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[1] Calibration and uncertainty analysis in hydrologic modeling are affected by
measurement errors in input and response and errors in model structure. Recently,
extending similar approaches in discrete time, a continuous time autoregressive error
model was proposed for statistical inference and uncertainty analysis in hydrologic
modeling. The major advantages over discrete time formulation are the use of a
continuous time error model for describing continuous processes, the possibility of
accounting for seasonal variations of parameters in the error model, the easier treatment of
missing data or omitted outliers, and the opportunity for continuous time predictions. The
model was developed for the Chaohe Basin in China and had some features specific
for this semiarid climatic region (in particular, the seasonal variation of parameters in the
error model in response to seasonal variation in precipitation). This paper tests and extends
this approach with an application to the Thur River basin in Switzerland, which is subject
to completely different climatic conditions. This application corroborates the general
applicability of the approach but also demonstrates the necessity of accounting for the
heavy tails in the distributions of residuals and innovations. This is done by replacing the
normal distribution of the innovations by a Student t distribution, the degrees of freedom
of which are adapted to best represent the shape of the empirical distribution of the
innovations. We conclude that with this extension, the continuous time autoregressive
error model is applicable and flexible for hydrologic modeling under different climatic
conditions. The major remaining conceptual disadvantage is that this class of approaches
does not lead to a separate identification of model input and model structural errors. The
major practical disadvantage is the high computational demand characteristic for all
Markov chain Monte Carlo techniques.
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1. Introduction

[2] Because of measurement errors in input and response
and errors in model structure, predictions of hydrologic
models are inevitably affected by uncertainty. Hydrologic
models play an important role in supporting environmental
decisions, e.g., by assessing water availability, exploring
vulnerability to environmental change, or predicting the
effect of management measures in the watershed. Therefore,
to be able to support environmental decisions under consid-
eration of prediction uncertainty, careful analysis and quan-
tification of uncertainty are crucial in hydrologic modeling.
[3] A significant number of techniques have been devel-

oped to estimate parameters and assess prediction uncer-
tainty in hydrologic modeling. These include: first-order
approximation [Carrera and Neuman, 1986; Kool and
Parker, 1988; Vrugt and Bouten, 2002], Bayesian inference
based on importance sampling (IS) [e.g., Kuczera and
Parent, 1998] or Markov chain Monte Carlo (MCMC)

[e.g., Vrugt et al., 2003, 2004; Kuczera and Parent,
1998], generalized likelihood uncertainty estimation
(GLUE) [Beven and Binley, 1992], sequential uncertainty
fitting (SUFI-2) [Abbaspour et al., 2004, 2007], parameter
solution (ParaSol) [van Griensven and Meixner, 2006], and
sources of uncertainty global assessment using split samples
(SUNGLASSESS) [van Griensven and Meixner, 2006].
With respect to model results and their uncertainty bands,
many applications of these techniques give similar results.
However, there are differences in the statistical foundations
of these techniques. Some of these techniques, such as GLUE
[e.g., Beven and Binley, 1992] or SUFI-2 [Abbaspour
et al., 2004, 2007], apply a philosophy that is not based
on a statistical foundation (see, e.g., Beven [2006] for
an explanation). On the other hand, applications of techni-
ques that are based on a statistical foundation often use
statistical assumptions, such as independent errors, which
are obviously violated [e.g., Vrugt et al., 2003]. The
violation of the statistical assumptions, particularly of
homoscedasticity and independence of errors, is clearly
and visually demonstrated by Vrugt et al. [2005]. Under
such strong violations of the statistical assumptions, the
derived parameter and prediction uncertainties are unreli-
able. As this is not a problem of the statistical inference
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procedure but of the formulation of the likelihood function,
we think that the key of solving this problem is to improve
the formulation of the likelihood function, rather than the
development of new inference techniques with a poor
conceptual foundation. The focus of such an improvement
must be on the inclusion of input and model structure
uncertainty in addition to parameter and output errors.
[4] Input and model structure uncertainty can be

