This
updating process is formalized by the delta learning rule:

Evk(t) = Evk(t − 1) + δk(t) · a · (uk(t) − Evk(t − 1)), (2)

where δk(t) is an indicator variable that equals 1 if deck k

is chosen on trial t and otherwise zero. The delta learning
rule states that the expected utility of the chosen deck k is
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adjusted upward if the experienced utility uk(t) is higher
than expected. If the experienced utility uk(t) is lower than
expected, the expected utility of deck k is adjusted down-
ward.2 This updating process is influenced by an updating
parameter a ∈ [0, 1]. This parameter expresses the memory
for past expectancies. A value of a close to zero indicates
slow forgetting and weak recency effects, whereas a value of
a close to one indicates rapid forgetting and strong recency
effects.

In the next step, the PVL-Delta model assumes that the
expected utilities of each deck guide people’s choices on
the next trial. This assumption is formalized by the softmax
choice rule, also known as the ratio-of-strength choice rule
(Luce, 1959):

P [Sk(t + 1)] = eθ ·Evk(t)∑4
j=1 eθ ·Evj (t)

. (3)

The PVL-Delta model uses this rule to compute the prob-
ability of choosing each deck on each trial. The softmax
choice rule includes a sensitivity parameter θ that controls
the extent to which trial-by-trial choices match the expected
deck utilities. Values of θ close to zero indicate random
choice behavior (i.e., strong exploration), whereas large val-
ues of θ indicate choice behavior that is strongly determined
by the expected utilities (i.e., choices strictly follow the
expectancies of the decks).

According to the PVL-Delta model, the sensitivity
parameter θ depends on the final model parameter, the
response consistency c ∈ [0, 5], as follows:
θ = 3c − 1. (4)

Small values of c lead to a small values of sensitivity θ

and thus to more random choices, whereas large values of
c lead to larger values of θ , and thus to more deterministic
choices.

In summary, the PVL-Delta model has four parameters:
(1) an outcome sensitivity parameter A, which determines
the shape of the utility function, (2) a loss aversion param-
eter w, which quantifies the weight of net losses over net
rewards, (3) an updating parameter a, which determines the
memory for past expectancies, and (4) a response consis-
tency parameter c, which determines the balance between
exploration and exploitation in the deck choices.

Bayesian hierarchical implementation of the PVL-Delta
model

For our modeling analyses, we used a Bayesian hierarchical
implementation of the PVL-Delta model. This implemen-
tation assumes that, within each group, probit-transformed

2We initialized the expectancies of each deck k to zero, so that Evk

(0) = 0.

model parameters of each participant are drawn from group-
level normal distributions characterized by mean and stan-
dard deviation parameters: z′

i ∼ N
(
μz′ , σz′

)
. Note that

we use zi to refer to a specific PVL-Delta model param-
eter of participant i (i.e., zi ∈ {Ai, wi, ai, ci}), and z′

i to
refer to its probit-transformed version (i.e., z′

i = �−1(zi)
with �−1 being the inverse of the cumulative standard nor-
mal distribution function). In addition, note that parameters
with ranges different to the [0, 1] interval were transformed
to this interval before the analysis, and were only trans-
formed back to their original ranges after the analysis. We
assigned a standard normal prior to the group-level means
μz′ , and a uniform prior ranging from 0 to 1.5 to each group-
level standard deviation parameter σz′ (see Steingroever
et al., 2013b, for more details on the implementation, and
Wetzels et al., 2010, for the same model specification in the
case of the EV model). In this way, the Bayesian hierarchi-
cal framework naturally incorporates both differences and
commonalities between and within the participants of one
group, and produces both inferences about individual-level
and group-level parameters (Horn et al., 2015; Lejarraga
et al., 2016; Navarro et al., 2006; Rouder & Lu, 2005;
Rouder et al., 2005; Rouder et al., 2008). To test our
implementation of the PVL-Delta model, we ran several
parameter-recovery analyses. The results of two such analy-
ses, indicating good recovery performance, are presented in
the appendix of Steingroever et al. (2013b).

Bayesian methods differ from frequentist methods in
how they address the two basic goals of statistical inference:
parameter estimation and model selection. In Bayesian
parameter estimation, inferences about a parameter are
based on the posterior distribution of the parameter values
given the observed data. A posterior distribution expresses
the uncertainty about the value of a parameter based on the
modeling assumptions and the observed data. In a Bayesian
framework, the so-called Bayes factor is used to quantify
the relative probability of the data under two competing
models or hypotheses (Berger & Mortera, 1999; Edwards
et al., 1963; Jeffreys, 1961; Kass & Raftery, 1995; Rouder
et al., 2012; Rouder et al., 2009; Wagenmakers, 2007;
Wagenmakers et al., 2010; Wetzels et al., 2009). In par-
ticular, BF01 quantifies the probability of the data under
the null hypothesis (H0) relative to the probability of the
data under the alternative hypothesis (H1). A Bayes fac-
tor can, for example, be used to quantify the evidence
that the data provide for a model that assumes differ-
ences in the loss aversion parameter across two groups of
decision-makers (M1), compared to a model that assumes
no differences (M0). If, for example, it was found that
BF01 = 10, this would indicate that the data were ten
times more likely under M0 than under M1. To classify
the evidential strength of BF01 = 10, the Bayes fac-
tor categories of Jeffreys (1961) can be used (see also
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Lee & Wagenmakers, 2013). Accordingly, BF01 = 10 is
classified as strong evidence for modelM0. Alternatively, if
it was found that BF01 = 1/10, this would indicate that the
data were ten times more likely under M1 than under M0.
Note that BF01 = 1/10 is equivalent to BF10 = 10, where
the reversed model comparison is expressed by the sub-
scripts of BF. As these possibilities make clear, in contrast
to frequentist methods, Bayes factors allow for a quantifi-
cation of the evidence for the null hypothesis or null model
(e.g., Rouder et al., 2009).

Proposed methodology for comparing groups
on the IGT

The IGT has often been used to investigate group differ-
ences in decision-making. It is well suited for this goal
because it is assumed to tap into a broad spectrum of
psychological processes, such as motivation, memory, and
response consistency. By comparing group differences in
performance—and, in particular, by decomposing the deci-
sion behavior using cognitive modeling—there is the poten-
tial to identify which processes are different and which are
the same across groups of decision-makers. Yechiam et al.
(2008), for example, studied the IGT performance of six
groups of criminals and a group of healthy participants.
They found that even though the six groups of criminals
showed similar behavior on the task, the similar (aggregate)
choice patterns were produced by different psychological
processes. Drug and sex offenders, for instance, over-
weighted potential gains as compared to losses, whereas
assault criminals tended to make less consistent choices and
to focus on immediate outcomes. These findings required
the use of a cognitive model because basic behavioral data
analyses of the card selection behavior only allow for infer-
ences about the overt choice behavior (see also Wood et al.,
2005). These findings thus illustrate that cognitive models
help us to gain a deeper understanding of psychological
processes relevant to decision-making.

In the remainder of this section, we elaborate on previ-
ous efforts to compare IGT performance of two groups by
presenting Bayesian state-of-the-art methods for this pur-
pose. We start with a standard method for behavioral data
analysis, before proposing a novel set of complementary
approaches for cognitive modeling. All approaches will then
be applied to data from two groups that are distinguished
based on their self-reported decision style.

