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Abstract. When simple parametric models such as linear regression fail to adequately approximate a relationship
across an entire set of data, an alternative may be to consider a partition of the data, and then use a separate simple
model within each subset of the partition. Such an alternative is provided by a treed model which uses a binary
tree to identify such a partition. However, treed models go further than conventional trees (e.g. CART, C4.5) by
fitting models rather than a simple mean or proportion within each subset. In this paper, we propose a Bayesian
approach for finding and fitting parametric treed models, in particular focusing on Bayesian treed regression. The
potential of this approach is illustrated by a cross-validation comparison of predictive performance with neural
nets, MARS, and conventional trees on simulated and real data sets.
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1. Introduction

Parametric models such as linear regression can provide useful, interpretable descriptions of
simple structure in data. However, sometimes such simple structure does not extend across
an entire data set and may instead be confined more locally within subsets of the data. In
such cases, the simple structure might be better described by a model that partitions the
data into subsets and then uses separate submodels for the subsets of the partition. In this
paper, we explore the use of “treed models” to describe such structure.

Basically, treed models are an elaboration of conventional tree models that use binary
trees to partition the data into “homogeneous” subsets where the response can be described
by a simple mean or proportion. Although such models can provide a useful approach
to handling interactions and nonlinearities, they do not fully exploit partitions with more
substantial statistical structure within the subsets. To overcome this limitation, treed models
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are constructed so that the model structure, as opposed to the data, is homogeneous within a
terminal node. This allows richer submodels for each of the subsets of the tree-determined
partition.

The main thrust of this paper is to propose and illustrate a Bayesian approach to finding
and fitting treed models. In particular, we pay special attention to treed regressions, where
linear regression models are used to describe the variation within each of these subsets.
Alexander and Grimshaw (1996) coined the term “treed regression” to refer to a tree with
simple linear regression in each terminal node. We adopt this terminology to include treed
models with multiple regressions, and refer to our approach as Bayesian treed regression.

The idea of treed models is not new. Karali€ (1992) considered multiple regression models
in the terminal nodes, in conjunction with a greedy grow/prune algorithm. Quinlan’s (1992)
MS5 algorithm also fits models of this form, but linear models were added to a conventional
tree as part of the pruning stage. Torgo (1997) uses linear models, k-nearest neighbors, or
kernel regressors in terminal nodes, but also adds these to a conventional tree after growing.
Chaudhuri et al. (1994) consider trees with linear models (with possible polynomial terms) in
the terminal nodes. Chaudhuri et al. (1995) extend this idea to non-normal response models.
Loh (2002) also considers linear regressions in terminal nodes, and attempts to correct for
possible bias in selection of splits. Waterhouse, MacKay, and Robinson (1996) consider a
tree-structured mixture of experts model, in which the individual experts are linear models.
Unlike the other treed models, the predictors are not used to specify what expert is used for
a particular data point; rather mixing probabilities inferred from the data are used.

The Bayesian approach proposed here is substantially different from this past work.
These earlier approaches are based on using some kind of greedy algorithm for tree con-
struction, growing a large tree and then pruning it back. In contrast, the Bayesian approach
induces a posterior distribution that can be used to guide a stochastic search towards ‘more
promising’ treed models, thereby more fully exploring the model space. Such a Bayesian
approach was successfully applied to conventional CART trees by Chipman, George, and
McCulloch (1998) (hereafter denoted CGM) and Denison, Mallick, and Smith (1998). The
Bayesian approach here elaborates this work—replacing the terminal node means or class
probabilities in a conventional tree with more sophisticated models such as linear regres-
sion. The form of the terminal node models then becomes an integral part of the stochastic
search, as the posterior is based on both the tree structure and terminal node models. The
Bayesian approach also provides added flexibility for submodel specification. For exam-
ple, the possibility of using different error variances for subset models, notably absent in
previous methods, is easily accommodated.

A key aspect of any Bayesian approach is the introduction of prior distributions on all
the unknowns, here the tree structures and terminal node models. In this paper we propose
a class of priors and recommend specific “default” choices from within this class. We argue
that, while no guarantees are made, these priors should lead to good results in a variety of
problems and we illustrate this in the examples. Our prior plays two important roles in our
methodology. First and foremost it provides a “penalty” to avoid overfitting in a natural,
interpretable way. Secondly shrinkage of the bottom node parameters toward reasonable
values stabilizes the estimation. Because treed model classes are so large, these aspects are
critically important for obtaining realistic fits and predictions.
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In Section 2, treed models are presented in a mathematical framework, and the important
special case of treed regressions outlined and introduced via an example. Priors applicable
to treed models of any form are discussed in Section 3.1. The search for interesting models
is part of the Markov chain Monte Carlo method for estimating the posterior, discussed in
Section 3.2. For treed regressions, the particular case considered here, prior parameters are
selected in Section 4, in such a way that reasonable automatic choices of prior parameters can
be made. In Section 5, two simulated and one real dataset are used to evaluate the predictive
accuracy of treed regressions, and four competing models. We conclude in Section 6 with
a discussion of directions for future investigations.