addressed by explicitly including these uncertainty sources
into the formulation of the likelihood function, or by
formulating an error model that jointly accounts for the
effects of all uncertainty sources. There has been recently
progressed in this research field. Kavetski et al. [2006]
explicitly take into account input and output uncertainty
in the formulation of the likelihood function. However, this
approach does not consider the errors in model structure.
Vrugt et al. [2005] present a simultaneous optimization and
data assimilation (SODA) procedure to separate parameter
uncertainty from input and model structural uncertainty. The
main characteristic of SODA is to make the deterministic
hydrologic model stochastic and combine parameter with
state estimation. The difficulty of this approach is that it
involves state estimation (which is equivalent to the esti-
mation of many additional parameters) in addition to
parameter estimation. This increases the computational
burden and requires modifications to the existing simulation
programs. A simpler approach to address input and model
structural errors is by adding a ‘‘bias’’ or ‘‘model inadequacy’’
term to model output that provides a statistical description
of the effect of model deficiencies on model output. This
approach has recently gained attention in the literature [e.g.,
Kennedy and O’Hagan, 2001; Bayarri et al., 2007] in the
context of interpolation (emulation) of the output of com-
plex computer models. This approach is a more general
formulation of the use of autoregressive error models to
account for the effect of all error sources on the output of
time series models, which has been applied frequently in
hydrological modeling [e.g., Kuczera, 1983; Bates and
Campbell, 2001]. Yang et al. [2007] further developed this
discrete time overall additive autoregressive error model
into a continuous time additive autoregressive error model
and successfully applied it in the Chaohe Basin in China
with the hydrological simulation program implemented in
the soil and water assessment tool (SWAT) [Arnold et al.,
1998]. This approach is an extension of the approach
proposed by Duan et al. [1988] for unequally spaced data.
In contrast to discrete time autoregressive error models, the
continuous time autoregressive error model seems more
satisfying because it can better describe the effects of input
and model structural error that are of a continuous time
nature, it makes it easier to describe seasonal dependence of
error model properties, it eliminates the problems associated
with missing data or omitted outliers, and it offers the
opportunity for continuous time predictions [Yang et al.,
2007]. This paper further tests this procedure by applying it
to the Thur River basin in Switzerland. This is important to
corroborate the universal applicability of the procedure under
different climatic conditions and to gain experience with
typical values of the parameters of the error model. In
addition, we will extend the continuous time additive autor-
egressive error model by relaxing the assumption of normally
distributed innovations to t-distributed innovations to

account for the heavy tails of the distributions of innovations
observed in the application to the Thur River basin.
[5] The remainder of this paper is organized as follows.

In section 2, the continuous time autoregressive error model
introduced by Yang et al. [2007] is described and extended.
Section 3 will briefly describe the Thur River basin and the
distributed hydrologic model implemented in the soil and
water assessment tool [Arnold et al., 1998]. The results of
the analysis are then discussed and compared to those for
the Chaohe Basin [Yang et al., 2007] in section 4. Finally, a
summary with conclusions is provided in section 5.

2. Bayesian Inference for a Continuous Time
Autoregressive Error Model

2.1. Bayesian Inference

[6] A deterministic hydrologic model can be written in
the form of a function

yM qð Þ ¼ yMt0 qð Þ; yMt1 qð Þ; . . . ; yMtn qð Þ
� �

ð1Þ

where yti
M (q) represents the model output at time ti as a

function of the model parameters q = (q1,. . .,qn), and M
indexes the model.
[7] According to Bayes’ theorem, the probability density

of the posterior parameter distribution, fQjY (qjyobs), is
derived from the prior density, fQpri (q), the likelihood
function of the model, fYMjQ (yobsjq), and data, y

obs,
according to

fQjY qjyobs
� �

¼
fYM jQ yobsjq

� �

� fQpri
qð Þ

R

fYM jQ yobsjq0ð ÞfQpri
q
0ð Þdq0 ð2Þ

Numerically, there are two generic Monte Carlo approaches to
approximate the posterior parameter distribution (equation (2)),
i.e., Markov Chain Monte Carlo (MCMC) and importance
sampling (IS) [Gelman et al., 1995].
[8] In hydrology, the likelihood function is often con-

structed by assuming the residuals between the observations,
y
obs, andmodel results, yM, are identically, independently and

normally distributed:

fYM jQ yjqð Þ ¼
Y

n

i¼0

1
ffiffiffiffiffiffi

2p
p 1
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yti � yMti qð Þ
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ð3Þ

However, because of measurement errors in the model input
and response and errors inmodel structure [Yang et al., 2007],
this assumption is usually not satisfied and residuals are often
heteroscedastic and autocorrelated. Therefore, in order to
correctly apply Bayesian inference, the likelihood function
must either address these errors explicitly or contain an
autocorrelated component of residuals to describe their effect
on model output.