Bayesian behavioral data analyses

Basic behavioral data analyses are usually based on gen-
eral linear models. A standard IGT experiment involves
repeated measures for a number of participants in two or

more groups over two or more blocks of trials. Accordingly,
a Bayesian block-by-block repeated-measures ANOVA on
the choices from the good decks (i.e., decks C and D) is
appropriate. These sorts of ANOVA analyses can be conve-
niently performed in JASP (JASP Team, 2015), which is a
user-friendly free software with a graphical user interface
for conducting Bayesian data analyses. For our analyses, we
use the default prior distributions implemented in JASP, that
is, Cauchy(0.5) and Cauchy(1) priors for the fixed effects
(i.e., block and group) and random effects (i.e., subject),
respectively (Rouder et al., 2012).

Bayesian cognitive modeling analyses

We implemented all of our proposed model-based analyses
using Stan (Stan Development Team, 2014a; Stan Develop-
ment Team, 2014b; Hoffman & Gelman, 2014; see chapter
9 of Stan Development Team, 2014c, for a description on
how to implement mixture models in Stan).

Bayesian hierarchical parameter estimation The first
model-based analysis involves inferring the posterior dis-
tributions of the group-level mean parameters for each
group independently. These inferences were made using
the Bayesian hierarchical implementation of the PVL-Delta
model introduced earlier. To assess the account of the PVL-
Delta model to the data we used the post hoc fit method. The
post hoc fit method compares so-called postdictions to the
observed choices. The postdictions are obtained as follows:
For a specific participant and a given trial, the parameter
estimates of that participant and all information about the
choices and associated payoffs on all trials up to the given
trial are used to predict the choice on the next trial. This pro-
cedure is realized for all trials and for each participant (for
more details see Steingroever et al., 2014).

Bayes factor model comparison The second model-based
analysis involves comparing the group-level mean param-
eters of the PVL-Delta model across two groups. This is
achieved by comparing a model specification that assumes
differences in at least one group-level mean parameter
across the two groups to a model that assumes no differ-
ences in the group-level parameters (i.e., a null model).
Since the PVL-Delta model has four parameters of interest,
15 comparisons of this type are required.3

When we refer to a model that assumes differences in
at least one group-level mean parameter, we index M by
the corresponding group-level mean parameter.Mμwμc , for
example, refers to the model that assumes differences in the

3In total, there are 24 = 16 possible models, one of which is the
null model. Therefore, we obtained 15 model comparisons involving
a model that assumes differences in at least one group-level mean
parameter across the two groups compared to the null model.

Psychon Bull Rev (2018) 25:951–970 955



group-level mean parameter of the loss aversion parameter
w and of the consistency parameter c (i.e., μw,1 �= μw,2 and
μc,1 �= μc,2, where the second index refers to the group),
but no differences in group-level mean parameter of the out-
come sensitivity parameter A and of the updating parameter
a (i.e., μA,1 = μA,2 and μa,1 = μa,2).

For all model comparisons, we assumed that the group-
level standard deviation is the same across the two groups
(i.e., σA,1 = σA,2, σw,1 = σw,2, σa,1 = σa,2, and σc,1 =
σc,2). To quantify the relative evidence that the data provide
for each of the 16 models, we used Bayes factors assuming
equal prior model probabilities for all models. Under this
assumption, the Bayes factor BF01 simplifies to the poste-
rior model odds BF01 = p(M0|D)/p(M1|D), that is, the
ratio of the posterior probability of modelM0 relative to the
posterior probability of model M1. The posterior probabil-
ity of a specific model M was estimated by means of the
product space method (Carlin & Chib, 1995; Lodewyckx
et al., 2011. This method is based on the construction of a
“supermodel” that implements a hierarchical combination
of the models to be compared. The hierarchical combination
is achieved by a model index vector that, on a given sam-
ple, takes on a value indexing the model that is visited on
that sample to account for the observed data. The posterior
probability of a model under consideration is then given as
the proportion of times that that model is visited to account
for the observed data (see Appendix B for more details on
the product space method).

We conducted several tests to establish the stability of the
Bayes factor estimates. First, we confirmed good sampling
behavior of the model indicator variable z (i.e., good mixing
and low autocorrelations, that is, frequent model switches;
Lodewyckx et al., 2011). Secondly, we repeated the prod-
uct space method with fewer iterations (i.e., 5000 samples
instead of 7000 of each chain after having discarded the
first 1000 samples of each chain as burn-in). The stabil-
ity of the Bayes factor estimates was confirmed because
the difference in corresponding estimated posterior model
probabilities was smaller than 0.01 and the Bayes factors of
both analyses resulted in the same qualitative conclusions
(i.e., using the classification scheme of Jeffreys, 1961, cor-
responding Bayes factors of both runs were classified into
identical evidence categories). Third, the our Stan model file
was discussed on the Stan users mailing list.4

Bayesian latent-mixture modeling The first two model-
based analyses focus on parameter estimation and model
selection, respectively. Though relatively standard approaches
in the general Bayesian statistics literature, they are not

4The discussion can be found here https://groups.google.com/forum/
?hl=cs#!searchin/stan-users/reinforcemen/stan-users/TjY3wQqUS2g/
cff2lWoRUr0J.

routinely applied in the context of the IGT and associated
cognitive modeling. The third model-based analysis, which
combines elements of parameter estimation and model
selection in a complementary way, is novel both in the
context of the IGT and in Bayesian applications more gen-
erally. This analysis involves a two-group latent hierarchical
mixture model (Lee et al., 2015; chapter 6 in Lee and
Wagenmakers, 2013).5

For the first two model-based analyses, we considered
two separate data sets (in our example below, the first data
set consists of deliberate decision-makers, whereas the sec-
ond data set consists of intuitive decision-makers). For the
latent-mixture analysis, in contrast, we consider all of the
participants in a single data set and ignore the knowledge
about each participant’s true group membership. However,
we continue to assume that each participant comes from
one of two groups, but it is thus unknown which group
each participant comes from. The goal of the latent-mixture
modeling is then to examine whether the correct group
membership for each participant can be inferred from their
behavior on the IGT.

Formally, in the two-group case, group membership is
indexed by a binary indicator variable zi , so that zi = 0 and
zi = 1 indicate that the i-th participant belongs to the first
and second group, respectively. The prior for these indicator
parameters is zi ∼ Bernoulli(ψ) with ψ ∼ Uniform(0, 1).
Consequently, ψ corresponds to the base rate of member-
ship to the second group. This choice of priors means that
each participant is a priori equally likely to be assigned to
either group. The latent-mixture model analysis yields the
probability for each individual participant to belong to each
of the groups, as well as a posterior distribution for the base
rate.

One way to apply this latent-mixture analysis is to use
the same priors for model parameters as used in the first
cognitive-modeling analysis (i.e., the Bayesian hierarchical
parameter estimation). In this case, the inferences made by
the latent-mixture analysis about the group membership of
each participant reflect how people would be classified with-
out any prior knowledge of the true memberships. If these
inferred group memberships agree with the actual ones, then
the analysis provides strong evidence that the behavioral
data and model separate people into the proposed groups.

