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ABSTRACT 
 
The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is one of the 

popular univariate time-series models in the field of short-term traffic flow forecasting. The 

parameters of the SARIMA model are commonly estimated using classical (maximum likelihood 

estimate and/or least square estimate) methods.  In this paper, instead of using classical inference 

the Bayesian method is employed to estimate the parameters of the SARIMA model considered 

for modelling. In Bayesian analysis, Markov chain Monte Carlo method is used to solve the 

posterior integration problem in high dimension. Each of the estimated parameters from the 

Bayesian method has a probability density function conditional to the observed traffic volumes. 

The forecasts from the Bayesian model can better match the traffic behavior of extreme peaks 

and rapid fluctuation. Similar to the estimated parameters, each forecast has a probability density 

curve with the maximum probable value as the point forecast.  Individual probability density 

curves provide a time-varying prediction interval unlike the constant prediction interval from 

classical inference. The time-series data used for fitting the SARIMA model are obtained from 

an intersection in Dublin’s city centre. 
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INTRODUCTION 
 
In any transportation network, the implementation of Intelligent Transportation System (ITS) to 

provide dynamic traffic control and management requires real-time forecasting of traffic 

conditions in the near (short-term) future. Short-term traffic forecasting (prediction horizon less 

than one hour, (Smith et al. 2002)) supports the two most important components of ITS; 

proactive traffic control required in Advanced Traffic Management Systems (ATMS) and real-

time route guidance required in Advanced Traveler Information Systems (ATIS). With the 

increasing need for developing more efficient ITS based traffic management systems, a 

considerable amount of research has been focused on short-term traffic forecasting. An extensive 

review on this subject has been provided by Vlahogianni et al. (2004). 

The well-known short-term forecasting methods can be broadly classified into univariate and 

multivariate approaches. In a univariate approach, traffic variables (such as speed, flow or 

occupancy etc.) are modeled using observations from any single site, whereas developing a 

single model to consider several sites is termed a multivariate approach. Univariate models are 

more common in short-term traffic forecasting literature because they are less complex 

computationally (Kamarinakis et al. 2003). Both multivariate and univariate models can be 

developed using different empirical and theoretical techniques (Van Arem et al. 1997). The 

empirical approaches (non-parametric and parametric) employ statistical methodology and/or 

heuristic methods for traffic flow forecasting. The non-parametric techniques include non-

parametric regression (e.g. Davis and Nihan 1991) and neural networks (e.g. Vythoulkas 1993; 

Smith and Demetsky 1994; Kirby et al. 1997; Lingras and Mountford 2001; Yin et al. 2002; Lee 

et al. 2004; Vlahogianni et al. 2005). The parametric techniques include linear and non-linear 

regression, historical average algorithms (e.g. Smith and Demetsky 1997), smoothing 
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techniques (e.g. Smith and Demetsky 1997; Williams et al. 1998) and autoregressive linear 

processes. Of all autoregressive linear processes, the Autoregressive Integrated Moving Average 

(ARIMA) family of models were first introduced by Ahmed and Cook (1979). Different 

variations of ARIMA models e.g. simple ARIMA (Levin and Tsao 1980; Nihan and 

Holmesland 1980; Hamed et al. 1995), ATHENA (Kirby et al. 1997), SARIMA (Williams et al. 

1998; Williams 2003; Ghosh et al. 2005), subset ARIMA (Lee and Fambro 1999) are popular in 

the short-term traffic forecasting literature. In particular, seasonal variations of the ARIMA 

model (e.g. Williams et al. 2003 and Ghosh et al. 2005) perform better than linear regression, 

historical average, and simple ARIMA (Chung and Rosalion 2001).  Moreover, Smith et al. 

(2002) has shown that the SARIMA model in situations, where it is applicable,  performs better 

than non-parametric regression. The major criticism towards using ARIMA models focuses on 

their tendency to concentrate on the mean values and their inability to predict the extremes 

(Vlahogianni et al. 2004). But SARIMA models are multi-step in nature and once fitted to a 

particular site, have high accuracy, are computationally cheap and easy to implement in real 

scenarios. From these considerations, a SARIMA model is chosen to model the traffic flow 

time-series data in this paper. 

