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Abstract. Urbanization and the resulting land-use change
strongly affect the water cycle and runoff-processes in wa-
tersheds. Unfortunately, small urban watersheds, which are
most affected by urban sprawl, are mostly ungauged. This
makes it intrinsically difficult to assess the consequences of
urbanization. Most of all, it is unclear how to reliably assess
the predictive uncertainty given the structural deficits of the
applied models. In this study, we therefore investigate the un-
certainty of flood predictions in ungauged urban basins from
structurally uncertain rainfall-runoff models. To this end, we
suggest a procedure to explicitly account for input uncer-
tainty and model structure deficits using Bayesian statistics
with a continuous-time autoregressive error model. In ad-
dition, we propose a concise procedure to derive prior pa-
rameter distributions from base data and successfully apply
the methodology to an urban catchment in Warsaw, Poland.
Based on our results, we are able to demonstrate that the au-
toregressive error model greatly helps to meet the statisti-
cal assumptions and to compute reliable prediction intervals.
In our study, we found that predicted peak flows were up
to 7 times higher than observations. This was reduced to 5
times with Bayesian updating, using only few discharge mea-
surements. In addition, our analysis suggests that imprecise
rainfall information and model structure deficits contribute
mostly to the total prediction uncertainty. In the future, flood
predictions in ungauged basins will become more important
due to ongoing urbanization as well as anthropogenic and
climatic changes. Thus, providing reliable measures of un-
certainty is crucial to support decision making.

1 Introduction

Urbanization and the resulting land-use change strongly af-
fect the water cycle in watersheds (Rosso and Rulli, 2002;
Ott and Uhlenbrook, 2004; Shepherd, 2005; Brath et al.,
2006; Clarke, 2007; Quilb́e et al., 2008; Barron et al., 2011;
Jung et al., 2011; Schaefli et al., 2011). By 2020 it is esti-
mated that more than 80 % of European citizens will be liv-
ing in urban agglomerations and there is no apparent slowing
in this trend (EEA, 2006). Probably the most obvious con-
sequence of urbanization is that semi-natural pervious lands
are substituted by sealed ones, which changes the hydrology
of the urbanized basin and not only increases flood risk, but
also impairs the chemical and ecological status of receiving
water bodies through erosion and increased pollution (Dietz
and Clausen, 2008).

To assess flood risk and mitigation strategies, urban plan-
ners rely on models which predict the runoff from a given
rain event, design storm or long-term precipitation record.
Unfortunately, small urban watersheds in areas of urban
sprawl are mostly ungauged (Sivapalan, 2003) and where
data are available, records often contain only few years of
the most basic hydrological variables, such as rainfall and
streamflow. This makes it intrinsically difficult to assess the
consequences of urbanization and therefore predictions of
such ungauged or poorly gauged basins are considered highly
uncertain (Franks, 2002; Sivapalan et al., 2003; Wagener and
Gupta, 2005).

Published by Copernicus Publications on behalf of the European Geosciences Union.



1222 A. E. Sikorska et al.: Bayesian uncertainty assessment of flood predictions

In ungauged catchments, the lack of data also prohibits
the use of detailed, physically-based models and simple con-
ceptual models with only few parameters are often the only
feasible tool to predict the consequences of future urban-
ization (Kumar et al., 2007; Gironás et al., 2009; Sikorska
and Banasik, 2010; Bocchiola et al., 2011; Khaleghi et al.,
2011). A clear advantage of using such models is that their
parameters often can be related to the physical catchment
characteristics (Kapangaziwiri and Hughes, 2008) and there-
fore can be directly obtained for ungauged catchments. The
price, on the other hand, is the increased uncertainty due to
model structure deficits (Seibert and Beven, 2009). It is com-
monly accepted that the uncertainty of predicted flows stems
from parameter uncertainty, model structure error, measure-
ment error, and uncertain inputs to the model (Kavetski et al.,
2006a, b; Ajami et al., 2007).

In the context of urban planning and flood prediction, a
reliable measure of uncertainty in predicted runoff is of vi-
tal interest. It is current practice to map prediction un-
certainties entirely to parameter uncertainties and propagate
them through the model (Wagener and Gupta, 2005; Ajami
et al., 2007; Vrugt et al., 2008a). A popular example for
this approach is Generalized Likelihood Uncertainty Estima-
tion (GLUE) (Beven and Freer, 2001). However, as shown
by Ajami et al. (2007), ignoring either input forcing er-
ror or model structural uncertainty may lead to unrealistic
model simulations and associated uncertainty bounds that
do not consistently capture and represent the real-world be-
haviour of the watershed. It has been demonstrated that
Bayesian statistics is conceptually more satisfying than other
approaches of uncertainty analysis (Mantovan and Todini,
2006; Yang et al., 2008). One advantage of formal Bayesian
approaches is the possibility to disentangle the effect of forc-
ing, parameter and model structural error on total predictive
uncertainty, which cannot be achieved with a GLUE (Vrugt
et al., 2008a).

Bayesian statistics requires an explicit formulation of the
error process. This error process represents typically the in-
put, structural and measurement uncertainty together. Unfor-
tunately, it has been shown that the assumption of indepen-
dent and normally distributed residuals, although mathemat-
ically convenient, is often violated (Sorooshian and Dracup,
1980; Kuczera et al., 2006; Cawley et al., 2007; Balin et
al., 2010). A promising alternative is the lumped continuous
autoregressive error model proposed by Yang et al. (2007),
which is based on more realistic assumptions but has not
been widely recognized so far.