2. Treed models
2.1. The general model

Suppose we are interested in modeling the relationship between a variable of interest Y and
a set of potential explanatory variables (a feature vector) x. A treed model is a specification
of the conditional distribution of Y | x consisting of two components—a binary tree T that
partitions the x space, and a parametric model for Y that is associated with each subset of
the partition.

The binary tree T is the conventional tree associated with CART (Breiman et al., 1984).
Each interior node of the tree splits into two children, using a single predictor variable in
the splitting rule. For ordered predictors, the rule corresponds to a cutpoint. For categorical
predictors, the set of possible categories is partitioned into two sets. The tree T has b
terminal nodes with each terminal node corresponding to a region in the space of potential
x vectors. The b regions corresponding to the b terminal nodes are disjoint so that the tree
partitions the x space by assigning each value of x to one of the b terminal nodes.

The treed model then associates a parametric model for Y at each of the terminal nodes
of T. More precisely, for values x that are assigned to the ith terminal node of T, the
conditional distribution of Y | x is given by a parametric model Y | x ~ f(y|x, 6;) with
parameter 6;. Letting ® = (6, .. ., 6)), a treed model is fully specified by the pair (®, T).
It may be of interest to note that early tree formulations such as CART were essentially
proposed as data analysis tools rather than models. By elaborating the formulation as a
parametric model, we set the stage for a Bayesian analysis. By treating the training sample
(y, x) as realizations from a treed model, we can then compute the posterior distribution
over (®,T).

CGM and Denison, Mallick, and Smith (1998) discuss Bayesian approaches to the CART
model. In those papers, the terminal node distributions of Y, f(y | x, 6), do not depend on
x. For example, a Bayesian version of a conventional regression tree is obtained by letting
6= (u,0)and f(y|x,0)=N(u,o?). The conditional distribution of ¥ given x is then
Y |x~N(u, oiz) when x is assigned to the terminal node associated with 6; = (u;, 0;).
Such models correspond to step functions for the expected value of Y | x, and may require
large trees to approximate an underlying distribution Y |x whose mean is continuously
changing in x. By using a richer structure at the terminal nodes, the treed models in a sense
transfer structure from the tree to the terminal nodes. As a result, we expect that smaller,
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and hence more interpretable, trees can be used to describe a wider variety of distributions
for Y |x.

Finally, we should point out that although we use the one symbol “x” for notational
simplicity, we may decide, a priori, to use one subset of the components of x in the rules
defining the binary tree 7 and another subset in the fitting the models p(y | x, 8). These
subsets need not be disjoint.

2.2. Treed regression: An example

One of the most familiar and useful parametric models is the linear model with normal error:
Y | x ~ N(x'B, 0%). A treed regression is readily obtained by incorporating this model into
our treed model framework. Simply let §; = (B;, 0;) and associate Y |x ~ N(x'B;, criz)
with the terminal node corresponding to x. We also assume that given the x values, the Y
values are independent of each other. Note that this treed regression allows both §; and o;
to vary from node to node. This allows us to flexibly fit both global non-linearity and global
heteroskedasticity.

In subsequent sections, we describe in detail a Bayesian approach for finding and fitting
treed regressions to data. In particular, in Section 5.3, we illustrate the performance of our
approach on the well-known Boston Housing data, Harrison and Rubinfeld (1978). To give
the reader an immediate sense of the potential of our approach, we describe here some of
what we found.

The data consist of 14 characteristics of 506 census tracts in the Boston area. The response
is the logged median value of owner occupied homes in each tract, and is listed in Table 1,
along with the 13 predictor variables. One of the treed regressions that was selected by

Table 1. Variables in the Boston dataset.

Name Description Min Max

CRIM per capita crime rate by town 0.006 88.976
ZN proportion of residential land zoned for lots over 25,000 sq.ft. 0.000 100.000
INDUS proportion of non-retail business acres per town 0.460 27.740
CHAS Charles River dummy variable (=1 if tract bounds river; O otherwise) 0.000 1.000
NOX nitric oxides concentration (parts per 10 million) 0.385 0.871
RM average number of rooms per dwelling 3.561 8.780
AGE proportion of owner-occupied units built prior to 1940 2.900 100.000
DIS weighted distances to five Boston employment centres 1.130 12.126
RAD index of accessibility to radial highways 1.000 24.000
TAX full-value property-tax rate per $10,000 187.000 711.000
PTRATIO pupil-teacher ratio by town 12.600 22.000
B 1000(Bk — 0.63)% where Bk is the proportion of blacks by town 0.320 396.900
LSTAT % lower status of the population 1.730 37.970

MEDV Log Median value of owner-occupied homes in $1000’s 1.609 3912
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Figure I. The tree structure of the treed regression model for the Boston data. Each node is represented by a line
of text. Non-terminal nodes indicate the name of the splitting variable, and the cutpoint of the split. The first line
after a nonterminal node is the child node with all values < the split value. In terminal nodes, the number of data
points in the node (n), and the residual standard deviation (s) are given. Note that the units of split variables are
on the original scale.

the Bayesian stochastic search is described by figures 1 and 2. Details of the Bayesian
formulation such as prior choices that led to this model are discussed in Section 5.3.