2.2. Additive Continuous Time Autoregressive
Error Model

[9] As an extension of the discrete time autoregressive
error models introduced earlier [e.g., Kuczera, 1983; Bates
and Campbell, 2001], an additive continuous time autore-
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gressive error model was introduced by Yang et al. [2007].
This model can account for heteroscedasticity and autocor-
relation of residuals and it can easily handle missing data or
omitted outliers. Briefly, the likelihood function is con-
structed as follows:
[10] For an autocorrelated random time series Et1

repre-
senting the effect of input, model structure and output errors
we assume the probability density

fEt0
et0ð Þ ¼ 1

ffiffiffiffiffiffi

2p
p 1

s
exp � 1

2

e2t0

s2

 !

fEti
jEti�1

eti jeti�1
ð Þ ¼ 1

ffiffiffiffiffiffi

2p
p 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� exp �2
ti � ti�1

t

� �

r

� exp � 1

2

eti � eti�1
exp � ti � ti�1

t

� �� �2

s2 1� exp �2
ti � ti�1

t

� �� �

0

B

@

1

C

A
ð4Þ

where s is the asymptotic standard deviation of the errors
and t the characteristic correlation time. The assumption
here is that the random disturbances, sometimes called
innovations [Chatfield, 2003],

Iti ¼ Eti � Eti�1
exp � ti � ti�1

t

� �

ð5Þ

rather than Eti
, are independent and normally distributed.

Keeping the asymptotic standard deviation of the errors
Eti

at s, the innovations must have standard deviations
of

sIti
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� exp �2
ti � ti�1

t

� �

r

ð6Þ

[11] They reach s if the time difference between two
observations is large compared to the characteristic
correlation time, t, and they are significantly smaller if
succeeding observations are within that time or even closer.
This error model is the analytical solution of an Ornstein-
Uhlenbeck stochastic process [e.g., Kloeden and Platen,

1992]. The same process was used by L. Tomassini et al.
(A smoothing algorithm for estimating stochastic, continu-
ous-time model parameters and an application to a simple
climate model, submitted to Applied Statistics, 2007) to
describe continuous, time-dependent model parameters.
Note that the formulation of the continuous time error
model (4) is similar to the approach suggested by Duan et
al. [1988] for use with unequally spaced data. However,
there is an essential difference between the two approaches:
a decreasing temporal distance of measurement points in
our error model leads not only to an increase of the
correlation, but also to a decrease in the standard deviation
of the error term. This guarantees continuity of the process
realizations.
[12] Combining the deterministic hydrologic model (1)

with the Box-Cox transformation [Box and Cox, 1964,
1982] and the error model (4), the likelihood function of
the continuous time autoregressive error model can be
written as

fYM jQ yjqð Þ ¼ 1
ffiffiffiffiffiffi

2p
p 1

s
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2
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where the function g and g�1 represent forward and
backward Box-Cox transformations with parameters l1

and l2:

g yð Þ ¼
yþ l2ð Þl1�1

l1

l1 6¼ 0

ln yþ l2ð Þ l1 ¼ 0

8

>

>

<

>

>

:

;

g�1 zð Þ ¼
l1zþ 1ð Þ1=l1�l2 l1 6¼ 0

exp zð Þ � l2 l1 ¼ 0

8

>

<

>

:

;
dg

dy
¼ yþ l2ð Þl1�1 ð8Þ

[13] In order to test the statistical assumptions of the
likelihood function (7), a test should be made for the
empirical distribution of the standardized observed innova-
tions of the transformed observations g(yti

obs) and the trans-
formed model results g(yti

M(q)):

iti q; yobs
� �

¼
g yobsti

� �

� g yMti qð Þ
� �

� g yobsti�1

� �

� g yMti�1
qð Þ
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exp � ti�ti�1

t

� �

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� exp �2 ti�ti�1

t

� �

q

ð9Þ
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[14] The suggested tests [e.g., Kuczera, 1983; Bates and
Campbell, 2001; Yang et al., 2007] include plots of time
series of innovations, of the autocorrelation function of
innovations, of the cumulative periodogram, and of a
normal quantile-quantile plot of the innovations.

2.3. Error Model Extension

[15] To be able to account for heavy tails of the innova-
tions, we extend the assumption of normally distributed,
independent innovations in equation (4) to independent t
distributions with the same standard deviations, i.e.,

fEt0
et0ð Þ ¼

G
n þ 1

2

�  

G
n

2

� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p n � 2ð Þ
p � 1

s
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e
2
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for n > 2 ð10Þ

where G denotes the gamma function and n the degrees of
freedom of the t distribution (note that the degrees of
freedom of the t distribution must be larger than 2 in order
to guarantee the existence of the standard deviation).
[16] Accordingly, the likelihood function is adapted to

fYM jQ yjq; vð Þ ¼ G nþ1
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The statistical tests to be used to assess the hypotheses of
the error model are the plot of time series of innovations,
autocorrelation functions of innovations, and t distribution
quantile-quantile plot of innovations.
[17] As the degrees of freedom (n) approach infinity, the t

distribution will approximate the normal distribution.
Therefore the additional flexibility of the error model
provided by the degrees of freedom of the t distribution
extends our ability to approximate the observed distribution
of innovations, while keeping the normal distribution as a
limiting case. Lowering the degrees of freedom (n) of the t
distribution leads to heavier tails, as it is often observed in
hydrologic modeling. Increasing the number of degrees of

freedom leads us back to the previous assumption of
normally distributed innovations.