Such a lumped error process is usually sufficient to com-
pute the prediction uncertainty. However, a separate treat-
ment of the uncertainty sources makes it possible to quan-
tify the contribution of each to the output uncertainty. This
is useful to assess in how far the prediction uncertainty can
be reduced by reducing the uncertainty of a particular source.
With regard to the importance of the individual sources of un-
certainty, it is reported that measurement errors of the runoff,

while acknowledged, are often considered to be relatively
small and in the order of about 5 % (Leonard et al., 2000;
Di Baldassarre and Montanari, 2009). It is worth noting here
that one should only assume small measurement errors when
they are supported by calibration or reference measurements.
Otherwise, the error may be large especially for flood flows
when runoff is calculated from measured water stages with
rating curves that are extrapolated beyond observation range
(Di Baldassarre and Montanari, 2009; McMillan et al., 2010;
Montanari and Di Baldassarre, 2011). In contrast, Gourley
and Vieux (2006) state that model structure errors and input
uncertainty can be the most significant sources of uncertainty
in predicted flows.

The uncertainty of forcing input, such as rainfall, is well
recognized but rarely considered in hydrological modelling
(Kavetski et al., 2002; Kuczera et al., 2006). Unfortunately,
this is particularly important for ungauged catchments where
rain gauges, if available, are often sparse and do not capture
the spatial variability of precipitation (Kavetski et al., 2006a;
Bárdossy and Das, 2008; Moulin et al., 2009; McMillan et
al., 2011). A promising approach to treat the introduced in-
put error originally proposed by Kavetski et al. (2006a) and
adopted by others (e.g. Vrugt et al., 2008a, 2008b; McMil-
lan et al., 2011) is to tackle the uncertainty of the precipita-
tion measurements with estimating event-specific parameters
(rainfall multipliers).

Similarly, other procedures have been proposed to assess
model structure errors or to simultaneously evaluate different
sources of uncertainty. Many of them adopt a Bayesian view-
point, such as the Simultaneous Parameter Optimization and
Data Assimilation (SODA) (Vrugt et al., 2005), or the Inte-
grated Bayesian Uncertainty Estimator (IBUNE) (Ajami et
al., 2007). SODA merges the input and model structure un-
certainty together into a single forcing term. IBUNE treats
input error parameters as constant over time, which might
not be appropriate as it was shown that the estimated rainfall
multipliers typically vary from event to event (Vrugt et al.,
2008a; McMillan et al., 2011). Another promising approach
to decompose uncertainties into contributing sources was
presented by Renard et al. (2011), who applied a hierarchical
structural error model with a single stochastic parameter.

Besides the possibility to separate the sources of uncer-
tainty, Bayesian statistics has another feature that makes it
appealing for application in ungauged catchments: it is pos-
sible to incorporate knowledge about the parameters from
various sources, such as expert knowledge or previous re-
sults, as a probability distribution. This prior distribution can
be subsequently updated if measurement data become avail-
able (Beck and Katafygiotis, 1998; Sivia and Skilling, 2006;
Zhang et al., 2011).

While in other applications of Bayesian statistics the def-
inition of a prior distribution, e.g. through the elicitation of
expert knowledge, is a research field of its own (Winkler,
1967; O’Hagan, 1998; Garthwaite et al., 2005), most hy-
drological studies disregard this aspect. More often than
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not, investigators choose “reasonable” values, often based
on their personal experience (McIntyre et al., 2005) or the
software’s user manual (Yang et al., 2007). For modelling
ungauged catchments, further difficulties arise from unavail-
able base data and, to the best of our knowledge, a concise
approach of formulating the prior knowledge on hydrological
model parameters is missing.

In this paper, our aim is therefore to investigate the
uncertainty of flood predictions in ungauged urban basins
with structurally uncertain rainfall-runoff models. Specifi-
cally, we apply current state-of-the-art approaches to explic-
itly account for both input uncertainty and model structure
deficits. In addition, we propose a concise procedure to de-
rive prior parameter distributions from base data. Our study
is innovative in three distinct aspects:

1. For Bayesian inference with a Unit Hydrograph-type
model, we use a likelihood function that combines a
Box-Cox data transformation with a continuous-time
autoregressive error model. Additionally, we explic-
itly account for input uncertainty using rainfall multi-
pliers. To the best of our knowledge, this is the first
time that this has been done for a small urban ungauged
catchment.

2. We support the concise formulation of prior knowledge
by combining five different methods to derive model pa-
rameters from base data. This approach is readily trans-
ferable to model other ungauged catchments with this
type of model.

3. We assess the importance of parameter uncertainty, in-
put and model structure error on the uncertainty of pre-
dicted flows and use scenario analysis to derive practi-
cal recommendations regarding the performance of the
methods for prior knowledge generation.

Our approach was tested on a case study from the Sluzew
Creek catchment in Warsaw, Poland, which has undergone
rapid urbanization in the last three decades and has been
strongly affected by urban flood flows and soil erosion in re-
cent years. As no routine monitoring data of precipitation or
discharge are available for the Sluzew Creek, we performed
a dedicated monitoring campaign to have a thorough basis
for this analysis. Our results clearly show that predictions
in ungauged basins remain a difficult task: after calibration
uncertainties in peak flow are high and up to 5 times larger
than observed values. This is mainly due to imprecise rainfall
information and the simplistic model structure.