The standard SARIMA model is parametric by nature and the estimation of parameters can be 

done using classical (maximum likelihood estimates or least squares estimates) or Bayesian 

methods (Box and Jenkins 1976). Unlike classical, Bayesian inference reduces statistical 

inference to probabilistic inference by defining a joint distribution for both the parameters and 

the observable data (Neal 1993). Box and Jenkins (1976) proposed Bayesian estimation while 

developing the general SARIMA model along with other classical methods. Monahan (1983) 

completed a full Bayesian analysis of the ARIMA models and concluded that the Bayesian 
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technique holds a distinct advantage over the classical approach as the statistical analysis of 

ARIMA models is a certain class of non-standard problems where no classical/frequentist 

approach is widely accepted (Monahan 1983). The use of a prior (initial assumed distribution) in 

Bayesian estimation helps to include more information in the model, which could not be 

included otherwise. In this paper, a qualitative and quantitative comparison of the Bayesian 

methods with the classical methods is shown. In addition in this paper the Bayesian estimation of 

the parameters of the SARIMA model is performed using an innovative simulation procedure.   

The use of Bayesian statistics is quite recent in the field of traffic forecasting.  Some work has 

been done using Bayesian networks (using the concept of neural networks) in short-term traffic 

flow forecasting (Zhang et al. 2004). Hierarchical regression models with Bayesian inference are 

used in modeling freeway traffic flows considering the variability of parameter values 

throughout a day due to day-specific idiosyncrasies (Tebaldi 2002). Similar to this concept, 

instead of a constant parameter value for the parameters in the SARIMA model, a probability 

distribution (may not be normal as assumed in the case of maximum likelihood estimates) 

conditional to the observed traffic volume is associated with each parameter and with each point 

of prediction in the future. The technique eventually generates a prediction interval varying with 

time, which gives better flexibility towards traffic management in real-time. The inability of the 

SARIMA models to capture the extreme peaks and to imitate the rapid fluctuations in traffic 

flow is partly accounted for using the Bayesian technique as the forecasts are conditional on 

observed traffic flow.  The Bayesian method can also be employed in developing a simple 

incident detection technique.     

In this study, univariate traffic flow data from a particular junction in Dublin are fitted to a 

suitable seasonal ARIMA (SARIMA) time-series model. The model parameters are estimated 
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using both the classical (maximum likelihood estimate) and the Bayesian methods. A 

comparison between the forecasts from the two approaches is presented and the additional 

information obtained from the Bayesian methods in the context of traffic management is 

discussed.  

SARIMA PROCESS 
 
A simple ARIMA model is made up of three parts, ‘AR’ i.e. autoregressive part, ‘I’ i.e. 

differencing part, ‘MA’ i.e. moving average part. Differencing is one of the filter/transformation 

techniques for removing ‘non-stationarity’ from any time-series data (Chatfield, 2004). The 

equation representing an ARIMA (p, d, q) model for a time-series sequence Yt (t = 1, 2…n ;) is 

( )(1 ) ( )dB B BY Zt tφ θ− =              [1a] 

where, 2
21( ) (1 .... )p

pB B B Bφ α α α= − − −            [1b] 

and 2
1 2( ) (1 .... )q

qB B B Bθ β β β= − − − ;                               [1c] 

Zt is a white noise sequence; B is the ‘backshift operator’;  

In ARIMA (p,d,q), p, d and q denotes the order of the AR process, the order of differencing and 

the order of the MA process respectively. 

The time-series data containing a seasonal periodic component can be fitted to a SARIMA 

(seasonal ARIMA) model (Box and Jenkins 1976). The general multiplicative seasonal ARIMA 

model (p, d, q)(P, D, Q)s is as follows 

φ (B) Φ(BS) (1-B)d (1-BS)D  yt = θ (B) Θ(BS) Zt                                                                  [1d] 

where, Φ, Θ, P, D, Q  are the seasonal counterparts of φ , θ, p, d, q respectively and S denotes the 

seasonality. Following the three steps of the Box and Jenkins methodology (Box and Jenkins 

1976), identification, estimation and diagnostics checking the SARIMA models are fitted to 

stationary or weakly stationary time-series data. In this paper, the estimation of the AR (p, P) and 
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MA (q, Q) parameters for fitting a SARIMA model to the traffic flow data are carried out using 

classical and Bayesian methods. 