2.4. Uncertainty Analysis Procedure

[18] Parameters to be estimated within the Bayesian frame-
work with the autoregressive error model (equation (11))
include the parameters q of the hydrologic model, the
parameters l1 and l2 of the Box-Cox transformation, the
characteristic correlation time t, the standard deviation s,
and the degrees of freedom n of the error model. Except n
which characterizes the shape of the t distribution of the
innovations, all of these parameters should be estimated
jointly. This was done by applying a Markov chain Monte
Carlo (MCMC) technique to approximate the posterior
distribution of these parameters. In order to avoid long
burn-in periods (or even lack of convergence to the distri-
bution) of the Markov chain, the chain was started at a
numerical approximation to the maximum of the posterior
distribution calculated with the aid of the shuffled complex
global optimization (SCE-UA) algorithm [Duan et al.,
1992]. Markov chains were run until 20,000 model runs
were reached with fulfillment of the convergence criterion
by the Heidelberger and Welch [Cowles and Carlin, 1996;
Best et al., 1995].
[19] The implementation of the modified likelihood func-

tion as well as the numerical realization of Bayesian
inference was done in UNCSIM [Reichert, 2005].

3. Study Area and SWAT Model

3.1. Description of the Study Area

[20] The Thur River basin, with a drainage area of
1,700 km2, is situated in northeastern Switzerland near the
border to Germany (Figure 1). Mean elevation of the water-
shed is about 774 meters above sea level and mean slope is

around 7.5�. The climate of the watershed is the prealpine/
alpine climate, which is characterized by moderate winters in
hilly dissected terrain area, cold winters in mountainous areas
and summer seasons with relatively large annual temperature
variations. Mean monthly temperature ranges from about
10�C to 25�C in the summer and from �15�C to 7�C
during the winter. The average precipitation is 1,460 mm
yr�1with high precipitation (about 2,200–2,500mm yr�1) in
the mountain area and about 1,000 mm yr�1 in the lower
(submountain) part of the watershed, and most of precipita-

(11)
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tion falls during the summer months. The mean actual
evapotranspiration is about 565 mm yr�1, and runoff
895 mm yr�1. The climate data used in this study are from
seventeen precipitation, eight air temperature, five solar
radiation, five relative humidity, and five wind speed gages
(see Figure 1) over 20 years (1980–2000), which were
obtained from the Swiss Federal Office of Meteorology and
Climatology (http://www.meteoschweiz.ch/web/en/weather.
html). The daily discharge is available at the basin outlet
(Andelfingen station) from1991 to 2000 from the Swiss Federal
River Survey Program (NADUF; http://www.naduf.ch).
[21] The dominant land use (around 60%) in this area is

agriculture, most of which are meadows for feeding cows,
alpine pastures, and arable lands. Close to 30% of the total
area is covered by forests, about 3% are orchards. The rest of
the area is barren land, surface waters, and urban areas. Hogs
and cattle are the main livestock raised in the study area.
[22] Most of the Thur River basin is underlain by con-

glomerates, marl incrustations and sandstone with medium
to low storage capacity and rather high permeability.
Groundwater is mainly found in areas with till deposits
[Gurtz et al., 1999].

3.2. Description of SWAT and iSWAT

[23] Soil and water assessment tool (SWAT) [Arnold et
al., 1998; http://www.brc.tamus.edu/swat] implements a
semidistributed and semiphysically based watershed model.

SWAT describes the climatic and topographic heterogeneity
through subbasins based on a digital elevation map and
climatic stations, while it describes the heterogeneities in
land use, soil, and management practice through HRUs
(hydrologic response units) which consist of unique combi-
nations of land use, soil type, and management practice
within the subbasin.
[24] At the HRU level, SWAT accounts for rainfall,

interception, evapotranspiration, percolation, sediment
yield, nutrient cycles, crop growth and management prac-
tice. Then, runoff, sediment yield and nutrient loads are
aggregated to the subbasin level by taking the weighted
average based on the areas of the HRUs. Water flow,
sediment yield, and nutrient loading obtained at the subba-
sin level are then routed through the river system under
consideration of in-stream transformation, deposition and
remobilization processes. Channel routing is simulated
using either the variable storage technique [Williams,
1969] or the Muskingum method [Cunge, 1969; Chow et
al., 1988]. More detailed descriptions of the model can be
found in the work by Arnold et al. [1998] and in SWAT
manuals (available at http://www.brc.tamus.edu/swat).
[25] iSWAT is an interface between SWAT and an arbi-

trary system analysis tool that supports a simple, file-based
interface [Reichert, 2006]. iSWAT was developed to facil-
itate the application of systems analysis techniques to
hydrologic modeling on the basis of using SWAT [Yang et