The remainder of the article is structured as follows: in
Sect. 2 we present the conceptual rainfall runoff model and
details on the Bayesian parameter estimation. In Sect. 3, the
Sluzew Creek case study catchment is described and the ex-
perimental design of the monitoring is given. In Sect. 4, we
present the results. Finally, we discuss the results and draw
conclusions in Sects. 5 and 6.

2 Methods

2.1 Conceptual modelling in ungauged basins

As mentioned above, modelling ungauged or poorly gauged
catchments is a difficult task due to the lack of measurement
data. Therefore, different conceptual rainfall-runoff models
have been applied to predict the magnitude of floods.

The most frequently applied runoff models for ungauged
or poorly gauged catchments rely on the Soil Conserva-
tion Service Curve Number (SCS-CN) (USDA-SCS, 1986,
1989; Walker et al., 2000; Rosso and Rulli, 2002; Mishra
and Singh, 2003; Hawkins et al., 2009; Soulis et al., 2009).
The SCS-CN accounts for most runoff-producing character-
istics of a watershed such as soil type, land use and treat-
ment, surface and antecedent moisture conditions while its
parameter can be derived from physical properties of the
catchment. Therefore, it is popular for modelling in un-
gauged catchments (Mishra and Singh, 2003; Banasik et al.,
2008; Hawkins et al., 2009; Soulis et al., 2009; Sikorska and
Banasik, 2010).

In this study we applied a conceptual model that com-
bines the SCS-CN method with a commonly applied unit hy-
drograph model (Kumar et al., 2007; Ahmad et al., 2009,
2010; Girońas et al., 2009; Khaleghi et al., 2011) and its
instantaneous form proposed by Nash (1957) (IUH) to con-
volute effective rainfall into direct runoff at the outlet of
the catchment:

Q(t) =

∫ min(t,teff)

0
Pe(ϕ)h(t −ϕ)dϕ (1)

whereQ(t) is a runoff,Pe(ϕ) is unit volume of instantaneous
hyetograph, andteff the duration of the effective rainfall. The
unit hydrographh(t) is expressed as:

h(t) =
A

1t

t∫
t−1t

u(ϕ)dϕ (2)

u(ϕ) =
1

k0(N)

(ϕ

k

)N−1
e(−

ϕ
k ) (3)

whereA is the area of the catchment,1t is an interval time,
andu(ϕ) is the instantaneous unit hydrograph defined by a
gamma probability density function (Nash, 1957).N is the
number of identical linear reservoirs with retention timek.

The effective rainfallPe(t) in Eq. (1) is computed with the
SCS-CN method:

Pe(t) =



0 , if
t∑

ϕ=0
P (ϕ)−I ≤ 0(

t∑
ϕ=0

P(ϕ)−I

)2

t∑
ϕ=0

P(ϕ)−I+S

,else

(4)
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where P(ϕ) is the total rainfall at timeϕ, S is the max-
imal potential retention of a catchment, andI is the
initial abstraction.

Similar to the parameters of the SCS-CN, the parame-
ters and characteristic values of the IUH can be linked to
catchment properties (see Sect. 2.5). Therefore, a conceptual
runoff model allows for predictions even if no runoff data are
available to calibrate the model.

2.2 Bayesian prediction and updating

The calculation of the prediction uncertainties is based on the
likelihood functionp(y|θ) and the distribution of the param-
eters (see below). The likelihood function describes the prob-

ability (density) of observing the datay =

[
yt0

,yt1
,...,ytn

]
given the model and parametersθ . Consequently, the ob-
served output is a random variable. This is commonly mod-
elled by combining a deterministic model with a random
error term (see Sect. 2.3).

The parameters are not known precisely but the current
knowledge of the parameters is described by the probabil-
ity density functionp(θ). For a concise formulation of prior
knowledge applicable for a scarce data catchment through
eliciting the maximal information content from the avail-
able basic data see Sect. 2.5. The predictive distribution
of the model is then calculated by marginalizing the joint
distribution of the runoffy and the parametersθ :

p(y) =

∫
p(y|θ)p(θ)dθ (5)

If calibration datayC are available the distribution of the
parametersθ is updated by applying the Bayes’ theorem:

p(θ |yC) =
p(yC

|θ)p(θ)∫
p(yC|θ)p(θ)dθ

∝ p(yC
|θ)p(θ) (6)

The posterior distributionp(θ |yC) now describes the updated
knowledge about the parameters; a combination of the prior
knowledge and the data (Gelman et al., 1996).

Using the posterior distributionp(θ |yC) in Eq. (5) the pre-
dictive distribution becomes:

p(y|yC) =

∫
p(y|θ)p(θ |yC)dθ (7)

Note that if calibration data is not available, the formulated
knowledge of parameters remains untouched and only Eq. (5)
is employed to calculate the model’s predictive distribution.

2.3 Likelihood function

It is often stated in the literature that the assumption of in-
dependent normal distributed errors does not hold for hydro-
logical models. Due to model structure deficits, the residu-
als are often heavily auto-correlated (Sorooshian and Dracup,
1980; Romanowicz et al., 1994; Cawley et al., 2007; Yang et

al., 2007, 2008). Therefore, we have constructed the likeli-
hood of the model described in Sect. 2.1 with a continuous
representation of an AR(1) process together with a Box-Cox
transformation as proposed by Yang et al. (2007, 2008). See
Appendix A for details.