FITTING SARIMA MODEL TO TRAFFIC FLOW DATA 
 
The traffic flow data used for modelling are obtained from the inductive loop-detectors 

embedded in the streets of junction TCS 183 in the city-center of Dublin, as a part of the urban 

traffic control (UTC) data collection system. A map of the junction is given in figure 1. It is a 

four-legged junction, with one-way traffic on two approaches. The traffic volume passing 

through Tara Street, measured from the loop-detectors numberered 1, 2, 3, 4 are continuously 

recorded.  

The data interval is unique to the data collection system of the existing urban traffic control 

system of any city. The data interval can vary from a few seconds to one hour. Short-term 

forecasting algorithms applicable to a traffic management system should have a prediction 

horizon of 15 minutes or less (Smith and Demetsky 1997). Similar to earlier research using 

SARIMA models for traffic flow modelling, (e.g. Williams et al. 2003 and Ghosh et al. 2005), a 

15 minute data interval is used in this paper. 

The data used for the modeling were recorded from 6 a.m. on 2nd September 2004 to 6 a.m. on 

30th September 2004. The data collection period of nearly a month means that two types of 

periodicity, viz. daily and weekly, can be considered.  Weekend travel behavior is quite unlike 

the travel behavior on weekdays. So, for developing a daily seasonal model the observations 

during the weekdays are only required to be considered. Williams (1999) showed that the daily 

models have a better accuracy than the weekly models. Hence, a daily seasonal model excluding 

weekend travel is selected. The total number of observations excluding weekends is 1920, i.e., in 

total, 20 days of data are used. The plot of data is shown in figure 2. Fifteen minutes are 
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considered as unit time index in this plot and consequently 96 observations are plotted over each 

day. 

Stationary or weakly stationary time-series data can only be analyzed using existing time-series 

models (Chatfield 2004). For weak stationarity, a seasonal difference (over lag 96 i.e. 24 hours) 

is taken. A correlogram of the differenced data is plotted in figure 3. The correlogram shows that 

the ACF has larger values at lag 1 and at lag 96. The PACF (partial autocorrelation function) of 

the centred traffic data (figure 3) is plotted as well. This plot shows the possibility of a seasonal 

moving average component. 

On calculating the error estimates, it can be concluded that a SARIMA (2,0,0)(0,1,1)96 (Ghosh et 

al., 2005) is the best-fit model for junction TCS 183. But, there are some other SARIMA models 

also, which though not the best fit, perform very well compared with the best fit. All of these 

SARIMA models can capture the daily repetitive nature of traffic flow and the dependence of 

present traffic conditions on the immediate past. The SARIMA (1,0,0)(0,1,1)96  model, (which 

has error estimates varying less than 1% from the best-fit model) is fitted to the traffic flow data 

obtained from junction TCS 183. This model is chosen instead of the best-fit model in order to 

ensure that the computations are parsimonious. However, it may be important that if required for 

a specific situation, this model can be easily extended by addition of a non-seasonal MA part so 

that it can be more versatile without much additional computation. 

The equation used for modeling the centered traffic flow data considered in this paper is  

( )( ) ( )96 96
1 11 1 1t tB B Y Bφ ε− − = − Θ

                                            [2] 

which leads to   1 1 96 1 97 1 96t t t t t tY Y Y Yφ φ ε ε− − − −= + − + − Θ                                       [3] 

where, tε ~ N(0,σ 2). 
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The unknown parameters to be estimated are 1φ , 1Θ and σ  and are represented by a vector 

( )2
1 1, ,  T φ σ= Θξ . To estimate ξ, either a frequentist (classical) or a Bayesian technique is to be 

used. In frequentist, the classical technique maximum likelihood estimate or least square method 

is used to estimate the vector ξ (Box and Jenkins 1976).  The exact maximum likelihood 

estimates are often preferred to least square methods (Chatfield 2004). 