Our fitted treed regression has 6 terminal nodes depicted in figure 1. One node that is
immediately of interest is node 4, which has substantially larger residual standard deviation
than the other nodes. This node consists of tracts with high tax rates (137 of the regions have
taxes this high), and small distance to employment centres (105 of all tracts have this low a
score, and 73 of the tracts with tax above 469). Among the high-tax, downtown areas, there
appears to be more variation in the log median house price. Evidently, this is variation that
is not readily explained by any predictors, and the treed regression search elects to leave
the data alone, rather than overfit it.

The data at each of the 6 terminal nodes of our fitted treed regression is described by
a separate regression with 14 estimated coefficients (including an intercept). As shown
in figure 2, the coefficient of each predictor varies from terminal node to terminal node,
reflecting varying sensitivity of the response to the predictors. Note that in fitting this treed
regression, we first standardized all the predictors (see Section 4), so that all §; can be
compared on the same scale in figure 2. The coefficients in node 4 for NOX and DIS are
very different from other nodes. Recall that this node contains the close to downtown,
high tax areas. The large negative coefficients mean that these tracts are more sensitive
to NOX and DIS than other tracts. Specifically, high pollution and larger distance from
city centers will decrease the median value of a house much more than in other tracts.
A possible explanation is that people may walk or take public transport because of their
proximity to work, and so a relatively small increase in distance could affect value. Other
interesting patterns include the coefficients for crime rate (CRIM). In nodes 1-3, which are
low property tax areas, the effect of crime is zero or small. In the remaining three nodes,
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Figure 2. Regression coefficient estimates of the treed model for the Boston data. Estimates for a regression in
a specific node are linked by lines and labeled by node number. Coefficients for different variables may be plotted
on the same scale because in the regression models coefficients are scaled equally.

where taxes are higher, the coefficients are negative, implying that increasing crime rates
decrease value. Again, some tracts are more sensitive to this variable than others.

3. A Bayesian approach for treed modeling

In anutshell, the Bayesian approach to model uncertainty problems proceeds as follows. The
uncertainty surrounding the space of possible models is described by a prior distribution
p(model). Based on the observed data, the posterior distribution on the model space is
p(model | data) o< p(data | model) p(model). Under the chosen prior, the best candidates
for selection are then the high posterior probability models. Although simple to state, the
effective implementation of this Bayesian approach can be delicate matter. The two crucial
steps are the meaningful choice of prior distributions, and a method for identification of the
high posterior models. We now describe methods for accomplishing each of these steps for
general treed model classes.

3.1. Prior formulations for treed models

Since a treed model is identified by (®, T'), a Bayesian analysis of the problem proceeds
by specifying a prior probability distribution p(®, T'). This is most easily accomplished by
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Figure 3. Marginal prior distribution for the number of terminal nodes, under various settings of « and . Values
for (a, B) are: upper left = (.5, 2), upper right = (.95, 1), lower left = (.5, 1), lower right = (.5, .5).

specifying a prior p(T) on the tree space and a conditional prior p(® | T') on the parameter
space, and then combining them via p(®,T) = p(® | T)p(T).

For p(T), we recommend the specification proposed in CGM for conventional trees. This
prior is implicitly defined by a tree-generating stochastic process that “grows” trees from a
single root tree by randomly “splitting” terminal nodes. A tree’s propensity to grow under this
process is controlled by a two-parameter node splitting probability Pr(node splits | depth =
d) = a(1 +d)~P, where the root node has depth 0. The parameter « is a “base” probability
of growing a tree by splitting a current terminal node and 8 determines the rate at which
the propensity to split diminishes as the tree gets larger. For details, see CGM. Figure 3
displays the marginal prior distribution on the number of terminal nodes (the tree size) for
4 different settings of (o, 8). (These figures are histograms of the tree sizes obtained by
repeated simulation of trees from p(7T')). Using such figures as a guide, values of («, 8)
can be chosen to, for example, express the belief that reasonably small trees should yield
adequate fits to the data. The tree prior p(T') is completed by specifying a prior on the
splitting rules assigned to intermediate nodes. We use a prior that is uniform on available
variables at a particular node, and within a given variable, uniform on all possible splits for
that variable.
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Turning to the specification of p(® | T'), we note that while p(T') above is sufficiently
general for all treed model problems, the specification of p(® |T) will necessarily be
tailored to the particular form of the model p(y|x, @) under consideration. This will be
seen in Section 4 where we provide a detailed discussion of prior specification for the treed
regression model. However, some aspects of p(® | T) specification should be generally
considered. When reasonable, an assumption of independent and identically distributed (iid)
components of ® reduces the choice to that of a single density p(6). However, even with
this simplification, the specification of p(6) can be both difficult and crucial. In particular, a
key consideration is to avoid conflict between p(® | T') and the likelihood information from
the data. On the one hand, if we make p(0) too tight (i.e. with very small spread around the
prior mean) the prior may be too informative and overwhelm the information in the data
corresponding to a terminal node. On the other hand, if p(0) is too diffuse (spread out),
p(© | T) will be even more so, particularly for large values of b (large trees) given our iid
model for the 6;. Very spread out priors can “wash out” the likelihood in the sense of the
Bartlett-Lindley paradox, Bartlett (1957). Thus, choice of an excessively diffuse prior will
push the posterior of T towards concentrating on small trees. As will be seen in Section
4, both training data information and prior beliefs can be very useful for avoiding such
pitfalls.