2.4 Input error model

The introduced error process could represent the lumped un-
certainty of the model structure deficits, measurement errors,
and input uncertainty (Chatfield, 1996). However, additional
insights can be gained if different sources of uncertainty are
treated separately. It is well known that precipitation mea-
surements contain errors, usually because point measure-
ments represented by rare gauges are uncertain due to the
significant spatial and temporal variability of rainfall fields
(Kavetski et al., 2006a; B́ardossy and Das, 2008; Moulin
et al., 2009; McMillan et al., 2011). Such spatial variation
cannot be captured by traditional rain gauges. Additionally,
in many situations only a single rain gauge is located close
enough to be used.

Consequently, the model input might be highly uncer-
tain. This uncertainty propagates through the model and
can lead to large output uncertainty. Therefore, it is sensi-
ble to consider this error in the model input. On the other
hand, it is a reasonable assumption that the measurement
error of the runoff is negligibly small compared to model
structure deficits and input uncertainties (Gourley and Vieux,
2006). Furthermore, the rating curve error strongly depends
on the case study and may be significantly reduced by care-
fully maintaining the gauging station (McMillan et al., 2010)
(see Sect. 3.2). We therefore treat only input uncertainty
separately. However, further error decomposition within a
Bayesian context is possible and has been applied to differ-
ent extends in the last years (Renard et al., 2011; Honti et al.,
2012; Reichert and Schuwirth, 2012).

As proposed by Kavetski et al. (2006a), we tackle the un-
certainty of the precipitation measurements with individual
rainfall multipliersζ j for each storm event as illustrated in
Fig. 1. The product ofζ j and the measured precipitation is
then used as input for the model. Every event has a separate
factor, as uncertainties in effective rainfall vary depending
on the characteristic of the rainfall event. We furthermore
assume thatζ j is lognormally distributed with an expected
value of one, which was shown by McMillan et al. (2011) to
be a good approximation (for more details see Appendix B).

Note that this approach requires an event-based modelling
approach. As for any analysed storm event, a separate rain-
fall multiplier must be inferred, the number of parameters
increases with the number of events.

2.5 Formulation of prior knowledge

The specification of the prior distribution of parameters is,
even for experts, a difficult task as no explicit rules exist
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Fig. 1. Schematic representation of the rainfall multipliers and the
rainfall-runoff model.j refers to the number of the rainfall event,
XO

j (t) andYO
j (t) are the observed rainfall and runoff for thej th

event at timet , respectively.Xj (t) is the inferred rainfall andYj (t)

the modelled runoff for thej th event.ζ j is the rainfall multiplier
for thej th event.θ are parameters of a model andθζ – parameters
of the rainfall multipliers distribution (mean and variation) over all
j events.

(O’Hagan, 1998; Scholten et al., 2012). The aim here is to
find the distribution that best reflects the current knowledge.

As for ungauged catchments, no measured flow is avail-
able and parameters have to be estimated from other sources
of information. In the literature there are three common
approaches to specify the knowledge on model parameters,
which all have their difficulties. The first approach is to ob-
tain parameters values straightforward from GIS data, topo-
graphic maps or tabulated values from the literature (Merz
and Bl̈oschl, 2004). The second one is to directly use param-
eters estimated on gauged catchments with similar charac-
teristics (Seibert and Beven, 2009). Finally, parameters can
be derived by empirical equations from readily available data
through a regionalization process (McIntyre et al., 2005).

The disadvantage of the first method is that it can only be
used to obtain physically-based parameters, such as the area
of a catchment or the Curve Number (based on land use and
soil characteristics maps) (USDA-SCS, 1986, 1989), which
can be biased due to out-dated data. The second method
raises the question of how the “similarity” of two catch-
ments can be assured (Oudin et al., 2010; Patil and Stieglitz,
2011). The third method is promising, because it links also
non-physically based parameters to catchment characteris-
tics, such as length of the stream, slope, or impervious area
(Madsen et al., 2002). However, with all three approaches no
statement about the uncertainty of the obtained parameters
can be made.

Therefore, we propose to extend the third approach by us-
ing several empirical equations in parallel and constructing
prior distributions from the population of obtained parameter
values. Here, we combine five empirical relations to obtain
values forN andk from catchment characteristics, which we
label as: (i) SCS, (ii) Lutz, (iii) Rao, (iv) Geomorphologic
IUH (GIUH), and (v) Geomorphoclimatic IUH (GCIUH).
The corresponding equations for all methods are given in Ta-
ble 1. Other methods (Haan et al., 1994; Bhunya et al., 2003;
Jain et al., 2006; Singh, 2007) are not suitable as they re-

late IUH characteristics to discharge properties that are not
available for ungauged catchments. However, they may be
included if such data are available.

The SCS method is the most common method to inform
IUH characteristics (USDA-SCS, 1986, 1989). Originally, it
was developed for small agricultural watersheds (<16 km2),
however, it accounts for different types of land use and
has since then been adopted for urban and forest water-
sheds (Banasik et al., 2008; Seibert and Beven, 2009; Soulis
et al., 2009).

In a similar study, Lutz (1984) analyzed over 950 rainfall-
runoff events from 75 watersheds located in the Southwest
of Germany with an area up to 250 km2. This method relates
the parameters to stream properties and the ratio of forest and
urbanized areas within the watershed.