PARAMETER ESTIMATION USING THE BAYESIAN METHOD  
 
In the Bayesian approach, all unknown quantities are considered as random variables and 

uncertainties over those quantities are represented using probability distributions conditional on 

the available data. While estimating any parameter using classical/frequentist methods, the 

sampling distribution of the parameter is mostly assumed as normal or Gaussian. This approach 

is quite crude in the sense that in real situations the sampling distributions of the parameters can 

be different from normal. With Bayesian analysis, realistic approximations to the sampling 

distribution are considered and the inferences are reached using generic techniques and the 

observed data. The basic principle behind Bayesian statistics is as follows. Some prior ideas 

about any parameter or data set can be obtained from prolonged and detailed observations or by 

comparing with similar conditions. If these prior ideas are considered as ‘prior beliefs’ in any 

hypotheses regarding those situations or events, then conditional to the observed data 

(likelihood) an exact solution ‘posterior’ distribution of the parameter can be obtained (Lee 

1997).  

The Likelihood Function (Box and Jenkins 1976) 

For both the frequentist (maximum likelihood estimation) and Bayesian methods for estimation 

of the vector ξ, the likelihood function is required to be calculated. Considering the centered 

traffic flow data diagnostics (mean and quantile-quantile plot) the demand data for each day 
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when considered over a few weeks seem to be normally distributed. The likelihood function 

( )|L ξ Y of ξ corresponding to a sample of n observations of Yt (where, Y is vector of n 

observations of Yt) is as follows  

( ) ( ) ( )
2| exp  

2
n S

L fσ
σ

− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠

ξ
ξ Y ξ                                                [4] 

( ) 2where, [ | , ]
n

t
t

S ε
=−∞

= ∑ξ Y ξ  

In equation 4, f(ξ) is a function of ξ which is to be calculated based on the inverse of the n x n 

covariance matrix of  the Yt ’s. To ease the computational complexity for calculating f(ξ) the 

history of the observed process and the history of the errors are incorporated as in Ravishankar 

and Ray (1996). In this paper, the history of observations ( 1 2, 97, .........t t tY Y Y− − − ) are available from 

the SCATS database (urban traffic control system) of past observations and the history of the 

unknown errors ( 1 2, 96, ........t t tε ε ε− − − ) (since the model parameters are unknown) is assumed to 

follow a similar normal distribution as the error tε . The multivariate (n variate) normal 

distribution of the SARIMA process can be represented as 

1 2 3 1 2 3 2 3( , , ....... | ) ( | , ....... , ) ( | ....... , )....... ( | )n n n nY Y Y Y Y Y Y Y Y Y Y Y∏ = ∏ ∏ ∏ξ ξ ξ ξ          [5] 

 

In equation 3, the moving average part is assumed to be represented by 

1 96t t te ε ε −= − Θ                            [6] 

The observations are assumed to have the following multivariate normal distribution,  

1 2 3( , , ....... ) ~ N ( , )n nY Y Y Y∏ Σμξ                                  [7] 

where, the mean vector ( )1 2, ...... T
nμ μ μ=μ and Σnxn is the covariance matrix of Yt . 
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The mean values of the distribution are 

 1 1 96 1 97                                   1,2,..... ;t t t tY Y Y t nμ φ φ− − −= + − =   

From Ravishankar and Ray (1996), the likelihood function is                   

( ) ( ) 12 2
1,2,3......

1

1, | 2 exp ( ) ( )
2

nn n T
n t t t t

t
L Y Y Yπ μ μ− − −

=

⎧ ⎫= − − −∑⎨ ⎬
⎩ ⎭

Σ Σ Σμ               [8] 

When the number of observations is greater than 50 the matrix Σnxn can be simplified to a scalar 

form  (Box, Jenkins, 1976). Equation 8, when applied to the SARIMA model for the present 

study, approximates to (considering the simplified form of the matrix Σnxn , as 2 2 2
1τ σ σ= + Θ ), 

( ) ( ) 1 22
1,2,3......

1

1, | 2 exp ( )
2

nn

n t t
t

L Y Yμ τ πτ τ μ− −

=

⎛ ⎞= − −∑⎜ ⎟
⎝ ⎠

                                          [9] 

( ) ( ) ( ) ( ){ }12 2 2 2 22
1 1, 1,2,3...... 1 1 1 1, | 1 exp 0.5 1 A+ B+ C

n
n

nL Yφ σ σ σ φ φ
− −− −Θ ∝ + Θ − + Θ        [10] 

where, A = 2
96

1
( )

n

t t
t

Y Y −
=

−∑             [10a] 