In this article, we pursue a second, more novel, way to
apply the latent-mixture model. Our approach uses highly
informative priors, so that each group is defined in terms
of group-level parameter inferences based on the true group
memberships. These priors approximate the posteriors from
the first cognitive-modeling analysis. Formally, within each

5Note that our two-group assumption has a clear intuitive-deliberate
basis in theory; however, in general, it is also possible to assume more
than two groups (see Bartlema et al., 2014).
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of the two groups, we assume that the probit-transformed
individual-level parameters are drawn from a group-level
normal distribution: z′

i ∼ N
(
μz′ , σz′

)
. We assigned a normal

prior to the group-level means μz′ , and a truncated normal
prior (allowing for only positive values) to the group-level
standard deviations, σz′ . These (truncated) normal prior
distributions are characterized by means and standard devi-
ations obtained from the first cognitive-modeling analysis.
That is, we use the mean x̄μz′ and the standard deviation
sμz′ of the posterior distribution of μz′ obtained from the
first cognitive-modeling analysis to specify the prior distri-
bution on μz′ (i.e., μz′ ∼ N(x̄μz′ , sμz′ )) in this informed
latent-mixture model approach, and analogous for the prior
distribution on σz′ . This way of constructing the priors pro-
duces highly informative priors that approximate the poste-
rior distributions from the first cognitive-modeling analysis.
This analysis obviously uses the behavioral data twice—
once to construct the prior distributions, and once to fit
the latent-mixture model—and so cannot be used to make
inferences about model parameters. It does, however, poten-
tially provide a strong test of patterns of group membership.
In particular, if the true group memberships of participants
cannot be inferred under these ideal conditions, there is
strong evidence that the model and data do not distinguish
the participants into the proposed groups.

Case study: Intuitive versus deliberate
decision-makers

Whereas many early applications of the IGT focused on
comparing clinical to control groups, the task has increas-
ingly also been used to study how individual differences in
cognitive abilities (e.g., executive functions, intelligence),
mood, age, education, and personality among healthy par-
ticipants can explain differences in decision-making (Beitz
et al., 2014; Buelow& Suhr, 2009; Davis et al., 2008; Suhr &
Tsanadis, 2007; Toplak et al., 2010; Wood et al., 2005). One
interesting individual difference variable that has recently
received much attention is decision style (e.g., Phillips
et al., 2016). One prominent distinction here is between
persons who prefer making decisions using an intuitive deci-
sion mode and those who prefer a deliberate decision mode.
These two types of decision-makers can be reliably dis-
tinguished using scales measuring a person’s self-reported
tendency to rely on an intuitive and a deliberate approach
when making decisions (Burns & D’Zurilla, 1999; Pacini &
Epstein, 1999; Scott & Bruce, 1995). For instance, Betsch
(2004) used a self-report inventory to assess people’s ten-
dencies to generally rely on an intuitive, affect-based deci-
sion mode (with items such as “I tend to use my heart as
a guide for my actions”) and a deliberate, cognition-based
decision mode (e.g., “I want to have a full understanding of

all problems”). The author found reliable individual differ-
ences indicated by high internal validities of the scales (see
also Betsch & Iannello, 2010; Pacini & Epstein, 1999).

Differences in decision style might underlie the consid-
erable behavioral heterogeneity often observed in decision-
making (e.g., Pachur & Olsson, 2012; Steingroever et al.,
2013a). Indeed, there is evidence that self-reported decision
style is related to decision behavior. For instance, Schunk
and Betsch, (2006) found that when choosing between mon-
etary lotteries, decision-makers with higher scores on the
intuition scale showed faster decision times than deliber-
ate decision-makers. In the same task, deliberate decision-
makers showed stronger sensitivity to outcome information
(indicated by a more linear utility function) than intuitive
decision-makers. Finally, when participants were asked to
price goods (e.g., coffee mugs), Betsch and Kunz (2008)
found that participants who were instructed to operate in
either a spontaneous or reflective fashion decided differ-
ently depending on whether the instructed decision mode
matched their personal decision style. Specifically, under
“decisional fit” people priced the objects more positively
than under decisional misfit.

A recent meta-analysis by Phillips et al. (2016) found
that individual differences in decision styles have a reli-
able relation to differences in decision performance. The
size of the effect and whether an intuitive or a deliberate
decision style leads to better performance, however, varies
substantially across tasks. Because Phillips et al.’s (2016)
meta-analysis mainly encompassed reasoning and judgment
tasks, it is currently unclear whether the impact of decision
style on decision performance also holds for the IGT. To
our knowledge, there is only a single study that has stud-
ied the impact of decision style on IGT performance, but
this study focused on a deliberate decision style only and
found inconsistent results (Harman, 2011). It is therefore
interesting to investigate the link between decision style
and behavior on the IGT more rigorously, including mea-
sures of preference of both intuitive and deliberate decision
modes and including a decomposition of the behavior with
computational modeling (thus disentangling, for instance,
motivation and memory processes). After all, as Wood et al.
(2005) and Damasio et al. (2008) have shown, the pro-
cesses underlying behavior on the IGT can differ between
groups, as revealed with computational modeling, even if
IGT performance itself does not differ across groups.

Moreover, the IGT seems a promising context for study-
ing the impact of decision style because—as has also been
noted elsewhere (Dunn et al., 2006; Turnbull et al., 2005)—
there is a strong conceptual similarity between the notion
of an intuitive decision style and the intuitive, affective pro-
cesses that are, according to Bechara et al. (1997) and the
so-called somatic marker hypothesis (e.g., Damasio et al.,
1991; Damasio, 1994), crucial for good IGT performance.
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The somatic marker hypothesis assumes that people develop
from feedback “feelings generated from secondary emo-
tions ... to predict future outcomes of certain scenarios”
(Damasio, 1994, p. 174). Patients with lesions to the ventro-
medial prefrontal cortex, a region in the brain where these
somatic markers are assumed to be represented, showed
poorer IGT performance than healthy controls (i.e., they
made fewer choices from the decks that are profitable on the
long run), despite having unimpaired cognitive functioning
(Bechara et al., 1997). The patients also showed lower affec-
tive responses, indicated by skin conductance responses,
before selecting a card from the bad decks. It was argued
that healthy participants, but not the patients, had developed
affective signals in response to net losses at previous trials,
and since these net losses are more frequent and pronounced
in the bad decks, this helped the participants to learn to
avoid them. These results suggest that the operation of affec-
tive, intuitive processes may be an important contributor to
successful performance on the IGT (for critical discussions,
see Maia & McClelland, 2004; Newell & Shanks, 2014). If
so, decision-makers who report to prefer an intuitive deci-
sion style, thus paying considerable attention to affective
signals when making decisions, might perform better than
those who report to prefer a deliberate decision style. This
research question is the focus of the following case study—
a case study that serves to illustrate our proposed Bayesian
methodology.