An approach developed directly for small urban catch-
ments was proposed by Rao et al. (1972), who explicitly took
into account the degree of urbanization by relating the total
area of the watershed to the fraction of impervious area.

The GIUH approach is based on numerical experiments
with a detailed physically based watershed model on four
basins in Venezuela and Puerto Rico with areas from 3 to
103 km2 (Rodŕıguez-Iturbe and Vald́es, 1979; Vald́es et al.,
1979; Hall et al., 2001). In this approach the parameters
are described as a function of watershed geomorphology and
the dynamic parameter by the average peak flow velocityν,
which is then related to rainfall and stream properties.

A variation of the GIUH approach is GCIUH, which was
developed to relate the parameters only to geomorphologic
and climatic data (Nowicka and Soczynska, 1989; Hall et
al., 2001).

The parameters of the IUH characteristicstp andup are
related to the Nash model parametersN andk as follows:

tp = k ·(N −1), (8)

up =
1

k ·0(N)
·
(N −1)N−1

eN−1
(9)

and

Lag= N ·k. (10)

The mean and variance of the parameters obtained by the five
described methods are used to fit lognormal distributions as
priors forN andk using the method of moments.

The retention capacityS is related to the Curve Number
(CN), which can be derived from GIS data (USDA-SCS,
1986, 1989; Walker et al., 2000; Mishra and Singh, 2003;
Hawkins et al., 2009; Soulis et al., 2009):

S = 25.4·

(
1000

CN
−10

)
. (11)

The initial abstraction (I ) from Eq. (4) is specific for every
rainfall event and therefore difficult to estimate in advance.
However, it can be related to theS through the ratio factor,
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Table 1. Methods used to derive IUH characteristics and Nash model parameters.

Method tp or k up or Lag

SCS tp =
L0.8

·

(
1000
CN

−9
)0.7

2.92·J 0.5
Z

up = 0.751
tp

Lutz tp = P1 ·

(
L·LC
J 1.5
g

)0.26
·e−0.016U

·e0.004W up = P2
1

t
P3
p

Rao k = 0.56·A0.39
·(1+U)−0.62

·P−0.11
e ·D0.22

e Lag= 1.28·A0.46
·(1+U)−1.66

·P−0.27
e ·D0.37

e

GIUH tp = 0.44
(

RB
RA

)0.55
·R−0.38

L ·
L�
ν up = 1.31·R0.43

L
ν

L�

GCIUH tp = 0.33·50.67, 5 =
L2.5

� ·n1.5
·B�

S0.75
� ·R0.6

L ·A�·ir·tr
up = 1.53 1

50.67

P2 = 0.64,P3 = 1.04 (Lutz, 1984);ν = 0.665·α0.6
�

·(ir ·A)0.4, α� =
s0.5
�

nB0.67
�

in (m−1 s−1/3) andRB/RA = 0.8 (Rodriguez-Iturbe et al., 1982; Hall et al., 2001); Notes:L – Length of

the stream from the water gauge to the watershed ridge (km),Jz andJg – Average slope of catchment (%) and average slope of the stream (-),s� =Jg, Lc – Length of the stream to
the central point, assumed to be equal to 0.5 l,U andW – Ratio of urbanized and forest areas (%),P1 – Parameter dependent on the roughness of the stream,P2 andP3 – Dependent
on the interval of estimation, Lag – Lag time (h),A – Catchment area (km2), U – Fraction of the impervious area in the catchment (-),Pe andDe – Amount and duration of effective
rainfall, respectively (mm) and (h),ir andtr – Effective rainfall intensity (cm h−1) and its duration (h),A� , B�, L� – Area, width and length of the highest order stream (km2,
m, km),RA , RB andRL are the Horton area, bifurcation and length ratios of the catchment (Tarboton, 1996),ν− Average peak flow velocity (ms−1), n – The Manning roughness
coefficient (m−1/3 s−1).

which for urban catchments is typically equal to 5 % ofS

(Hawkins et al., 2009).
For the watershed characteristicsA andCN , an error due

to inaccurate maps may be considered. However, whileA

usually remains constant for a catchment over the time,S

may alternate and a sufficient wide prior distribution should
be provided thereto. We assumed therefore a normal dis-
tributed error with a standard deviation of 10 % of the mean
for A and based onCN a lognormal distribution with the
mean of 55 and standard deviation of 30 forS.

The prior distribution for the standard deviationσ of the
error model is difficult to define asσ must represent a com-
bination of both model structure deficits and measurement
errors. To reflect this, a wide distribution was selected. Sim-
ilarly, a wide distribution was proposed for the character-
istic correlation time of the autoregressive processτ (Ta-
ble 1). Since it is extremely difficult to evaluate and for-
mulate knowledge of the mutual interactions between all
parameters beforehand, we assumed independence between
all parameters, which is common praxis (Yang et al., 2007;
Reichert and Schuwirth, 2012).

2.6 Assessing prediction performance

In the context of floods the predicted peak flow is the most
important model result. For the Sluzew Creek, it can be read-
ily transferred to stream water levels and flooded areas dur-
ing a flood event. Specifically, we used the peak flow and its
80 %-interquartile range to assess the model performance.