 B = 96 1 97
1

2 ( )( )
n

t t t t
t

Y Y Y Y− − −
=

− − −∑            [10b] 

C = 2
1 97

1
( )

n

t t
t

Y Y− −
=

−∑

              

[10c] 

For the priors, there are some restrictions on the range of φ1, Θ1. The invertibility region for the 

model, required by the condition that the roots of ( )11 Bφ− =0 should lie outside the unit circle is 

defined by the inequality, -1< φ1< 1.  The condition, | Θ1| <1,  is required to ensure stationarity 

(Box and Jenkins 1976). The priors considered here for φ1, Θ1 are uniform priors which give  

( )1
1  (considering uniform prior from -1 to 1)2φΠ =

                                           [11]
 

( )1
1  (considering uniform prior from -1 to 1)2Π Θ =

                             [12]
 



 - 11 - 

and, considering the non-informative prior for σ 2, gives 

( )2 2
2

1  (  is always positive)σ σσΠ ∝ .                                  [13] 

Hence, the posterior is  

( ) ( ) ( ) ( ) ( )2 2 2
1 1, 1,2,3...... 1 1 1 1, 1,2,3......, | , |n nY L Yφ σ φ σ φ σΠ Θ ∝ Π Π Θ Π Θ                                [14] 

which yields, ( ) ( ) ( ) ( ){ }12 2 2 2 22
1,2,3...... 1 1 1 1| 1 exp 0.5 1 A+ B+ C

n
n

nY σ σ φ φ
− −− − −Π ∝ + Θ − + Θξ         [15] 

By integrating the other unknown parameters except for the one whose distribution is to be 

estimated, the ‘marginal (posterior) distributions’ [ 1 1( ), ( ), ( )σ φΠ Π Θ ΠY Y Y ] of each of the 

unknown parameters can be found. In this paper, to get the marginal distributions of each 

unknown parameter, the other two unknowns are to be integrated out. So, to find the marginal 

distribution of the three unknown parameters the following integrations are to be performed. 

 ( ) ( ) ( ) ( ){ }1 12 2 2 2 22
1 1 1 1 1 1

1 0
| 1 exp 0.5 1 A+ B+ C

n
n d dφ σ σ φ φ σ

∞ − −− − −

−
Π ∝ + Θ − + Θ Θ∫ ∫Y                    [16a] 

( ) ( ) ( ) ( ){ }1 12 2 2 2 2 22
1 1 1 1 1 1

0 1
| 1 exp 0.5 1 A+ B+ C

n
n d dσ σ φ φ φ σ

∞ − −− − −

−
Π Θ ∝ + Θ − + Θ∫ ∫Y                 [16b] 

( ) ( ) ( ) ( ){ }1 1 12 2 2 2 2 22
1 1 1 1 1 1

1 1
| 1 exp 0.5 1 A+ B+ C

n
n d dσ σ σ φ φ φ

− −− − −

− −
Π ∝ + Θ − + Θ Θ∫ ∫Y                 [16c] 

From the posterior distribution again the ‘predictive distribution’ can be obtained using the 

relation 

( ) ( )1 1 2 3 1,2,3...... 1,2,3......( | , , ....... ) | |n n n nY Y Y Y Y L Y Y d+∏ = Π∫ ξ ξ ξ         [16d] 

Simulation of Distributions 

The determination of the posterior distributions often involves integration of complex integrals 

(mostly integrations of equation 16) with high dimensionality. Numerical integrations are often 

performed to compute the distributions for which the analytical solution is intractable. However, 
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numerical integration may lead to too many approximations and may even become intractable 

for large models. In many high dimensional cases of Bayesian analysis, certain refinements of 

Monte Carlo integration methods are often used (Carlin 1996). There are different non-iterative 

and iterative variations of these refinements. Markov Chain Monte Carlo (MCMC) is the 

particular iterative variation of the Monte Carlo method in which the simulated values are not in 

iid but are in a Markov chain. In summary, the goal of the MCMC is,  given a target distribution 

Π(x), to construct a Markov chain {xn} whose limiting distribution is Π(x). There are two 

popular MCMC algorithms, (i) Gibbs sampler (Geman and Geman 1984) and (ii) Metropolis-

Hastings algorithm (Metropolis et al. 1953, Hastings 1970)  

Unlike Metropolis-Hastings algorithm, the Gibbs Sampler requires the simulation from the full 

conditional distributions (equation 16a, b & c in this paper). This kind of sampling is possible 

only in the case of standard distributions. As the full conditionals in equations 16a, b and c are 

non-standard in nature, the Metropolis-Hastings algorithm technique is chosen in this paper to 

simulate the marginal distributions from the posterior distributions. 