Figure 1. Thur River basin with SWAT-delineated subbasins, DEM map, river network, and
meteorological stations. Reproduced with the permission of Swisstopo (BA067983).
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al., 2005]. In iSWAT, SWAT parameters can be aggregated
on the basis of important influential factors, such as land
use, soil texture, soil hydrologic group or subbasin as
follows:

x <parname>:<ext> <hydrogrp> <soltext>

<landuse> <subbsn> ð12Þ

where x represents the type of change to be applied to the
parameter (v: value; a: absolute change; or r: relative
change), <parname> is the SWAT parameter name; <ext>
represents the extension of the SWAT input file which
contains the parameter, <hydrogrp> is the identifier for the
hydrologic group, <soltext> is the soil texture, <landuse> is
the land use, and <subbsn> is the subbasin number, or the
crop index, or the fertilizer index. For example,
v__CN2.mgt = 69, will cause a global replacement of
CN2 value in the management files by 69, and
r__CN2.mgt________23,25 = 0.3, will cause a replacement
of the CN2 value in the management files associated with
subbasins 23 and 25 by a value equal to their current CN2
values multiplied by (1 + 0.3), etc.

3.3. Choice of Parameters and Priors

[26] After setting up the project, a manual calibration and
then an automatic calibration were done on some parame-
ters of the Thur SWAT project. All the simulations in this
paper are based on the calibrated project for all parameters
not included in the analysis (i.e., not explicitly mentioned).
To distinguish these simulations from the following new
simulations, they are referred to as ‘‘previous simulations’’
in the following text.
[27] The choice of parameters is based on the Latin-

hypercube-one-factor-at-a-time (LH-OAT) method [van
Griensven et al., 2006]. LH-OAT is a global screening
sensitivity analysis technique and its characteristic is that
it combines the Latin hypercube sampling [McKay et al.,
1979] and one-factor-at-a-time (OAT) method by taking the
Latin hypercube samples as initial points for the OAT
method. On the basis of LH-OAT, 20 aggregate SWAT
parameters related to river flow were selected for calibration
(Table 1).
[28] Together with the parameters l1, l2, s and t of the

autoregressive error model in equations (7) or (11), there are
24 parameters. The prior distributions of all these parame-
ters are assumed to be independent. For the 20 aggregate

Table 1. Selected Parameters for Inference and Their Initial Values and Prior Distributions

Aggregate Parametera
Name and Meaning of
Underlying SWAT Parameter

Initial Parameter Range of
Underlying SWAT

Parameter
Prior Distribution of
Aggregate Parameterb

v__TIMP.bsn Snowpack temperature lag factor 0.307 U[0.01,1]
v__SFTMP.bsn Snowfall temperature �1 U[�5,5]
v__SMTMP.bsn Snowmelt base temperature 2.585 U[�5,5]
v__SMFMX.bsn Melt factor for snow on 21 Jun 4.473 U[0,10]
v__SMFMN.bsn Melt factor for snow on 21 Dec 0.923 U[0,10]
v__MSK_CO1.bsn Muskingum coefficient to control impact of

the storage time constant for normal flow
0 U[0,10]

v__MSK_CO2.bsn Muskingum coefficient to control impact of
the storage time constant for low flow

0.2 U[0,10]

v__MSK_X.bsn A weighting factor that controls the relative
importance of inflow and outflow in
determining the storage in a reach
in Muskingum method

0.1 U[0,0.3]

v__CH_K1.sub Effect hydraulic conductivity in tributary channel
alluvium, mm/hr

0.5 U[0,150]

r__CN2.mgt CN2: curve number 47–73 U[�0.35,0.35]
r__CH_N2.rte Manning roughness for main channel 0.052/0.3 U[�0.5,0.5]
v__CH_K2.rte Effective hydraulic conductivity in main channel

alluvium, mm/hr
6.325 U[0,150]

v__ALPHA_BF.gw Base flow alpha factor, 1/d 0.0625 U[0,1]
v__GWQMN.gw Threshold depth of water in the shallow aquifer

required for return flow to occur, mm H2O
0 U[0,5000]

v__GW_REVAP.gw Groundwater ‘‘revap’’ coefficient 0.02 U[0.02,0.2]
v__GW_DELAY.gw Groundwater delay time, days 43.338 U[0,300]
v__CANMX.hru Maximum canopy storage 5.275 U[0,10]
v__ESCO.hru Soil evaporation compensation factor 0.154 U[0,1]
r__SOL_AWC.sol Soil available water capacity, mm H2O/mm soil 0–0.28 U[�0.5,0.5]
r__SOL_K.sol Soil hydraulic conductivity, mm/hr 0.01–279.71 U[�0.8,0.8]
l1