2.7 Scenario analyses

To assess the individual error contributions and the gain of in-
formation from observations, the prediction uncertainty was

analysed for four scenarios, which reflect different degrees
of data availability and knowledge of the modeller. Scenario
A describes a typical case of a completely ungauged basin,
where no flow data are available for calibration. Here, the
runoff is predicted using only the prior distribution. For Sce-
nario B, the prior distribution has been updated with calibra-
tion data of 14 rain events. For the flood predictions of B, we
used the estimated standard deviation over all rainfall multi-
pliers (σ ζ ) instead of the estimated individual rainfall multi-
pliers for every rainfall event. Thereby inferred rainfalls were
sampled from the posterior parameter space over all rainfall
multipliers. This is the best option to predict the runoff of
a future rain event, for which an appropriate multiplier can-
not be known in advance. In addition, we estimate the indi-
vidual contributions of input uncertainties (Scenario C) and
parameter uncertainties (Scenario D) to the total prediction
uncertainty. Scenario C is similar to B but disregards input
uncertainty by settingσ ζ to zero, which illustrates the effect
of the uncertain precipitation measurements. Scenario D is
similar to scenario A, only that the parameters were derived
with the Rao method and considered exactly known. This
scenario illustrates the impact of the parameter uncertainty
(see Table 3).

2.8 Implementation details

The model was implemented in R (R Development Core
Team, 2011). We sampled from the posterior probability
distribution using an adaptive Monte Carlo Markov Chain
(MCMC) sampler (Vihola, 2011). The sampler of Vi-
hola (2011) adjusts the covariance matrix of the jump dis-
tribution to achieve a defined rejection rate and thus guaran-
tees efficient sampling but other algorithms could have been
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Fig. 2. Overview of the Sluzew Creek catchment, Warsaw, Poland.

applied as well (Gilks et al., 1995; Brooks et al., 2011). Con-
vergence to the stationary distribution was achieved by run-
ning 72 chains in parallel with 50 000 samples each. The
number of chains was chosen in preliminary trials to ensure
good coverage of the parameter space. The prediction uncer-
tainty bands are based on 1000 Monte Carlo simulations for
each of the described scenarios.

3 Material

3.1 Test catchment

As a test catchment, the upper part of the Sluzew Creek basin
was chosen; it is located in the city of Warsaw (Poland) and
has an area of about 26.9 km2 (Ared: 18.3 km2) (see Fig. 2).
In the last three decades, it has undergone rapid urbanization.
As a consequence, it is strongly affected by urban flood flows
(every second year) and soil erosion (WAU, 2002; Banasik et
al., 2008).

The average annual precipitation in this part of city is
about 540 mm and the average daily temperature varies from
−3◦C in January to +18◦C in July (WAU, 2002; Majewski
et al., 2010). As a lowland watershed, no steep slopes ex-
ist and the elevation varies from 95 m to 110 m above sea

level. Thus, the topography of the watershed does not have
a major influence on the surface runoff, which instead is
dominated by the land use type (Barron et al., 2011). Ur-
ban areas cover 58.7 % of the catchment and the percentage
of impervious areas in the whole catchment is 32 %. As a
small ungauged basin, no routine monitoring data of precip-
itation and discharge are available and we implemented our
own monitoring program.

3.2 Data collection

Rainfall data at three locations and the runoff at the outlet
of the catchment have been observed for three hydrological
years with a temporal resolution of 10 min.

For our analysis, we selected 14 rainfall-runoff events
from the period 2007–2009. The selection and separa-
tion of the events were based on both the amount of to-
tal areal-averaged precipitation per an event (>3 mm) and
the maximal observed discharge at the outlet (>1 m3 s−1).
Events with discontinuous rainfall and during the winter pe-
riod, where potential snowmelt can significantly contribute
to runoff, were excluded from the analysis.

For the stream gauge we additionally possessed detailed
hydraulic information of the cross section. Furthermore, the
variation in the rating curve due to seasonal and alluvial
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Table 2. Delivered prior distributions of model parameters.

expected value (E)
Parameter/name and meaning distribution and standard deviation (SD)

Parameters of the deterministic model

A area of a catchment [km2] Normal E = 26.9, SD = 2.7
S Max potential retention of a catchment [mm] LognormalE = 55, SD = 30
N number of linear reservoirs, [-]a Lognormal E = 3.21, SD = 0.97
k retention time of a linear reservoir, [h]a Lognormal E = 1.78, SD = 0.86

empirical method
SCS – N = 4.67, k = 2.02
Lutz – N = 3.65, k = 0.57
Rao – N = 2.16, k = 1.70
GIUH – N = 2.82, k = 1.63
GCIUH – N = 2.76, k = 2.97

Parameters of the error model (model structure and measurement uncertainty)

σ asymptotic standard deviation of the errors [m3 s−1] Gamma E = 2, SD = 2
τ characteristic correlation time of the autoregressive process [min] GammaE = 300, SD = 200
λ1

Parameters of the Box-Cox transformationb, [-]
– E = 0.5

λ2 – E = 0

Parameters of the input uncertainty

σ ζ standard deviation of the input uncertainty factor, [mm]c Gamma E = 0.1, SD = 0.05
ζ j rainfall multipliers for each j fromn rainfall events, [-]d Lognormal E = 1, SD = E(σ ζ )

a Distributions ofN andk were delivered from the empirical equations presented in the table;b For the parameters of the Box-Cox transformation(λ1, λ2) no inference was made.
We selected the values following (Reichert and Mieleitner, 2009) based on the analysis of the innovations;c σ ζ relates to the standard deviation of each rainfall multiplier, identical
for all multipliers; andd n – number of selected rainfall-runoff events.