Metropolis-Hastings Algorithm  
 
This is an MCMC technique Metropolis-Hastings algorithm and it therefore (Metropolis et al. 

1953, Hastings 1970) tries to generate a Markov chain x(0), x(1),…having given the ‘target 

distribution’, Π(x), as a stationary distribution. Assume that the target distribution Π(x) has a 

density function π (x) known up to the normalizing constant, denoted by κ. Considering some 

initial value x(t), a proposed simulation xsim is generated from a candidate generating density q(x(t), 

xsim) and then accepted with a probability  α (x(t), xsim), where, 

( )
( ) ( , )min ,1          if ( ) ( , ) 0

, ( ) ( , )
1                                        if ( ) ( , ) 0

v q v u u q u v
u v u q u v

u q u v

π π
α π

π

⎧ ⎧ ⎫
>⎪ ⎨ ⎬= ⎨ ⎩ ⎭

⎪ =⎩

                            [17a] 
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The criteria for acceptance is that the value of α (x(t), xsim) should be greater than a random 

number generated from a standard normal distribution. If the proposed value is accepted then    

x(t +1) = xsim ; if not, then x(t+1)= x(t).  Using continuous iterations (until equilibrium or convergence 

is reached) a series of dependent realizations, forming a Markov chain, are simulated with 

Π(x) as the equilibrium distribution (Tanner 1996). The normalizing constant, κ is cancelled in 

the ratio (eq. 17a); hence the knowledge of κ is not needed to implement the algorithm. This 

makes the algorithm generic in approach. The choice of candidate generating densities influences 

the simulation performance greatly.  Depending on the performance of the Metropolis-Hastings 

algorithm, the stationary/the equilibrium density are accepted as approximation for the real 

marginal densities. The candidate values of the parameter φ1 is to follow a normal random walk 

as the proposal distribution is taken as normal centered at the current value with a standard 

deviation equal to 0.05. Considering this marginal distribution ‘φ1’ as the ‘target distribution’ and 

using an arbitrary starting value of φ1 (say, φ1-in), a simulated value of φ1 (say, φ1-sim) is obtained 

with φ1-sim ~ N(φ1-in, τ1).  The simulated value of φ1-sim is accepted following the Metropolis-

Hastings’ algorithm. As a symmetric transition function (normal distribution) is assumed, only 

the Metropolis algorithm is sufficient. According to this algorithm, each simulated value of φ1 is 

accepted with a probability 

( )
( )

2
1_ 1 1,2,3......

1 2
1_ 1 1,2,3......

| , ,
( )

| , ,
sim n

in n

y

y

φ σ
α φ

φ σ

Π Θ
=

Π Θ
 or 1 which is minimum                 [17b] 

with the same acceptance criteria as previously mentioned. For the next simulated value of φ1, 

instead of the arbitrarily assumed value of φ1-in, φ1-sim is used and a new φ1-sim is simulated using 

the Markov chain (normal random walk). The new φ1-sim is accepted using the same method as 

before. In this way 10000 values of the parameter φ1 are simulated (figure 4).   Two parallel 
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chains of simulation are shown in the figure. The chains start from different initial values, one 

from 0.1 and another from 0.8. Both the chains seem to converge towards the same value.  

The same type of technique is applied for the other two parameters Θ1 and σ 2. Each of them is 

separately simulated from a normal ‘proposal’ distribution centered at the current value and with 

standard deviations equal to 0.01 and 0.5 respectively for Θ1 and σ 2. But the results obtained 

[Figure 5] due to this assumption show poor convergence.  The reason behind the slow 

convergence of these two parameters is quite high correlation (correlation coefficient -0.7) 

between them and that they cannot really be simulated using separate normal random walk 

proposal distributions. 