3.2.  Markov chain Monte Carlo posterior exploration

Given a set of training data, the Bayesian analysis would ideally proceed by computing the
entire posterior distribution of (®, 7). Unfortunately, in problems such as this, the size of
the model space is so large that complete calculation of the posterior is infeasible. However,
posterior information can still be obtained by using a combination of limited analytical
simplification together with indirect simulation sampling from the posterior via Markov
chain Monte Carlo (MCMC) methods. In particular, the Markov chain simulation can be
used as a stochastic search algorithm which can be more comprehensive than traditional
greedy grow/prune algorithms.

Our algorithm has the potential to be more comprehensive in three important ways.
First, the stochastic steps help move the search past local maxima. Second, in addition to
grow/prune steps we use “swap” and “change” steps which help find better trees. Finally,
repeated restarting of the chain identifies a more diverse set of trees. These ideas were
first developed in CGM, in the context of conventional trees. There, simulation studies
illustrated that stochastic search, change/swap steps and multiple restarts found better trees
than a greedy search. Chipman, George, and McCulloch (2001) also showed that this MCMC
algorithm can find a wider variety of trees than a bootstrapped greedy grow/prune algorithm.
Lutsko and Kuijpers (1994) considered a MCMC-like approach using simulated annealing,
and also found improvements.

In its essentials, the method we use is the same as that in CGM. Our first step is to simplify
the problem by integrating ® out of the posterior so only T remains. Given T, we index
the observed data so that (y;;, x;;) is the jth observation amongst the data such that x;;
corresponds to the ith node. Let n; denote the number of observations corresponding to the
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ith node and let (Y, X) denote all of the training data. Then,

pYIX.T) = /p(Y|X,®,T>p<®|T>d®
b n;
=11 / [1p0is 1. 0 p@:) dt; 1)
i=17 j=1

where the second equality follows from the assumed conditional independence of the y’s
given the x’s and the modeling of the 6; as iid given T. Note that in the first line we assume
that X and ® are independent given T, so that the prior on each 6; does not depend on the

x;j values.
We use MCMC to stochastically search for high posterior trees T by using the follow-
ing Metropolis-Hastings algorithm which simulates a Markov chain T°, 7!, T2, ... with

limiting distribution p(T | Y, X). Starting with an initial tree T, iteratively simulate the
transitions from T to T'+! by the two steps:

1. Generate a candidate value T* with probability distribution g (7, T*).
2. Set T'*! = T* with probability

«(TF . T*) Zmin{Q(T*,Ti)P(YIX, )p(T*) 1} 2

q(Ti, T*) p(Y | X, THp(T")
Otherwise, set Ti+! = T,

In (2), p(Y | X, T) is obtained from (1), and ¢(T, T*) is the kernel which generates T*
from T by randomly choosing among four steps:

¢ GROW: Randomly pick a terminal node. Split it into two new ones by randomly assigning
it a splitting rule from the prior.

o PRUNE: Randomly pick a parent of two terminal nodes and turn it into a terminal node
by collapsing the nodes below it.

e CHANGE: Randomly pick an internal node, and randomly reassign it a splitting rule
from the prior.

¢ SWAP: Randomly pick a parent-child pair which are both internal nodes. Swap their
splitting rules unless the other child has the identical rule. In that case, swap the splitting
rule of the parent with that of both children.

CGM note that chains simulated by this algorithm tend to quickly gravitate towards a
region where P (T | Y, X) is large, and then stabilize, moving locally in that region for a long
time. Evidently, this is a consequence of a proposal distribution which makes local moves
over a sharply peaked multimodal posterior. Some of these modes will be better than others,
and it is desirable to visit more than one. To avoid wasting time waiting for mode-to-mode
moves, CGM recommend search with multiple restarts of the algorithm, saving the most
promising trees from each run.
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Figure4. Comparison of log likelihood for 20 restarts of 4000 steps per start and 1 start chain with 80,000 steps.

By fitting parametric models relating y to x in each terminal node we hope to obtain
good fit with much smaller trees than in the model considered by CGM. With smaller
trees the MCMC method is better able to explore the space so that the approach is much
more computationally stable. In fact, we have found that fewer restarts and iterations are
typically needed here to find high posterior probability trees than in CGM. The decision
of how many restarts and runs per start will vary according to sample size, signal to noise
ratio, and complexity of the data.

Because MCMC performance is apt to vary from problem to problem, our strategy has
been to use the data to choose the number of restarts and iterations informally. We first run
some initial exploratory chains to get a rough idea of how many iterations it takes the chain
to get to the point where the likelihood has stabilized and only small local moves are being
made. We then repeatedly run the chain, restarting it after this number of iterations. Figure 4
illustrates this process for the data considered in detail in Section 5.3. The top panel displays
the log integrated likelihood (logged values of p(Y | X, T)) for the sequence of trees visited
by 20 restarts of 4000 iterations. We see that within each restarted sequence, the values
typically increase dramatically at first and then start to level off, suggesting small local
moves. Notice that not all sequences plateau at the same level, indicating that the algorithm
may not be mixing well, and may be getting stuck in local maxima. The lower panel shows
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one long run of 80,000 iterations. While additional iterations do find larger values, the bulk
of the gain occurs early in the run. In this example either approach (20 short runs or one long
run) would likely yield comparable results. As discussed in CGM and Denison, Mallick,
and Smith (1998), other strategies may be considered, and we are currently engaged in
research directed at this issue.