Table 3. Predictive performance for different scenario analysis for the maximum peak flow.Qmax observed was 2.9 m3 s−1.

Parameter Input Availability of Qmax (m3 s−1);
ID Uncertainty Uncertainty measured data 10, 50, 90 % quantiles

A Prior Prior None 0.39; 7.66; 20.80
B Posterior Posterior Short-term 2.07; 6.71; 15.20
C Posterior None Short-term 4.25; 6.71; 10.30
D None Prior None 3.94; 9.60; 16.80

changes within the channel were considered negligible. First,
all analyzed events occurred during spring and summer sea-
sons and were clearly storm-related. Second, the Sluzew
Creek is a rather small catchment. We assigned therefore
a low uncertainty to the rating-curve and a small error on
observed runoff.

4 Results

4.1 Prior distribution

The prior distribution for the parameters of the IUH and
the watershed characteristics was derived as described in

Sect. 2.5. The obtained prior distributions are summarized
in Table 2 (see also Fig. 3). We find that the values forN

obtained with the empirical formulas roughly vary by a fac-
tor of 2, whereas the results fork vary by a factor of 4. The
resulting lognormal distributions have a mean of 3.21 and
standard deviation of 0.97 and a mean of 1.78 h and standard
deviation of 0.86 h forN andk, respectively.

4.2 Bayesian parameter estimation

The model was calibrated with seven parameters:N andk

of the IUH model,A andS for the watershed characteristics,
σ and τ of the error model, andσ ζ of the rainfall multi-
pliers. Additionally, all 14 rainfall multipliers were inferred

Hydrol. Earth Syst. Sci., 16, 1221–1236, 2012 www.hydrol-earth-syst-sci.net/16/1221/2012/



A. E. Sikorska et al.: Bayesian uncertainty assessment of flood predictions 1229

0 20 40

0.00

0.05

0.10

0.15
A

0 100 200

0.00

0.01

0.02

0.03

0.04

0.05
S 0 2

0 2 4 6 8

0.0
0.1
0.2
0.3
0.4
0.5
0.6

k

2 4 6 8

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N

0 5 10 15

0
1
2
3
4
5
6

sigma

0 500 1500

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

tau

0.0 0.4 0.8 1.2

0

2

4

6

8

zeta

0.2 0.4 0.6

0
1
2
3
4
5
6

Fig. 3. Prior (solid line) and posterior distribution (gray area) of model parameters.

together with model parameters. The marginal posterior pa-
rameter distributions for most parameters were found to be
distributed close to the prior but, as expected, with smaller
variances (Fig. 3). An exception was the asymptotic standard
deviation of the error processσ , for which more information
was gained from the data, because not only its variance was
greatly reduced but also the mode was shifted from 1 to 0.4.

Interestingly, the posterior standard deviation of all rainfall
multipliers (σ ζ ) increased compared to the prior. This means
that the input error may have been slightly underestimated
by the prior knowledge. Further explanation is provided in
the Discussion (Sect. 5). The mode of the estimated rainfall
multipliers varied from 0.58 to 1.70 with a mean of 0.96 for
all events (see Supplement). For large events with greater
observed precipitation amounts the accuracy of the rainfall
measurement was found to be higher and closer to the value
of one. For events with lower observed rainfall the input error
was found to be higher (Supplement).

The diagnostic plot of model residuals and innovations is
presented in Fig. 4. Not surprisingly, the residuals show a
strong autocorrelation (Fig. 4, top row). This highlights the
fact that the assumption of simpler likelihood functions with
independent error terms would be clearly violated. The as-
sumption of the continuous AR process with independent in-
novations is fulfilled much better (Fig. 4, bottom row), even
if some week autocorrelation is still observed for the event
12. Moreover, time series of standardized observed inno-
vations of the autoregressive error model show a reduced
heteroscedasticity compared to the residuals (not shown).

4.3 Predictive uncertainties of flood discharges

The performance and uncertainties of model prediction were
assessed under the four scenarios defined in Sect. 2.7. First,
the model accuracy was evaluated with the relative error of
the predicted to the observed peak flow (Table 3). As ex-

pected, this was the highest for Scenario D. Using prior pa-
rameter distributions delivered from different methods (Sce-
nario A) instead of a single method (Scenario D) makes it
possible to better account for uncertainties in the parame-
ters and slightly improves the accuracy of the peak flow es-
timation. The accuracy may be further improved through
calibration with runoff data (Scenario B).

Second, the predictive uncertainties were calculated for
the different scenarios (Fig. 5). Solid lines correspond to pre-
dictions using the mode of the posterior density. Gray bands
depict the 80 % predictive intervals. For scenarios where
no runoff data are available, the achieved uncertainty bands
were up to 7 times more than observed peak flows, which
is large. A calibration with data allows reducing the uncer-
tainties to 5 times more (Scenario B). However, its 80 %-
prediction interval is still wide compared to the observed
data. Scenario C illustrates that the contributions of the input
uncertainty are important, because the uncertainty bands are
50 % narrower compared to Scenario B. Scenario D shows
that the parameter uncertainty is not a relevant contribution
in predictive uncertainties for this ungauged catchment.