To avoid this problem the concept called blocking or updating multivariate blocks (Carlin 1996) 

is employed, leading to faster convergence. From Roberts and Sahu (1997), blocking of 

components leads to faster convergence rates, e.g. the larger the blocks are updated 

simultaneously the faster the convergence. Though blocking is more computationally demanding 

than component wise updating, it moves the high correlation to the random vector generator 

(Roberts & Sahu 1997). To perform blocking, certain methods are used to get an idea of the 

probable joint density function of the other two parameters. Both the parameters are to be 

updated using a bi-variate distribution approach. 

The original expression of the posterior was given in equation 16. The parameter φ1  has to be 

integrated out from the expression of equation 15, to get a tentative idea of the bi-variate 

proposal kernel. However, since analytical integration is not possible within the bounded 

intervals of [-1,1], the integral is approximated by changing the limits from [-1,1] to (-∞,∞) for 

the variables. The joint distribution has a form (integrating out the parameter φ1 ) 
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p*( Θ1,σ  2 )  
1 2

1 2 2 2 12
1 1

AC-B(1 ) exp (1 )
2C

T
Tσ σ

−
− + −⎡ ⎤⎛ ⎞

∝ + Θ − + Θ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

                               [18] 

Given Θ1,  the conditional distribution of σ 2 is an inverse gamma distribution with parameters, 

2
Tα =                                                     [19a] 

( )

2

2
1

(AC-B )
2C

1
β

⎡ ⎤
⎢ ⎥⎣ ⎦=

+ Θ
            [19b] 

Thus, simulation from the bi-variate proposal kernel (equation 18) is possible if a suitable 

approximation of the marginal of Θ1 can be obtained. The marginal of Θ1 (obtained by 

integrating out φ 1 and σ 2) is given by, 

( )
( )1 2

1

1
2.2956

u du
F

Θ

−∞
+∫

Θ =                                    [20] 

Simulation from this density is done by using the inverse transform method. Given that ( )1F Θ ~ 

U(0,1), and solving equation 20 for Θ1, values of Θ1 are simulated. As, Θ1 and σ2
 are correlated, 

they are to be simulated from a joint distribution p*( Θ1,σ 2 ) to facilitate ‘block updating’. Using 

the simulated value of Θ1 from equation 22, a value of σ 2 is simulated from the inverse gamma 

distribution described in equation 19. Both values are accepted with a probability, 

( )
( )

( )
( )

2 2
1_ 1 1,2,3...... 1_2

1 2 2
1_ 1 1,2,3...... 1_

, | , ,
( , )

, | , ,
sim sim n in in

in in n sim sim

y q
p

y q

σ φ σ
σ

σ φ σ

Π Θ Θ
Θ =

Π Θ Θ
                         [21] 

where,  

( )
( )

2
2 2 1

1
2

1 1
1 2 2

1

AC-Bexp (1 )
2C

,
1

T
T

q
σ

σ
σ

− −

−
+

⎛ ⎞⎛ ⎞
− + Θ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠Θ =

+ Θ
                                      [22] 
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in accordance with the same acceptance criteria as previously mentioned. Following the same 

procedure as described for φ1, 10000 values of both parameters are simulated [figure 6 and 7]. 

The values for Θ1 and σ 2  are simulated from two sets of initial values as performed earlier in 

the case of simulation of φ1. The chains are seen to converge satisfactorily for both the 

parameters. Using the simulated values of ξ, 10000 values of Yn+1 are simulated from 

1 1 2 3( | , , ....... )n nY Y Y Y Y+∏  as described in equation 16d.  

Traffic volumes are predicted from 6:30 a.m. to 12 p.m. on 30th September, 2004 with the 

proposed Bayesian SARIMA model with the estimated parameters. The period with twenty-three 

data points covers the morning peak hours of traffic. The densities of the first nine points of 

forecasts along with the observed data are plotted in nine subplots of figure 8. In the subplots, the 

vertical axis shows the probability density of each point in the range. The horizontal axis 

specifies the range of the forecast point which ideally varies from -∞ to +∞. The density 

functions in the subplots vary considerably with different mean and variance values which can be 

obtained using Bayesian inference. As in the case of the original observations no uncertainty is 

involved, they are represented by a vertical line in each subplot.   