c Transformation factor in equations (7) or (11) U[0,1]
U[0,50]

l2
c Transformation factor in equations (7) or (11) U[0,50]

s Standard deviation in equations (7) or (11) Inv
t Characteristic correlation time of autoregressive

process, days
Inv

aAggregate parameters are constructed on the basis of equation (12). For example, ‘‘v__’’ in ‘‘v__TIMP.bsn’’ means ‘‘replace TIMP with a given value’’,
and ‘‘r__’’ in ‘‘r__CN2.mgt’’ means ‘‘a relative change (of the default value) of CN2,’’ and hence r__CN2.mgt is dimensionless.

bU[x,y] represents the uniform distribution over the interval [x,y] for the given aggregate parameter; ‘‘Inv’’ denotes the probability distribution with
probability density at the value x proportional to 1/x.

cHere l1 and l2 are fixed to 0 and are excluded in the final MCMC as they are very close to 0.
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SWAT parameters, uniform priors with reasonable ranges
were assumed (see the last column in Table 1) as ‘‘this may
not always be easy to assess a priori’’ even for the soil
hydraulic conductivity [Beven and Binley, 1992, p. 286]. In
addition, transformation parameters l1 and l2 are assumed
to be uniformly distributed. For parameters s and t,
densities proportional to 1/s and 1/t were chosen. Table 1
gives an overview of the parameters used for calibration and
their prior distribution.
[29] Except for the analysis with likelihood function (11),

2 additional analyses with likelihood functions (3) and (7)
were also carried out as a comparison to the analysis on the
basis of the likelihood function (11). It is worth noting that
the likelihood function (3) is widely used in hydrology (and
many other fields) and the likelihood function (7) was used
by Yang et al. [2007]. Hereafter, simulations based on
analyses with likelihood functions (11), (3) and (7) are
referred to as simulation 1, simulation 2 and simulation 3,
respectively.

[30] Obviously the initial values of storage volumes (e.g.,
soil water content) will influence the river flow. As we
cannot specify reasonable initial values for all storage
volumes considered in the model, SWAT is operated for a
‘‘warm-up period’’ of 6 years (1985–1990) without com-
parison of model results with observed data. We found that
such a ‘‘warm-up period’’ was sufficient to minimize the
effects of the initial state of SWAT variables on river flow.
Furthermore, in order to verify the calibrated model param-
eters, the model was calibrated and tested on the basis of the
observed discharges at the basin outlet (Andelfingen station,
Figure 1) using a split sample procedure. The data from the
years 1991–1995 was used for calibration, and the data
from 1996–2000 was used to test the model.

4. Results and Discussion

4.1. Results for the Thur River Basin

[31] To determine the optimum value of the degrees of
freedom, n, of the t distribution in the likelihood function

Figure 2. Statistics diagnostics for simulation 1 with likelihood function (11) with degrees of freedom
8. (top) Time series of the observed (circles) and simulated (line) flows, (middle) time series of the
normalized innovations, and (bottom) autocorrelation function and t distribution quantile-quantile plot of
normalized innovations.
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given by equation (11), we compared regression diagnostics
for analyses performed with different values of n. The
comparisons were done for simulation results at the maxi-
mum of the posterior density obtained with the aid of the
global optimization algorithm SCE-UA [Duan et al., 1992].
The comparisons showed that the simulation with n = 8 led
to the smallest deviations of the residuals from the theoret-
ical assumptions made by the model. These results of
regression diagnostics with n = 8 are illustrated in Figure 2.
The top plot in Figure 2 shows the time series of observed
(circles) and simulated (line) flows. For this simulation, R2

equals 0.80 and the Nash-Sutcliffe coefficient equals 0.77.
The middle plot in Figure 2 shows the time series of the
innovations. There seems to be no serious violation of the
assumptions of independence and of distribution shape.
This is further corroborated by the autocorrelation function
(bottom left plot) and the t distribution quantile-quantile plot
(bottom right plot). The autocorrelations are very small
except for the first-order coefficient. The quantile-quantile
plot in the bottom right plot demonstrates that the empirical

quantiles of the innovations are in good agreement with the
theoretical t distribution quantiles.
[32] For comparative purposes, Figures 3 and 4 show the

corresponding results and diagnostics for analyses of sim-
ulations 2 and 3, respectively, and Table 2 lists the perform-
ances of 3 simulations at the maxima of posterior densities.
The top plots in Figures 2, 3, and 4 give the impression that
all three simulations led to similarly good agreement with
data, although simulation 2 captured several peaks better
than simulations 1 and 3 (e.g., flow at 1991-8-22). This led
to the highest R2 and the Nash-Sutcliffe coefficient calcu-
lated with the simulated flow and observed flow (Table 2).
This is because the Box-Cox transformation with l1 = 0 (the
optimized l1s in simulations 1 and 3 are very close to 0)
puts less weight on the good approximation of high peaks to
account for the lower measurement accuracy. However, the
significant heteroscedasticity in the residuals of simulation 2
violates the statistical assumptions and makes its uncertainty
estimates unreliable (middle plot of Figure 3). There are
also slightly higher autocorrelation coefficients (bottom left