Data

Seventy students from the University of Basel (49 female;
average age 24.9 years, SD = 5.8, range = 19 − 51 years)
participated in the study. Following the administration of
a computerized version of the IGT, participants completed
a self-report inventory complied by Betsch and Iannello
(in preparation) to measure individual participants’ decision
style. This inventory consists of 70 items covering a total of
12 subscales (e.g., deliberation, knowing, rational engage-
ment, experiential engagement, spontaneous), taken from
various other established instruments measuring intuitive
and deliberate decision styles (Betsch, 2004, e.g., Burns &
D’Zurilla, 1999; Epstein et al., 1996; Scott & Bruce, 1995).
For instance, participants indicated their agreement on a
seven-point scale to statements such as “When I make a
decision, I trust my inner feeling and reactions.” and “The
right way to decide usually comes to mind almost immedi-
ately.” (intuitive style), and “I like to analyze problems.” and
“I usually have clear, explainable reasons for my decisions.”
(deliberate style; see Table 6 in Appendix A for a full list of
the items used). An overview and a discussion of the internal
and construct validity of the subscales is provided by Betsch
and Iannello (2010). Cronbach’s Alpha for the subscales
based on the current data—showing, overall, rather high

internal reliability—are provided in Table 6 of Appendix A.
Based on the mean score for each participant on each sub-
scale, we conducted a principal component analysis with a
rotation based on the varimax method. The Kaiser criterion
suggested a three-factor solution (i.e., a deliberation fac-
tor, an intuition factor, and a spontaneity factor). Following
previous research (Betsch & Kunz, 2008), we classified par-
ticipants as intuitive if they had both a factor score above
the median of the intuition factor and a factor score below
the median of the deliberation factor. Participants with the
opposite pattern were classified as deliberate. This clas-
sification scheme yielded 19 participants in the intuitive
group and 19 participants in the deliberate group. Thirty two
participants thus remained unclassified and were excluded
from the analyses presented in this article (more details can
be found in the Appendix A).6 Figure 1 uses boxplots to
summarize the distribution of scores on the 12 subscales,
separately for the intuitive group and the deliberate group.
As can be seen, the groups have strongly different profiles
on the scales and cover different value ranges.

Behavioral data analyses

In order to obtain a visual impression of the group-level
deck preferences across trials, the first and third columns of
Fig. 2 show, separately for intuitive and deliberate decision-
makers, the proportion of choices from each deck as a
function of ten blocks (see Steingroever et al., 2013, for
a discussion of the importance of considering each deck
separately and not aggregated across all trials), and the
proportion of choices from the good and bad decks, respec-
tively. The figure suggests similar deck preferences for
the intuitive and deliberate decision-makers. Specifically,
although both groups failed to develop a clear avoidance of
bad deck B, overall they learned to make more choices from
the good decks than from the bad decks. There appears to be
a slight trend for stronger learning in the group of intuitive
decision-makers.

We applied our proposed Bayesian data analysis in the
form of a 10 (block) x 2 (decision style) repeated measures
ANOVA. The results of this analysis are presented in Table 2
and showed that the data are 370506.491/101921.230 =
3.64 times more likely under the “Block model” that
assumes an effect of block, but no effect of group than under
the “Block + Group model” that assumes both group and
block differences (i.e., the Bayes factor BF01 is 3.64 in favor

6We repeated the analyses presented in this article using an alternative
classification which included all participants and simply distinguished
between intuitive and deliberate decision-makers based on whether or
not their score on the intuition factor was higher than the median.
These analyses resulted in qualitatively identical conclusions as the
ones presented in this article.
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of the model that includes no main effect of group). Accord-
ing to the classification scheme of Jeffreys (1961), this can
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Fig. 2 Mean proportion of choices from each deck within ten blocks
of both groups of decision-makers (first column). Each block con-
tains ten trials. The second column shows the predictions of the
PVL-Delta model for both groups of decision-makers. The predictions
were obtained by computing the mean probabilities of choosing each

deck on each trial according the post hoc absolute fit method (see
Steingroever et al., 2014). The third and fourth columns show the
same information as the first two columns, respectively, but aggregated
across both good and both bad decks
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Table 2 Output of the Bayesian repeated measures ANOVA con-
ducted in JASP

Model BF10

Null model 1.000

Block 370506.491

Group 0.256

Block + Group 101921.230

Block + Group + Block * Group 18945.710

decision style (but a group and block effect) than under
the model that assumes that there is such an interaction
effect and group and block effects (i.e., the Bayes factor is
101921.230/18945.710 = 5.38 in favor of the model that
includes no interaction effect between block and decision
style).7 This can also be classified as moderate evidence
for the null model (Jeffreys, 1961). These results suggest
that deliberate and intuitive decision-makers show similar
learning curves on the IGT.

Cognitive modeling analyses

Even though the behavioral data analysis suggests that
intuitive and deliberate decision-makers show similar deck
preferences on the IGT, there might still be group differ-
ences in the cognitive processes underlying the decisions
(see also Wood et al., 2005; Yechiam et al., 2008). To
investigate this possibility, we next decompose the IGT per-
formance of the two groups using three different cognitive
modeling analyses.

In each of the three cognitive modeling analyses, we used
random starting values for the parameter estimation. For the
first two analyses, we ran three Hamiltonian Monte Carlo
(HMC) chains, and for the third cognitive modeling analy-
sis we ran five HMC chains. We collected 4000, 7000, and
9000 samples of each chain after having discarded the first
2000, 1000, and 1000 samples of each chain as burn-in in
the case of first, second, and third analysis, respectively.
Visual inspection of the chains suggested that the samples
provided a valid approximation to the joint posterior param-
eter distribution. This was confirmed by the R̂ statistic—a
formal diagnostic measure of convergence that compares
the between-chain variability to the within-chain variabil-
ity (Gelman & Rubin, 1992)—because all parameters had
R̂ values below 1.05. As a rule of thumb, values of R̂ close
to 1.0 indicate adequate convergence to the stationary distri-
bution, whereas values greater than 1.1 indicate inadequate
convergence.

7The frequentist repeated-measures ANOVA revealed that neither the
main effect of decision style (F(1, 36) = .404, p = .529) nor the
interaction between block and decision style (F(9, 324) = 1.466, p =
.159) was significant.

Bayesian hierarchical parameter estimation Before inter-
preting the estimated model parameters, we assessed
whether the PVL-Delta model sufficiently accounts for the
data of both groups using the post hoc absolute fit method
(see Steingroever et al., 2014). The post hoc fit perfor-
mance of the PVL-Delta model is presented in the second
and fourth column of Fig. 2 for each deck separately and
aggregated across both good and bad decks, respectively.
Comparing the post hoc performance of the model to the
data, it is apparent that the PVL-Delta model captures the
qualitative choice pattern in both groups. In particular, as the
task proceeds, the model predicts that both groups learn to
make more choices from the good decks, and that intuitive
decision-makers make slightly more choices from the good
decks. The PVL-Delta model thus captures key trends in the
data for both groups, allowing for meaningful conclusions
from the model parameters.