4. Specification of p(® | T) for treed regression

In this section we discuss particular parameter prior p(® | T') specifications for the treed
regression model described in Section 2.2. Coupled with the tree prior p(T) recommended
in Section 3.1, such p(® | T) completes the prior specification for treed regression. Alter-
native approaches to p(® | T') specification that may also warrant consideration are briefly
discussed in Section 6.

We begin with the simplifying assumption of independent components 6; = (B;, 0;) of
®, reducing the specification problem to a choice of p(8, o) for every component (i.e.
terminal node). For this, we propose choosing the conjugate form p(8,0) = p(B|o)p(o)
with:

Blo~N@ oA, o>~ 2 3)

so that the integral (1) of Section 3.2 can be performed analytically (see, for example,
Zellner, 1971). This further reduces the specification problem to the choice of values for
the hyperparameters v, A, B and A.

Before going into the specification details for these hyperparameters, we note in passing
that methods which flexibly fit data typically have “parameters” that must be chosen. For
example, in fitting a neural net one must choose a decay parameter. Often these parameters
are related to penalties for model size to avoid overfitting. Models that are too large will have
good training sample fit but poor test sample predictive performance. To some extent, both
the choice of our prior on 7' (indexed by the two scalar parameters « and 3, see Section 3.1)
and the choice of the conjugate prior are related to the issue of penalizing overly large models.
Our goal is to choose a single (or at least small) set of possible hyperparameter values such
that the resulting choice of model works reasonably well in a variety of situations.

As noted in Section 3.1, the choice of this prior is a crucial part of the method. What
is needed is a reasonably automatic way to specify a prior that is neither too tight nor too
spread out. Furthermore, if the results are very sensitive to this choice then the method will
not be of practical use. As will be seen below, our approach to hyperparameter selection
makes use of a rough combination of training data information and prior beliefs, and is
similar in spirit to the prior selection approach of Raftery, Madigan, and Hoeting (1997).

We begin by standardizing the training data by a linear transformation so that each x
and y has an average value of 0 and a range of 1. The purpose of this standardization is
to make it easier to intuitively gauge parameter values. For example, with the standardized
data, 2.0 would be a very large regression coefficient because a half range increase in the
corresponding predictor would result in a full range increase in y.



310 H. CHIPMAN, E.I. GEORGE, AND R.E. McCULLOCH

_ I‘|| |“||‘ “‘ “l |I| |II IIII“]“.IIII SR e e e
(=]
I I I T

0.0 0.2 0.4 06 0.8 1.0

20000 30000 40000
1 1 |

10000
1

prior for sigma

Figure 5. Prior distribution for residual variance o2, Boston housing data.

4.1. Choosing v and )\

We choose v to be 3. A common interpretation of this value is that this gives our prior
information about ¢ the same weight as if it were based upon 3 observations, making this
a reasonably uninformative prior. To choose A we turn to the data. Let s be the classical
unbiased estimate of o based on a full linear regression fit to all of the standardized training
data. We want to choose A to express the idea that for terminal node regressions we expect
the error standard deviation to be smaller than s, but maybe not too much smaller. Since
we allow for a different o value in each terminal node we also want to capture the prior
belief that some o values could be bigger than s. We thus choose a quantile ¢ such that
Pr(o <s)=q, and then use the implied value of A, A =s2® (1 — g)/v where ®, is the
cumulative distribution function for the chi-squared distribution with v degrees of freedom.
In practice, we have tried the values ¢ =.75 and ¢ = .95 which correspond to A = .404s>
and A =.1173s?2, respectively.

For the Boston housing data discussed in Sections 2.2 and 5.3, s = .2. Figure 5 displays
draws from the prior distribution of 0> when ¢ = .75, one of the priors considered in our
analysis.

4.2. Choosing B and A

In the absence of prior information, we set 8 = 0, the neutral choice indicating indifference
between positive and negative values of the components of §. A prior mean of zero on the
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intercept is especially plausible because of our standardization of predictors and response
to have mean 0. Of course, given T, the average value of a variable using only those
observations at a particular terminal node may differ from 0. To accommodate this possibility
it is important to make the spread of the prior (defined by A) broad enough.

To choose A, we first make the simplifying restriction that A =al, where [ is the iden-
tity matrix. Making A diagonal is a simplifying assumption, though the use of common
diagonal element a seems at least partly justified by the standardization. We choose a, the
remaining unknown, by choosing ¢ such that Pr(—c < B < c¢) = .95, and then using
the relationship @ = 13.182/c? (each component of B is marginally ~ t,./A/a, where ¢,
is the ¢ distribution with v degrees of freedom). The constant 3.18 corresponds to the 95%
cutoff for a ¢ distribution with v = 3 degrees of freedom.