Figure 3. Statistics diagnostics for simulation 2 with likelihood function (3). (top) Time series of the
observed and simulated flows, (middle) time series of the normalized residuals, and (bottom)
autocorrelation function and normal quantile-quantile plot of normalized residuals.
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plot of Figure 3), and the assumption of normally distrib-
uted residuals is severely violated especially in the tails of
the distribution (bottom right plot of Figure 3). Also for
simulation 3, the distribution of the innovations is far from
normal (especially in the tails) although better than that of
simulation 2 (bottom right plot of Figure 4). In conclusion,
simulation 1 is the only one that does not significantly
violate its statistical assumptions. In Table 2, simulation 2
obtained the highest values R2 and Nash-Sutcliffe coeffi-
cient calculated with the simulated flow and observed flow.
This demonstrates that unweighted least squares regression
is an efficient technique to find a good fit solution. How-
ever, as mentioned above, this technique cannot be used to
get reliable uncertainty estimates of model parameters and
results.
[33] For simulation 1, a Markov chain was started from

the approximation to the maximum of the posterior density
to get an approximation to the posterior distribution. The
preliminary Markov chain led to the conclusion that both l1

and l2 are very close to 0. To decrease the complexity of the

MCMC process, we fixed l1 and l2 to 0 and excluded them
from further MCMC processes. After a burn-in period of
40,000 model runs, 20,000 model runs were used to obtain
the posterior parameter distribution and prediction uncer-
tainty.
[34] Figure 5 shows the marginal distributions of the

posterior parameter distribution. The increase in CN2 (pos-
itive value of r__CN2.mgt) reflects higher surface runoff
than in the previous simulation, while an increase in ESCO
(value around 0.32 instead of 0.154) indicates smaller
evapotranspiration than in the previous simulation. The
changes in the temperature related parameters (TIMP,
SFTMP, SMTMP, SMFMX and SMFMN) demonstrate that
temperature factors have a significant influence on river
flow. The marginal posteriors of some parameters (e.g.,
v__TIMP.bsn and r__CH_N2.rte) are at the boundary of the
prior interval. This can be an indication for very poor
identifiability due to strong correlations in the posterior.
The large increase in CH_K2 reflects a stronger interaction
between channel and groundwater. The characteristic cor-

Figure 4. Statistics diagnostics for simulation 3 with likelihood function (7). (top) Time series of
observed and simulated flows, (middle) time series of normalized innovations, and (bottom) autocorrelation
function and normal quantile-quantile plot of innovations.
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relation time is around 2 days. This indicates that there is no
long-term correlation in the residuals. The parameter values
corresponding to the maximum posterior density for simu-
lations 2 and 3 are also plotted in Figure 5 as circles and
asterisks, respectively. As we can see, because of different
objective functions, optimized parameter values vary a lot.
[35] Figure 6 shows the 95% prediction uncertainty bands

associated with parameter uncertainty (dark shaded area),
and with parameter uncertainty and continuous time autor-
egressive error model uncertainty (light shaded area) for
both calibration period and validation period. As can be
seen, although the prediction uncertainty from parameter
uncertainty (dark shaded area) is very narrow (it only covers
7.2% of the observations), the 95% uncertainty bands from
parameter uncertainty and autoregressive error model

Table 2. Performance of Three Simulations at the Maxima of the

Posterior Distribution

Test Data Nash-Sutcliffe R2 Log Posterior Density

Simulation 1 With Likelihood Function (11)
Calibration period 0.77 0.80 �6510
Validation period 0.79 0.82 �6586

Simulation 2 With Likelihood Function (3)
Calibration period 0.85 0.85 �8615
Validation period 0.86 0.86 �8597

Simulation 3 With Likelihood Function (7)
Calibration period 0.77 0.80 �6668
Validation period 0.79 0.83 �6742

Figure 5. Histograms approximating the marginals of the posterior parameter distribution for
simulation 1 and optimized parameters for simulation 2 (circles) and simulation 3 (asterisks).
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brackets most of the observations, which indicates that our
proposed approach can mimic the prediction uncertainty (it
covers 92.3% of the observations). The dots correspond to
the observed discharge at the basin outlet and the line
represents the simulated discharge at the maximum of the
posterior distribution.