Figure 3 shows the posterior distributions of the group-
level mean parameters of the PVL-Delta model, separately
for the intuitive and the deliberate decisions-makers. The
posterior distributions show that deliberate decision-makers
tend to have a higher outcome sensitivity parameter μA

(i.e., a better correspondence between the objective and
the subjective utilities of the decks), but a lower updat-
ing parameter μa (i.e., less forgetting and weaker recency
effects) than intuitive decision-makers. In addition, the pos-
terior distributions suggest that the groups differ neither on
the loss aversion parameter μw nor on the choice consis-
tency parameter μc. Note that these conclusions are based
only on a visual comparison of the posterior distributions.
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Fig. 3 Posterior distributions of the group-level parameters of both
groups obtained from fitting the PVL-Delta model to the data of each
group separately
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Table 3 Posterior model probabilities of the null model and models
that assume differences in only one group-level mean parameter under
the assumption of equal prior model probabilities

p̂(M�|D) p̂(MμA
|D) p̂(Mμw |D) p̂(Mμa |D) p̂(Mμc |D)

0.20 0.15 0.07 0.16 0.03

The posterior model probabilities of models that are neither shown in
this table nor in Table 4 are less than .05

Bayes factor model comparison We next report the results
of the Bayes factor model comparison, first discussing
the posterior model probabilities, and then deriving Bayes
factors according to the formula: BF�,abcd = p̂(M� |
D)/p̂(Mabcd | D), that is, the ratio of the estimated
posterior model probability of model M� and Mabcd .8

Tables 3 and 4 show the posterior model probabilities
for eight of the models under the assumption of equal prior
model probabilities of all models. The posterior model prob-
abilities of the remaining models are below 0.05 and are not
shown. The posterior probability of a specific model quan-
tifies the relative plausibility for that model given the prior
model probability and the evidence from the data (Berger
& Molina, 2005). From the tables it is evident that the null
model M�, which assumes no differences between intu-
itive and deliberate decision-makers in the group-level mean
parameters, has the highest posterior model probability. The
evidence for the null model is weakest when it is compared
to the model that assumes differences between intuitive and
deliberate participants in the outcome sensitivity parameter
(i.e., model MμA

; BF�,μA
= 1.36) and the model assum-

ing differences in the updating parameter (i.e., modelMμa ;
BF�,μa = 1.23). According to Jeffreys (1961), the evidence
for the null model compared to these two models can be
characterized as anecdotal. When compared to modelMμw

(i.e., the model that assumes differences in the loss aver-
sion parameter), the Bayes factor analysis indicates that the
data are about three times more likely under the null model
(BF�,μw = 2.84); according to Jeffreys (1961), this level
of evidence is also anecdotal. In addition, the data provide
moderate evidence for the null model compared to model
Mμc (i.e., the model that assumes differences in the con-
sistency parameter; BF�,μc = 6.31). These findings are
consistent with Fig. 3, where the largest differences in the
posterior distributions were on the group-level mean of the
outcome sensitivity parameter and the updating parameter;
the group-level means for the loss aversion parameter and
the consistency parameter had posterior distributions that

8The Bayes factors discussed in this article are based on unrounded
posterior model probabilities and may therefore slightly differ from
Bayes factors calculated using the posterior model probabilities pre-
sented in Table 3.

Table 4 Posterior model probabilities of models that assume differ-
ences in two group-level mean parameters under the assumption of
equal prior model probabilities

p̂(MμAμw |D) p̂(MμAμa |D) p̂(Mμwμa |D)

0.05 0.12 0.06

The posterior model probabilities of models that are neither shown in
this table nor in Table 3 are less than .05

are highly overlapping between the intuitive and deliberate
decision makers.

When comparing the null model to models that assume
differences in two parameters as in Table 4, the null model
is generally more strongly supported by the data than in
comparisons of the null model and models that assume dif-
ferences in only one parameter as in Table 3. In particular,
the data provide anecdotal evidence for the null model com-
pared to the model that assumes differences in both the
outcome sensitivity and the updating parameter (i.e., model
MμAμa ), and moderate evidence for the null model com-
pared to models MμAμw , Mμwμa , MμAμc , Mμaμc , and
MμAμwμa , respectively. For all of the other model com-
parisons the Bayes factors are greater than 11, suggesting
strong evidence for the null model. Thus, our model selec-
tion analyses of the data suggest that it is very unlikely that
the intuitive and deliberate groups differ in three or more
parameters.

In sum, of all of the models considered, the null model—
that is, the model that assumes no differences in the
group-level mean parameters of the intuitive and deliberate
decision-makers—received most support. In addition, we
saw that the evidence for the null model is weakest when
the null model is compared to the models that assume differ-
ences in the outcome sensitivity and the updating parameter,
respectively (i.e., Bayes factors only slightly larger than 1
in favor of the null model), but that the evidence for the null
model is strong when it is compared to models that assume
that the groups differ on several parameters.

Bayesian latent-mixture modeling Figure 4 shows the
posterior means of the zi variables for each participant.
Since these are naturally interpreted as group membership
probabilities, a low posterior mean of zi suggests that the ith
participant is very likely to belong to the group of deliber-
ate decision-makers, whereas a large value suggests that that
participant is very likely to belong to the group of intuitive
decision makers. According to the group membership estab-
lished with the decision-style inventory, participants 1–19
were classified as deliberate decision-makers (i.e., unfilled
bars), whereas participants 20–38 were classified as intu-
itive decision-makers (i.e., grey bars). The horizontal line
represents a posterior classification probability of 0.5.
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Fig. 4 Posterior classification of the individual participants as belong-
ing to the group of intuitive decision-makers based on the latent-
mixture analysis. Based to the inventories, participants 1-19 were

deliberate decision-makers (i.e., white bars), whereas participants 20-
38 were intuitive decision-makers (i.e., grey bars). The horizontal line
represents a posterior classification of .5

If the self-reported deliberate versus intuitive decision
style has a sizeable impact on IGT performance, the latent-
mixture model should make inferences consistent with the
group membership following from the decision-style inven-
tory. Specifically, for participants 1–19 the posterior mean
of the zi variable should be below the horizontal line,
whereas it should be above this line for participants 20–38.
However, it is evident in Fig. 4 that the group membership
inferred from the latent-mixture modeling analysis does not
coincide with the ground truth distinction between intu-
itive and deliberate decision-makers. Thus, there is strong
evidence that the model and data do not distinguish the
participants into the groups suggested by the self-report
decision-style inventory.

Discussion

We presented a Bayesian approach for analyzing whether
two groups differ in their behavior on the IGT and for using
cognitive models to test whether their behavior is driven
by different psychological processes. For the latter goal,
we used three complementary Bayesian analyses to “trian-
gulate” the research question: hierarchical parameter esti-
mation, Bayes factor model comparison, and latent-mixture
modeling (see also Lee et al., 2015).

We illustrated this Bayesian approach with a comparison
of the card selection behavior on the IGT of decision-makers
who report to prefer an intuitive versus a deliberate deci-
sion style. This comparison is interesting because Bechara
et al. (1997) proposed that intuitive, affective processes
are important for good performance on this task. In addi-
tion, although people who report a preference for intuitive
versus deliberate decision styles have been found to show
differences in several decision tasks, such as valuation of
consumer items and monetary lotteries (Schunk & Betsch,
2006; Betsch & Kunz, 2008; see also Phillips et al., 2016),
it had yet to be investigated whether such differences gen-
eralize to complex decision-making as measured with the
IGT.