PARAMETER ESTIMATION USING THE CLASSICAL METHOD  

To compare the Bayesian estimates with the results from the classical method, the estimation of 

parameters using the classical technique is carried out. The exact maximum likelihood method 

(Fuller 1996) is used for estimating ξ of the SARIMA (1,0,0)(0,1,1)96  model. The non-seasonal 

AR1 parameter 1φ  has a value 0.4215 and the seasonal MA parameter 1Θ  has a value of 0.8215. 

According to the classical theories, the parameters are supposed to have normal densities. The 

normal density plots of 1φ  and 1Θ  are shown in figure 9(a) and (b). The standard deviation σ  of 

the SARIMA process is 43.5.  



 - 17 - 

 
 
COMPARISON OF BAYESIAN AND CLASSICAL INFERENCE 
 

In figures 9(a) and (b), the density estimates of the SARIMA parameters from Bayesian 

inference are plotted along with the normal density plots from classical inference. In both 

subplots, the parameter density obtained from the Bayesian estimate is not exactly normal. The 

variability of parameters is considered in Bayesian inference while forecasting. But in the case of 

classical forecasting the standard error associated with the parameter is ignored and the mean of 

the density plot is used only as a constant. 

The five and half hour traffic volume predictions from the Bayesian and classical inference are 

plotted along with the original observations in figure 10 and figure11 respectively. The absolute 

percentage error (APE) of the predictions from the Bayesian inference is 5.4%, whereas the APE 

for classical forecasts is 5.1%. Though the overall error estimates are comparable, only the 

Bayesian inference can capture the extreme morning peak.  

The point forecasts in figure 11 vary within a range of 50 cars/15min, whereas in figure 10 the 

same varies within a range of 100cars/15min. Hence, the Bayesian forecasts have a bigger range 

of variability compared to the classical forecasts which are nearly flat in nature. The Bayesian 

predictions can more closely match the rapid variability of the real observations unlike the 

classical forecasts.  

Both the plots in figure 10 and figure 11 include two other lines specifying the upper and lower 

limit of prediction. In figure 10, this prediction interval is the 95% confidence interval. The 

Bayesian analogue of classical/frequentist confidence interval is a credible set (Carlin 1996). A 

95% credibility interval means that there is a probability 0.95 that the forecast/parameter lies 

within that particular interval at that point in time. Whereas a 95% confidence interval in a 
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classical case means that if the same procedure as used for constructing the interval is repeated 

several times then in 95% of the cases the range of the intervals will include the true value of the 

forecast/parameter. The credibility set is more rational as it is not based on the asymptotic 

theory. 

As seen in figure 8, each prediction of Bayesian inference has a distribution of its own. So, each 

future point has a different variance. In figure 12, the plot of the standard deviation from 

Bayesian inference varies continuously with time accounting for the happening of the events 

(Bayesian update) whereas the same from classical inference is constant over time failing to 

account for the change in the conditional probability of a forecast.  

 

CONCLUSIONS 

A Bayesian SARIMA time-series model has been proposed in this paper for short-term traffic 

flow forecasting. In the Bayesian inference, a MCMC simulation has been proposed to estimate 

the distributions of the parameters of the model. The study in this paper shows that the Bayesian 

inference of SARIMA models provides a more rational technique towards short-term traffic flow 

prediction compared to the commonly applied classical inference.  Bayesian inference is 

conditional on the observed traffic volumes and generates an individual probability density curve 

for each of the SARIMA model parameters as well as for each point of prediction. Instead of 

using a constant parameter value estimated by classical methods, the variability of the parameters 

conditional on the traffic flow observations can be considered in Bayesian inference. Forecasts 

from the Bayesian approach can better model the traffic behavior in reality with rapid 

fluctuations and extreme peaks. In real traffic flow, uncertainties associated with traffic forecasts 

over different times of the day should vary depending on the congestion and other factors (such 
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as weather). To account for this, the prediction interval from Bayesian inference varies with time 

unlike the classical inference where point forecasts and a constant confidence interval are 

obtained based on normal distribution assumption. This provides more realistic information to 

the traffic planners and transport network managers and is important for efficient and optimal 

traffic management. The Bayesian inference can also be applied for incident detection by 

identifying occurrence outside a defined credibility interval and will be considered by the authors 

for future research.  
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FIGURE 8 
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FIGURE 9(A) 
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FIGURE 9(B) 
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FIGURE 10 
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FIGURE 11 
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