4.2. Comparison With the Results of the Chaohe Basin

[36] Compared to the application of the continuous time
autoregressive error model in the Chaohe Basin in China by
Yang et al. [2007], we can find some differences and
similarities:

[37] 1. SWAT parameters: In the Chaohe Basin, river
discharge is only sensitive to runoff generation (e.g., CN2,
SOL_AWC and ESCO) during the wet season and the snow
accumulation and melting processes are negligible. In the
Thur River basin, flow is not only due to runoff generation
(e.g., CN2, SOL_AWC and ESCO), but snow accumulation
and melting processes are relevant (e.g., TIMP, SFTMP,
SMTMP, SMFMX and SMFMN).
[38] 2. Standard deviation (s) and characteristic correla-

tion time (t) of the error model: In the Chaohe Basin, these
2 parameters have a strong seasonal dependence, i.e., high s
and low t during the wet season, and low s and very high t

during the dry season. In the Thur River basin t is relatively

Figure 6. Plots of 95% prediction uncertainty bands associated with parameter uncertainty (dark shaded
area) and with parameter uncertainty and continuous time autoregressive error model (light shaded area)
for simulation 1 for both calibration period (1991–1995) and test period (1996–2000). The dots
correspond to the observed flow series at the basin outlet, and the line stands for the simulated discharge
at the maximum of the posterior distribution.
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small. This can be explained by the climate difference of
these 2 basins. In the temperate continental and semiarid
climate in the Chaohe Basin with over 80% rainfall in July
and August, the flow during the dry weather season is
strongly dependent on the water stored during the wet
season. This leads to the very high value of the correlation
time during the dry season. In the prealpine/alpine climate
in the Thur River basin, river discharge is much more
strongly dependent on rain events distributed throughout
the year.
[39] 3. Prediction uncertainty: No matter how the contin-

uous time autoregressive error model is applied, the char-
acteristic of the prediction is the same: narrow prediction
uncertainty band from parameter uncertainty and substan-
tially wider prediction uncertainty band from the continuous
time autoregressive error model. This difference between
the 2 uncertainty bands indicates a high fraction of uncer-
tainty due to input and model structure. The uncertainty due
to parameters of the deterministic models may be under-
estimated by this procedure.
[40] 4. Convergence of MCMC: The Markov chain for

the simulation of the Thur River basin converged slower
than that of the Chaohe Basin. The reason might be that the
number of parameters in the simulation of the Thur River
basin is large and the shape of the posterior is more
complicated than that of the Chaohe Basin (possibly mul-
timodal with many local maxima).

5. Summary and Conclusion

[41] The continuous time autoregressive error model
developed by Yang et al. [2007] for hydrologic modeling
was tested for a watershed with completely different char-
acteristics than the one of Yang et al. [2007]. This applica-
tion required an extension of the distributional shape of the
innovations from a normal distribution to a Student t
distribution to account for heavier tails of the innovations.
The extended error model was successfully applied (empir-
ical results are not in disagreement with distributional
assumptions made by the model) to an implementation of
the hydrologic model of the soil and water assessment tool
(SWAT) [Arnold et al., 1998] for the Thur River basin in
Switzerland. The results for the Thur River basin are
compared to those for the Chaohe Basin in China described
in the previous paper fs[Yang et al., 2007].
[42] These analyses led to the following conclusions:
[43] 1. Our case studies indicate that the extended con-

tinuous time autoregressive error model is generally appli-
cable as an error model for hydrologic simulations under
significantly different climatic conditions (case studies for
semiarid climate in North China and prealpine/alpine
climate in Switzerland). This was confirmed by statistical
tests of the distributional assumptions of the model.
[44] 2. Two case studies indicate that the parameters of

the hydrologic model as well as the parameters of the error
model need careful site-specific priors and calibration.
Particularly, the degrees of freedom of the t distribution
proved to be an effective parameter to adjust the distribu-
tional shape of the innovations (to account for heavy tails),
and the standard deviation and characteristic correlation
time of the error model required a seasonal variation for
the semiarid climate in North China that was not required

under the prealpine/alpine climate in Switzerland. The
reason for this is that river discharge during very long dry
weather periods is dependent on precipitation during the
rainy season before, whereas the dominant influence on
river discharge during wet periods is rain event over a much
shorter preceding period.
[45] While our approach leads to a satisfactory mecha-

nistic and statistical description of runoff, it does not
separate input and model structural uncertainty. The reso-
lution of this should continue to be a future effort in
hydrological systems analysis.
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