The application of our Bayesian approach revealed that,
at the behavioral level, intuitive and deliberate decision-
makers show similar deck preferences on the IGT. All of
the three Bayesian modeling analyses suggested that sim-
ilar cognitive processes drive performance of intuitive and
deliberate decision-makers on the IGT. The fact that the
three different ways of formalizing the basic research ques-
tion resulted in consistent findings permits stronger conclu-
sions than could be made based on any one approach alone
(Lee et al., 2015).

Methodological contribution

Even though the Bayes factor is “the standard Bayesian
solution to the hypothesis testing and model selection prob-
lems” (Lewis and Raftery, 1997; p. 648), to our knowledge
this is the first time that Bayes factors have been derived to
compare not only the behavioral performance of two groups
(i.e., by means of repeated-measures ANOVA), but also to
investigate whether two groups differ in PVL-Delta model
parameters (i.e., by means of the product space method),
and that a latent-mixture extension has been applied to an
IGT model. We believe that the use of these methods will
advance the study of group differences on the IGT for sev-
eral reasons. Using our Bayesian suite of analyses we can
draw more valid and profound inferences about our research
question, many of which are not either possible in the fre-
quentist framework. First, a fundamental difference is that
the Bayesian approach allows us to assign probabilities to
parameters and hypotheses—a possibility that is in line with
researchers’ interests typically not concerning the probabil-
ity of encountering data at least as extreme as those that
were observed, given that the null hypothesis is true and the
sample was generated according to a specific intended pro-
cedure (Lee & Wagenmakers, 2005; Wetzels et al., 2011).
Consequently, using the Bayes factor we can infer whether
the data are informative enough to draw strong conclu-
sions, and, in the case of informative data, we can infer
the probability of the data under the null hypothesis rela-
tive to the alternative hypothesis (for more advantages on
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the Bayesian approach see for example Rouder et al., 2009;
Wagenmakers, 2007; Wagenmakers et al., 2008). This is an
important advantage of the Bayesian approach, especially
given many non-significant results that have been reported
in IGT research (see extensive reviews by Sevy et al., 2007;
Toplak et al., 2010). From such non-significant results of
frequentist tests, one can only conclude that the null hypo-
thesis cannot be rejected. Such a conclusion is clearly less
insightful than conclusions allowed for by the Bayes factor.

Second, our suite of methods benefits from the property
of the Bayes factor of implementing the tradeoff between
a model’s goodness-of-fit and parsimony in a manner that
is more comprehensive than that used by the current alter-
natives. In particular, the Bayes factor coherently and com-
pletely discounts model complexity because it considers
three dimensions of complexity: (1) the number of free
parameters, (2) the functional form of the model, and (3) the
extension of the parameter space (Busemeyer et al., in press;
Myung & Pitt, 1997), whereas popular alternatives consider
only the first dimension (Ahn et al., 2014; Schwarz, 1978;
Spiegelhalter et al., 2002).

Third, our suite of methods augments current standard
frequentist methods to analyze group differences on the
IGT. Our methods rely on more reliable parameter infer-
ence (Ahn et al., 2011; Scheibehenne & Pachur, 2015;
Shiffrin et al., 2008; Wetzels et al., 2010), they incorpo-
rate both commonalities and differences between partici-
pants of one group (Navarro et al., 2006; Rouder & Lu,
2005; Rouder et al., 2005; Rouder et al., 2008), and they
can be used to quantify evidence for the null hypothesis
(for further advantages of the Bayesian approach compared
to classical hypothesis testing, see Berger & Delampady,
1987; Edwards et al., 1963; Johnson, 2013; Pocock, 1977;
Reboussin et al. 2000; Sellke et al., 2001). In addition, the
Bayesian approach allows for a straightforward extension
of cognitive models to infer group membership—a possibil-
ity that we demonstrated with our latent-mixture model. To
our knowledge, latent-mixture models to infer group mem-
bership from parameters of reinforcement-learning models
using a frequentist approach (e.g., using least-squares fit-
ting and maximum likelihood), have not yet been developed.
This illustrates that our Bayesian suite of analyses can be
used to answer more manifold research questions.

Self-reported decision styles and decision behavior

Much research has developed and applied reliable self-
report instruments for assessing differences between
decision-makers in their tendency to rely on the intuitive
and the deliberate system (Betsch, 2004; Betsch & Iannello,
2010; Pacini & Epstein, 1999). In a recent meta-analysis,
that mainly encompassed reasoning and judgment tasks,
Phillips et al. (2016) concluded that individual differences

in decision style impacts decision-making, but that the par-
ticular impact varies considerably across different decision
paradigms. In order to investigate to what extent the con-
clusions of Phillips et al. (2016) also hold for the IGT,
we rigorously compared the IGT performance of decision-
makers with an intuitive or deliberate decision style. Our
results find no evidence that a person’s self-reported pref-
erence for an intuitive and a deliberate decision style has
a substantial bearing on IGT performance. This result is
interesting because the notion of an intuitive decision style
is conceptually related to the somatic maker hypothesis,
according to which a stronger reliance on an intuitive deci-
sion mode results in better IGT performance because of the
crucial role of the emotional, intuitive system for learning to
make good decisions on the IGT (Damasio, 1994).

There are (at least) two ways to interpret this lack of an
association between self-reported preference for a intuitive
versus deliberate decision style and IGT performance. First,
it is possible that IGT performance does not tap substan-
tially into the affective signals that decision-makers with an
intuitive decision style report to pay attention to. This view
would provide a challenge to the somatic marker hypoth-
esis, which predicts a strong contribution of affect to IGT
performance (for further critical discussion and evidence,
see, e.g., Dunn et al., 2006; Tomb et al., 2002). Second,
it may be that the dissociation reflects that, similar as for
measures of self-reported impulsivity and actual behavior
(Janssen et al., 2015), task-specific factors override more
general preferences for a particular approach to solve a deci-
sion task. That is, the weak association between decision
style and IGT performance may be due to the way decision
styles are typically assessed. While standard decision-style
inventories tap into decision-making in a rather abstract
and domain-general fashion, there is indication for con-
siderable domain-specificity of decision style (Pachur &
Spaar, 2015). As a consequence, a person’s domain-general
decision style might only weakly predict her decision style
in a financial risk-taking task such as the IGT. In general,
this interpretation is consistent with the view that people can
flexibly adapt their decision-making processes to character-
istics of the task (e.g., Gigerenzer et al., 2011; Payne et al.,
1993).

Why did Phillips et al. (2016) find evidence for an asso-
ciation between decision style and decision-making perfor-
mance, whereas we failed to find such an association in
the context of the IGT? Phillips et al. (2016) obtained the
strongest benefit of a deliberate decision style in the con-
text of inductive reasoning tasks, where often one particular
suggestive response has to be overridden; the strongest ben-
efit of an intuitive decision style was obtained for tasks
involving the generation of alternatives or ideas. The IGT,
by contrast, involves a careful deliberation and learning of
the options’ payoff from experience (cf. Schonberg et al.,
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2011), and all the options are explicitly given in the task.
Potentially, the complex and engaging nature of the IGT,
tapping into multiple psychological processes (such as
motivation, memory, and response consistency) might thus
override the influence of a person’s decision style.