How do we choose ¢? Given the standardization we can argue that 1 is a reasonable
range for a coefficient since a value of 1 indicates that all the variation in y could be explained
by a single x. However, such reasoning is clearly flawed in at least two ways. First of all,
given a tree T the observations corresponding to that node are no longer standardized
(although they would have a range less than 1, and a mean between —1 and 1). Indeed,
the whole point of the model is that the coefficients may vary substantially from node to
node. Secondly, the presence of multicollinearity throws all such reasoning out the window.
Even with standardized data, the MLE of a coefficient could be arbitrarily large. However,
if severe multicollinearity is present we can usually shrink coefficients substantially (in
this case towards 0) without appreciable damage to the fit. In fact, such shrinkage often
stabilizes calculations and even improves predictions. Given these considerations and the
realistic goal of hoping to find something that is “in the right ballpark™ for a variety of
problems, we have tried values such as ¢ =1 and ¢ = 3. Generally, smaller ¢ values will
result in estimated coefficients that are shrunk towards O, and trees with fewer terminal
nodes.

Finally, the intercept perhaps warrants special consideration. If all the slopes are 0, then
clearly arange of &1 is appropriate for the intercept. If the slopes are not 0, then the intercept
could be anything (just as the slopes could be anything in the presence of multicollinearity).
In the examples in the next section, we have used the same ¢ values for the intercept as for
the slopes, but it may be that larger ¢ values would have been more appropriate.

5. Three examples

In this section, we illustrate Bayesian treed regression and evaluate its performance on two
simulated datasets, and a single real dataset, the Boston housing data. The first simulated
example was chosen because we expected to do very well on it and the second simulated
example was chosen because we expected to do poorly.

Comparisons are made with the following other methods:

1. The linear regression model, using all available predictors.

2. Conventional tree models in which the prediction is a constant in each terminal node.
Clark and Pregibon’s (1992) implementation in S (Becker, Chambers, & Wilks, 1988),
with greedy grow/prune steps similar to CART was used.
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3. Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991). The S implemen-
tation described in Kooperberg, Bose, and Stone (1997) was used.

4. Neural networks, with a single layer of hidden units, and a skip layer. The S implemen-
tation (Venables & Ripley, 1999) was used. The skip layer allows a directly connection
from inputs to output without an activation function. For the hidden units, a logistic
activation function was used, while the output unit was linear. Training was via a quasi-
Newton algorithm.

Linear models and trees were chosen since they are the building blocks of our method. The
piecewise linear and locally adaptive functional form of MARS makes it a good competitor.
Neural nets are included as a black-box nonparametric method. Methods for combing
models, such as bagging, boosting, or Bayesian model averaging, were not considered.
This decision is discussed in Section 6.

For each of the three data sets we used the same set of 6 different prior settings. For the
tree prior, we used « = .5 and B = 2 in all examples. This is a very conservative choice in
that it puts a lot of weight on small trees (see figure 3). For A we tried both of the choices
discussed in Section 4.1: A = .404s? for ¢ = .75, and A = .1173s2 for ¢ = .95. For the
coefficients we tried both of the choices discussed in Section 4.2: ¢ = 1 and ¢ = 3 and we
also tried ¢ = 10. This gives 2 x 3 = 6 possible priors. Based on our heuristics in Section
4.2, only the choice ¢ = 10 is considered potentially unreasonable. The other four priors
are chosen in an attempt to cover a wide range of reasonable beliefs. Our hope is that the
results are not overly sensitive to the prior choice.

Other choices in addition to the prior must be made to use Bayesian treed models. As
discussed in Section 3.2, each Markov chain was repeatedly restarted after a predetermined
number of iterations. This number differed from example to example as discussed in detail
therein. Note that where we restarted the chain many times, good trees were often found in
the first few restarts of the chain. Longer runs were simply used to see just how good a tree
could be found.

To actually make a prediction we must choose a specific tree from all of those visited by
the chain. The single tree with the highest integrated likelihood P (T | Y, X) was chosen.
Given the tree T, the posterior expected value of the parameters in each node were used as
estimates of 8 and o.

In every example, all the components of x were used in both the tree and the bottom node
regressions.

5.1. First simulated example
Data with two predictors and 200 observations were generated according to the model

14+ 2x ifx, > 0.5
w ={ l 4)

0 if x, < 0.5

where the response has expected value w, x;, x, are independent uniforms on (0,1), and
independent normal errors with mean 0 and standard deviation 0.10 were added to each
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observation. We expect treed regression to do well with this data, since the functional form of
the model matches the data generation mechanism. 100 simulated datasets were generated
according to this model, and each model trained on the same datasets.

For the other methods, several algorithm parameters have to be set. To explore the effect
of the parameters, we identify a range of good values, and then run the procedure with
several values in this range. For example, with trees, cross validation suggests that trees
with 5 or more nodes will fit about equally well. Consequently, we considered 10, 20, 30,
40, and 50 terminal nodes. For MARS, the generalized cross-validation penalty term (gcv)
has a recommended value of 4, and values 2—-6 were tried. For neural nets, 3, 5, 8, 10, and
15 hidden units plus a skip layer were used. Weight decay values of 1072, 1073, 1074, 1073,
as suggested by Venables and Ripley (1999) were considered. This gives 5 x4 = 20 different
combinations of neural networks.