If decision style is not associated with performance on
the IGT, what other factors might account for individual
variability commonly observed in this task? One possibility
is that more task-specific capacities such as working mem-
ory, intelligence, and inhibition play a crucial role. On the
other hand, although some studies have indeed found IGT
performance to be linked to variables such as working mem-
ory, inhibition, intelligence, and personality (e.g., Crone
et al., 2003; Demaree et al., 2010; Franken & Muris, 2005;
Suhr & Tsanadis, 2007), such links seem to emerge incon-
sistently and are, overall, rather weak (e.g., Dunn et al.,
2006; Toplak et al., 2010).

Conclusions

We proposed a set of Bayesian analyses for comparing IGT
performance between two groups. The application of these
techniques to compare decision-makers with a deliberate
or an intuitive decision style showed not only that both
groups of decision-makers perform similarly on the IGT, but
also that their performance is driven by similar cognitive
processes. Our refined analysis approach could easily be
adapted to other decision-making tasks and cognitive mod-
els of behavior on those tasks. All of the relevant code is
available online, and all of the required programs are free to
download. Due to the advantages of Bayesian analyses, we
encourage using our proposed methods to investigate group
differences in IGT data or in similar decision-making tasks.
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Appendix A: Experiment

Material

Iowa Gambling Task The IGT was administered as a com-
puterized task, based on the original version of Bechara
et al. (1994).9 On the computer screen, four decks of cards
were presented, labeled “A”, “B”, “C”, and “D”. Participants
were initially given a (hypothetical) loan of +2000 Swiss
Francs (CHF). They were instructed to consecutively choose
among the decks in such a way that they maximize their
long-term net outcome (cf. Bechara et al., 1994; Bechara
et al., 1997). At each trial, a deck could be selected by click-
ing on it. Each choice resulted in a draw of a card from the
chosen deck, and feedback on the gains as well as the losses
(if any) associated with the card, and the running tally. The
trials were self-paced and the task stopped after 100 trials.

Measurement of decision style To measure individual par-
ticipants’ decision style, we used an inventory complied
by Betsch and Iannello (in preparation), whose subscales
are taken from five different questionnaires: the Rational-
Experiential Inventory (REI; Pacini and Epstein, 1999), the
Preference for Intuition and Deliberate Scale (PID; Betsch,
2004), the General Decision Making Style (GDMS; Scott
& Bruce, 1995) questionnaire, the Cognitive Style Indicator
(CoSI; Cools & van den Broeck, 2007), and the Perceived
Modes of Processing Inventory (PMPI; Burns & D’Zurilla,
1999). All of these questionnaires measure a person’s ten-
dency to rely on an intuitive and a deliberate decision mode
on two separate bipolar subscales. For instance, participants
are presented with statements such as “My feelings play
an important role in my decisions.” (intuition subscale of
the PID), or “Before making decisions, I first think them
through.” (deliberation subscale of the PID). At each item,
participants are asked to indicate the extent to which the
statement represents their opinion (on a scale from 1 = very
much disagree to 7 = very much agree). The original ver-
sions of the REI, PID and the GDMS contain items that
include the term “intuition”. Betsch and Iannello (2010)
argued that this might activate different concepts across peo-
ple. These items were therefore excluded from Betsch and
Iannello’s (in preparation) compiled inventory. Altogether,
the questionnaire consisted of 70 items from 12 subscales
(Table 5). As described in more detail below, we distin-
guished intuitive and deliberate decision-makers based on
their total scores on these subscales.

9In contrast to the payoff scheme introduced by Bechara et al. (1994),
we used a stable loss of −50 CHF in deck C.
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Table 5 Seventy questionnaire items with their respective subscale from Betsch and Iannello’s (in preparation) compiled inventory

Item Subscale

I quickly do the right thing when coping because I’ve often faced almost the same thing before. PMPI 6

I make definite engagements, and I follow up meticulously. CoSi-p 6

I prefer clear structures to do my job. CoSi-p 4

With most decisions it makes sense to completely rely on your feelings. PID-i 2

I don’t like to have to do a lot of thinking. REI-re 3

Developing a clear plan is very important to me. CoSi-p 1

I generally make snap decisions. GDMS-s 1

I often make impulsive decisions. GDMS-s 4

I like detailed action plans. CoSi-p 3

Using logic usually works well for me in figuring out problems in my life. REI-ra 9

Using my gut feelings usually works well for me in figuring out problems in my life. REI-ea 1

I prefer making detailed plans rather than leaving things to chance. PID-d 3

I hardly ever go wrong when I listen to my deepest gut feelings to find an answer. REI-ea 6

I’ve had enough experience to just know what I need to do to cope most of the time without trying to figure it out every time. PMPI 3

I prefer well-prepared meetings with a clear agenda and strict time management. CoSi-p 5

I can usually feel when a person is right or wrong, even if I can’t explain how I know. REI-ea 8

I like to analyze problems. CoSi-k 2

Knowing the answer without having to understand the reasoning behind it is good enough for me. REI-re 9

I enjoy intellectual challenges. REI-re 2

I think about a decision particularly carefully if I have to justify it. PID-d 5

I always want to know what should be done when. CoSi-p 2

I tend to use my heart as a guide for my actions. REI-ee 4

I double-check my information sources to be sure I have the right facts before making decisions. GDMS-d 2

I study every problem until I understand the underlying logic. CoSi-k 4

My decision-making requires careful thought. GDMS-d 4

When I have a problem I first analyze the facts and details before I decide. PID-d 6

Thinking is not my idea of an enjoyable activity. REI-re 5

I rely mostly on my past experience to find a way to cope. PMPI 8

Before making decisions I usually think about the goals I want to achieve. PID-d2

I prefer complex to simple problems. REI-re 6

I generally don’t depend on my feelings to help me make decisions. REI-ee 3

I usually have clear, explainable reasons for my decisions. REI-ra 10

Most of the time, I use the same method to cope. PMPI 7

If an approach works I use it again and again so I don’t have to come up with a new one for each stressful situation I face. PMPI 2

I want to have a full understanding of all problems. CoSi-k 1

I am not a very analytical thinker. REI-ra 3

I make detailed analysis. CoSi-k 3

I have a logical mind. REI-ra 7

Reasoning things out carefully is not one of my strong points. REI-ra 4

I am often aware of how to cope with a stressful situation even before I review all its aspects. PMPI 1

I think before I act. PID-d 7

I prefer emotional people. PID-i 5

Thinking hard and for a long time about something gives me little satisfaction. REI-re 7

The right way to cope usually comes to mind almost immediately. PMPI 4

I have no problem thinking things through carefully. REI-ra 8

I trust my initial feelings about people. REI-ea 3

When it comes to trusting people, I can usually rely on my gut feelings. REI-ea 4
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Table 5 (continued)

Item Subscale

I enjoy solving problems that require hard thinking. REI-re 4

When I make a decision, it is more important for me to feel the decision is right than to have a rational reason for it. GDMS-i 3

When I make a decision, I trust my innermost feelings and reactions. GDMS-i 4

I typically figure out the way to cope swiftly. PMPI 5

Learning new ways to think would be very appealing to me. REI-re 10

A good task is a well-prepared task. CoSi-p 7

Before making decisions I first think them through. PID-d 1

I rarely need to mull things over; how to cope usually becomes quickly apparent. PMPI 9

I enjoy thinking in abstract terms. REI-re 8

If I were to rely on my gut feelings, I would often make mistakes. REI-ea 5

I plan my important decisions carefully. GDMS-d 1

I prefer drawing conclusions based on my feelings, my knowledge of human nature, and my experience of life. PID-i 3

I make decisions in a logical and systematic way. GDMS-d 3

When making a decision, I consider various options in terms of a specific goal. GDMS-d 5

I don’t think it is a good idea to rely on one’s intuition for important decisions. REI-ee 2

I believe in trusting my hunches. REI-ea 2

My feelings play an important role in my decisions. PID-i 4

I try to avoid situations that require thinking in depth about something. REI-re 1

When making decisions, I do what seems natural at the moment. GDMS-s 5

I often make decisions on the spur of the moment. GDMS-s 2

I like emotional situations, discussions and movies. PID-i 6

I make quick decisions. GDMS-s 3

I generally make decisions that feel right to me. GDMS-i 2

Note. The second column indicates the instrument from which the corresponding item was taken. GDMS = General Decision Making Style
inventory (Scott & Bruce, 1995); PID = Preference for Intuition and Deliberation scale (Betsch, 2004); REI = Rational- Experiential Inventory
(Pacini & Epstein, 1999); PMPI = Perceived Modes of Processing Inventory (Burns & D’Zurilla, 1999); CoSI = Cognitive Style Indicator (Cools
& van den Broeck, 2007). p = planning, i = intuition, re = rational engagement, ra = rational ability, ee = experiential engagement, ea = experiential
ability, k = knowledge, d = deliberation.

Procedure

Participants completed the experiment individually. They
signed an informed consent form and started the experi-
ment with the IGT, followed by demographic questions and
a computerized version of the decision-style inventory. Then
they were thanked, debriefed, and received course cred-
its or a flat fee of 7.50 CHF—a decision that had to be
made before the experiment—as well as a performance-
contingent bonus from their IGT performance (specifically,
final IGT score/1000 * 1.5 CHF).

Decision style

We first determined for each participant the mean score
on each of the 12 subscales of the decision-style inventory
compiled by Betsch and Iannello (in preparation). Table 6
shows that all subscales had acceptable levels of internal
reliability, except for the experiential engagement subscale
of the REI. However, we decided to keep that subscale in

our analyses because excluding it did not lead to differ-
ent conclusions in the subsequent analyses. Based on each
participant’s mean score on each of the 12 subscales, we
then conducted a principal component analysis with rotation
based on the varimax method using the principal() function
of the R package psych. The Kaiser criterion suggested a
three-factor solution, which accounted for 70% of the total
variance. Table 6 reports the factor loadings of the 12 sub-
scales on these three factors. On the first factor the subscales
capturing a deliberate, rational, and planned decision style
showed consistently high loadings (deliberation factor). The
second factor had consistently high loadings for the sub-
scales capturing an intuitive and experiential decision style
(intuition factor). The third factor had high loadings for
the subscale capturing spontaneous decision-making (spon-
taneity factor). Individually, the three factors accounted for
33.9%, 22.4%, and 13.4% of the variance, respectively.

Following previous research (Betsch & Kunz, 2008), we
classified participants as intuitive if they had a factor score
above the median of the intuition factor and, at the same
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Table 6 Three-factor solution of the principal component analysis.
Also reported are Cronbach’s α as a measure of the reliability of each
subscale

Factor

Subscale Deliberation Intuition Spontaneity

Deliberation (GDMS) (α = .80) .890 .008 –.184

Deliberation (PID) (α = .74) .875 –.171 –.094

Knowing (CoSI) (α = .79) .873 –.068 –.126

Rational ability (REI) (α = .77) .820 –.148 .176

Rational engagement (REI)
(α = .81)

.659 –.106 –.145

Planning (CoSI) (α = .70) .601 –.326 .130

Experiental ability (REI)
(α = .84)

.059 .870 .165

Intuition (GDMS) (α = .69) –.121 .850 .056

Intuition (PID) (α = .79) –.150 .809 .018

Experiential engagement (REI)
(α = .41)

–.311 .604 .033

Automatic (PMPI) (α = .77) .115 .126 .897

Spontaneous (GDMS) (α = .73) –.354 .076 .805

time, a factor score below the median of the deliberation
factor; participants with the opposite pattern were classi-
fied as deliberate.10 This classification scheme yielded 19
participants in the intuitive group and 19 participants in
the deliberate group. Thirty-two participants thus remained
unclassified and were excluded from the analyses presented
in the main article.

Appendix B: Obtaining Bayes Factors
with the Product Space Method

In this section we describe how we obtained the Bayes fac-
tor with the product space method (Carlin & Chib, 1995;
Lodewyckx et al., 2011). The Bayes factor BF12 is defined
as the change from prior model odds p(M1)/p(M2)

of two models, M1 and M2, to posterior model odds
p(M1 | D)/p(M2 | D) brought about by the data D:

p(M1 | D)

p(M2 | D)︸ ︷︷ ︸
Posterior model odds

= p(M1)

p(M2)︸ ︷︷ ︸
Prior model odds

× m(D | M1)

m(D | M2)︸ ︷︷ ︸
Bayes factor

(5)

For all but the simplest models the Bayes factor cannot be
derived analytically. We therefore need a method to approxi-
mate the Bayes factor. One such method is the product space

10Although conceptually similar to “intuition”, according to the fac-
tor solution the spontaneity factor seems to represent a distinct and
orthogonal aspect of people’s decision-mode preferences. To main-
tain homogeneity within the groups, however, we did not consider the
spontaneity factor when classifying people as intuitive or deliberate
decision-makers.

method (for alternative methods such as reversible jump,
see Green, 2003; Sisson, 2005, and for importance sam-
pling, see Hammersley & Handscomb, 1964; Steingroever
et al., 2016; Vandekerckhove et al., 2015). The product
space method is a transdimensional Markov chain Monte
Carlo (MCMC) method, a method that aims to estimate
the posterior model odds for chosen prior model odds (see
Eq. 5). This method requires the construction of a “super-
model” encompassing the models to be compared. This
“supermodel” is a hierarchical combination of the models
to be compared. The hierarchical combination is achieved
by a model index that measures the proportion of times that
either model is visited to account for the observed data. The
prior of the model index corresponds to the prior model odds
(i.e., specified before the analysis), and the posterior of the
model index corresponds to the posterior model odds. The
posterior model index can be estimated by MCMC posterior
sampling methods. We can therefore estimate the posterior
probability of model Mk using:

p̂(Mk | D) = Number of occurrences of Mk

Total number of iterations
. (6)

The posterior model probability quantifies the relative
plausibility for model Mk given the prior model probabil-
ity and the evidence from the data (Berger &Molina, 2005).
Given the estimated posterior model probabilities of two dif-
ferent models, we can estimate the Bayes factor using Eq. 5
because the prior model odds are known (i.e., specified
before the analysis).
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