For the Bayesian methods, we found that after 2000 to 3000 iterations, the chain stabilized
yielding subsequent trees with similar integrated likelihoods. We thus ran the chain with
10 restarts of 5000 iterations for each of the 6 prior settings (although far fewer iterations
would have given similar results). Each run of 50,000 total iterations took about 20 seconds
(Pentium III, 500 MHz).

Model accuracy was evaluated via the root mean squared error,

RMSE =

where p; is the expected value of observation Y;, given by (4). An RMSE value for each
method was obtained for each of the 100 repetitions. These are plotted in figure 6, using
boxplots to represent the 100 values for each method. Some of the 20 neural nets are omitted
from the plot, to improve clarity. None of the neural nets omitted are among the best models
found. Our method does best, with an average RMSE ranging from 0.016 to 0.018. A
10 node tree and a neural net with 15 nodes and decay of 107> are the closest competitors,
with respective mean RMSE values of 0.057 and 0.065. Although the boxplots ignore the
matched nature of this experiment (i.e. each method is applied to the same dataset), it is
clear that our procedure wins hands down, in part due to the discontinuous nature of the
data. Note that the performance of the Bayesian procedure is insensitive to the choice of
prior.

5.2.  Second simulated example

Friedman (1991) used this simulated example to illustrate MARS. n = 100 observations are
generated with 10 predictors, each of which is uniform on (0,1). The expected value of Y is

w = 10sin(rx1x2) 4+ 20(x3 — 0.5)> + 10x4 + 5x5 (®)]

with random noise added from a standard normal distribution. The remaining five predictors
have no relationship with the response.

This example is considerably more difficult, and the sine term should prove especially
challenging to our method, as there is an abrupt changepoint with a saddlepoint at 45 degrees
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Figure 6. Boxplots representing RMSE for various models and parameter settings, first simulation example.
Trees are identified as having 10-50 nodes, MARS by the GCV penalty parameter (2—6), neural nets by the
number of hidden units (3, 8, 15) and weight decay (le-2, le-3,1e-4,1e-50), and Bayesian regression tree by the
prior on A (75% or 90% tail) and the prior variance on ¢ (1, 3, 10). The * represents a single MARS model with
an outlying RSS of 5.91 (truncated to fit in the plotting region).

to either axis. Since the splits for the tree must be aligned to the axes, this will be difficult
to identify. The signal to noise ratio is high, however.

In this example, preliminary runs indicated that even after a large number of iterations
the chain would still make substantial moves in the tree space. Given reasonable time
limitations, we thus opted for one long run of 500,000 iterations for each of the 6 prior
settings. Each run of 500,000 took about 12.2 minutes.

The RMSE values for 50 simulations are given in figure 7.

In this case neural networks are the most consistent performer, although MARS occa-
sionally gives better fits. Our tree procedure fares surprisingly well, considering the small
number of terminal nodes (in the range 2—6 for various different priors). The fact that greedy
trees improve their fit as the number of terminal nodes is increased suggests that choosing
priors which force further growing of the treed regression might further help prediction.
This was not explored because of our stated goal of evaluating default choices of priors.
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Figure 7. Boxplots representing RMSE for various models and parameter settings, second simulation example.
Labeling is the same as in figure 6.

In this case, the choice of prior does seem to affect the performance of treed regression.
However, the choice ¢ = 10, which was a priori deemed to be extreme, here fares the worst.

Several methods appear to perform comparably, from the boxplot. A more accurate com-
parison can be made by exploiting the fact that the models were all trained on the same
datasets. By calculating the differences in RMSE for each dataset, a more accurate compari-
son can be made. The mean values of RMSE over the 50 simulated datasets are 1.192, 1.018,
0.983, 0.987 for treed regression, trees, neural networks and MARS, respectively. Based
on the standard errors of paired differences, all differences seem significant except those

between MARS and neural networks or trees (smallest t-statistic for any paired comparison
is 5.17).

5.3. Boston housing results

In this section we report RMSE values for our procedure and the four other methods, as
in the simulation cases. The data consists of 506 observations, and RMSE performance is
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now assessed using 10-fold cross validation. That is, the data are randomly divided into
10 roughly equal parts, each model is trained on 9/10 of the data, and tested on the remaining
1/10. This is repeated 10 times, testing on a different tenth each time. Unlike the simulated
examples, the true function is unknown, meaning that p; in RMSE is replaced by observed
y; in the 1/10 test portion of the data. To reduce variation due to any particular division of
the data, the entire experiment is repeated 20 times. The 20 repetitions play a similar role
to the 50 or 100 simulations in earlier examples. Analogously, we will look at boxplots
of RMSE to get a sense of performance and variation in the performance over different
“datasets”. Note that cross-validation is used only to assess predictive error. The methods
for hyperparameter selection described in Section 4 are still used.

Figure 4 at the end of Section 3.2 displays runs of our chain based on all 506 observations.
For each of the six prior setting we ran 20 restarts of 4000 iterations. As discussed in
Section 3.2 one long run might have done just as well. Each run of 80,000 iterations took
about 13.5 minutes. The tree reported in Section 2.2 used one of these six settings, namely
the 75th percentile of o, and ¢ =3.
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tree 20 — P
tree25 4 1 *'_ ______________________________________
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mars 4 —| Fo-- [
mars 6 —| [t SN I sl 1 °
mars10 -4 & iatts IO © ]
nn504 +[[}*
nn50.2 - i
nn50.1 <1D
nn50.01 i
nn704 - b
nn70.2 - k
nn70.1 ]
nn70.01 Hb
nn 10 0.4 - |
nn 10 0.2 — |
nn 10 0.1 — |
mn100.01 4 R
tr10.75 HIH
r30.75 ol
tr100.75 | i
tr10.95 HI
tr30.95 I
tr 10 0.95 | L

Figure 8. RMSE for training data, Boston housing example.
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Figure 9. RMSE for test data, Boston housing example.

To reflect the higher signal to noise ratio, conventional trees of size 5, 10, 15, 20, and
25 were used. We were unsure of how to choose hyperparameters for MARS and neural
nets. We tried a variety of choices and report results for a subset of choices which perform
well in terms of test RMSE. For MARS, we report results for GCV values of 1, 4, 6, and 10.
For neural nets, we report results for 5, 7, and 10 hidden units and decay parameter values
0f 0.4,0.2, 0.1, and 0.01.

Figures 8 and 9 give boxplots of training and test error of the various methods. Only neural
nets and treed regression outperform a linear regression. Their performance is comparable,
although neural nets have a slight edge.

The success of our procedure in this example may be because treed regressions allow the
variances to be different across terminal nodes. This may seem counterintuitive, since one
might expect that if the variance in a terminal node is larger, the predictions will suffer. This
may not be the case. If there really is greater noise in some regions of the predictor space,
a method that assumes constant variance may overfit. In the test sample, such methods
will underperform, while a procedure that leaves the unexplainable variation alone may do
better.
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6. Discussion

The main thrust of this paper has been to propose a Bayesian approach to treed modeling and
to illustrate some of its features. However, we have only explored part of its potential here
and there are several important avenues which warrant further investigation in the future.

Because of the increasing prevalence of large data sets with many variables, it will be
very important to consider the performance of our approach on such data sets. Two key
issues in this area will be the algorithm’s speed and the extent to which it mixes (i.e. avoids
getting stuck in local maxima). A promising feature of our approach is its ability to find
good models quickly, as is typical of many heuristic procedures. Nonetheless, it will be
of interest to develop fast alternatives to stochastic search for exploring the posterior. As
suggested by one of the referees, a Bayesian greedy algorithm guided by the posterior may
be very effective, either as a starting point for stochastic search, or as an end in itself. We
also plan to explore methods for improving the mixing of the chain.

Our proposed approach to hyperparameter specifications in Section 4 entails explicit
user specified choices based on basic data features such as the scale of the predictors
and noise level. Hopefully such specifications can be reasonably automatic with only weak
subjective input. The robustness of our procedures as the prior inputs varied in the examples
of Section 5, provides some evidence that our recommendations are reasonable. However,
this is another crucial issue requiring further study. Although much more time consuming,
it may be better to use hyperparameter selection based on the data using methods such
as cross validation, MCMC sampling (Neal, 1996) or empirical Bayes (George & Foster,
2000). At the very least, a comparison with such methods is needed.

Although we have focused on Bayesian model selection, our Bayesian platform can easily
be used for Bayesian model averaging. Such averaging could be obtained by posterior or
likelihood weighting of the MCMC output. One might also consider averaging only a subset
of best models. Although such treed model averages forego the interpretability features of
single treed models, they will probably provide improved predictions similar to those in
Raftery, Madigan, and Hoeting (1997). It will be of interest to investigate the extent to which
such averaging offers improved prediction. We suspect this will hinge on the stability of
treed models (Breiman, 1996). The inclusion of more complicated models in terminal
nodes may mean less instability in treed regressions, due to smaller tree sizes. However,
treed regressions may also benefit from model averaging in situations like our Section 5.2
example, where the functional form is not readily represented by a small to moderate number
of partitioned regression models.

Following CGM, we based model selection here on the integrated log likelihood. In fact,
the posterior distribution of trees may contain a variety of interesting and distinct trees.
Methods for making some sense of this “forest” of trees may be advantageous, offering the
possibility of selecting several interesting trees for either interpretation or model averaging.
The extension of the ideas in Chipman, George, and McCulloch (2001) should prove fruitful
in this regard.

The Bayesian approach to treed modeling provides a coherent method for combining prior
information with the training data to obtain a posterior distribution that guides a stochastic
search towards promising models. The internal consistency of the Bayesian framework
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seems to naturally guard against overfitting with the very rich class of treed models. The
within model shrinkage mentioned in Section 4.2 provides some stability in this regard.
However, it should be possible to obtain further improvements using shrinkage across
models. This would allow parameter estimates that do not change substantially across
terminal nodes to be shrunk towards a common value, or set to O, if variable selection
were of interest. Leblanc and Tibshirani (1998), Hastie and Pregibon (1990), and Chipman,
George, and McCulloch (2000) illustrate the promise of shrinkage in conventional trees
models. We are hopeful that these methods will extend naturally to the current framework.
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