5 Discussion

In this study, we present an approach to assess the predic-
tion uncertainties of a conceptual rainfall-runoff model in
ungauged urbanized catchments. The above results show
that the prediction uncertainty is rather large and dominated
by input uncertainty and model structure errors. Here, we
would like to discuss four important aspects, namely (i) the
obtained results for the prior and posterior parameter distri-
bution, (ii) the choice of the likelihood function and the con-
sideration of input uncertainty, (iii) uncertainty contributions
and difficulties in their assessment, and (iv) problems with
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Fig. 4. Diagnostic plot of residuals and innovations. Autocorrelation function (ACF) of standardized residuals (top row), ACF of standardized
innovations (middle), and sequences of innovations (bottom).

Fig. 5. Predicted flows in the Sluzew Creek using the prior and posterior parameter distributions for different scenarios. Solid lines preset
predicted runoff corresponding to the median parameters values, dotted lines – observations. Grey areas depict 80 % prediction uncertainty
bands. For scenarios C and D – dashed lines indicate the difference in the total predictive uncertainty bands whilst ignoring input error
(scenario C) or parameters uncertainty (scenario D). Numbers in brackets correspond to the number of the event.
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assessing the consequences of urbanization and modelling in
ungauged basins with a brief outlook on future challenges.

With regard to point (i), to derive a useful prior distribu-
tion, we propose the use of five different empirical methods.
As described above, the parameter values varied significantly
depending on the choice of the empirical method. This indi-
cates that the use of a single empirical method most probably
leads to biased flow predictions, which usually overestimate
the runoff from big events and underestimate runoff during
small events. However, as the largest uncertainty is con-
tributed by input uncertainties (shown by a comparison of
Scenarios B & C) and model structure errors, the predictions
are not so sensitive to the prior distributions of the model pa-
rameters (shown by Scenarios A & D). While we can suggest
a concise approach to derive a prior for the model param-
eters, obtaining prior distributions for the parameters of the
error model (σ andτ ) is difficult. While τ can be interpreted
as the memory effect of the catchment,σ captures both the
model structure error and the measurement error and has no
physical meaning. Therefore, the prior distribution ofσ is
best directly taken from calibrated models. As such infor-
mation is not available so far, we hope that the results from
our case study could represent a valuable contribution. For
larger or more rural catchments, we recommend choosing a
conservative (i.e. wide) prior distribution forσ to avoid over-
confidence.

In our case study, we furthermore find that the modes
of obtained posterior distributions lie within the expected
ranges. If the model is calibrated to each rain event sepa-
rately, the retentionS is comparably larger for “small” storm
events with less than 12 mm rainfall. This explains the wide
posterior distribution for this parameter and corresponds to
recent findings (Hawkins et al., 2009; Soulis et al., 2009).
With regard to the correlation timeτ of the autoregressive
process, we obtained most probable values around 400 min,
which is reasonable for a small urbanized catchment. In-
terestingly, the posterior mode ofσ is more than two times
smaller than that of the prior, which was rather unexpected
and is discussed further below.

With respect to point (ii), the results of Bayesian parameter
estimation are only meaningful if the assumptions of the er-
ror model are fulfilled. Here, reasonable uncertainty bands
were obtained with the proposed autoregressive error pro-
cess. The fact that larger flows have higher uncertainties than
dry weather flows confirms our expectations. We find that the
applied error model is very convenient, because it is straight-
forward to implement. Due to the continuous form, it is suit-
able for data that are not equally spaced in time (e.g. due to
missing values).

Input uncertainty was considered by using rainfall multi-
pliers. Inferring one rainfall multiplier per rain event from
the observed rain and the runoff has several advantages.
First, it limits the number of parameters to be inferred to a
manageable number. Second, it allows for a better fit to the
data (Supplement) and an estimation of the uncertainty in the

input. This uncertainty must then be considered in the pre-
diction uncertainty. The main limitation of rainfall multipli-
ers is that they fail when no precipitation has been observed
for a runoff event. While we took great care in our study to
eliminate this problem by an experimental design with multi-
ple rain gauges, this can be relevant in practical applications.
The posterior rainfall multipliers were found to vary around
one, whereas the standard deviationσ ζ of all multipliers was
found to be relatively high (about 0.4). Consequently, the un-
certainties linked to the input error are important. However, it
must be noted that the rainfall multipliers ultimately increase
the flexibility of the model and thus partly compensate for
model structure deficits.

Regarding (iii), a careful interpretation is required. The
observed dominance of input uncertainty over other con-
tributing sources may be potentially caused by mutual inter-
actions between both: input and model structure error. This is
especially true when poor knowledge is available but may be
minimized by the precise prior information on input uncer-
tainty (Renard et al., 2010, 2011). Therefore, we agree with
Seibert and Beven (2009) that the inferred rainfall should
not be interpreted as “real” rainfall, but as the estimated in-
puts for the applied model. Furthermore, the introduced er-
ror model lumps runoff measurement errors, model structure
deficits and rating curve error. The decomposition of those is
not straightforward. However, as the measurement and rating
curve error can here be assumed insignificant (see Sect. 3.2),
the estimated uncertainties are dominated by model structure
deficits. Contrarily, if no sufficient information for the rating
curve is available, the corresponding error may be significant
(McMillan et al., 2010).

With regard to point (iv), we found that the uncertainties
in peak flows are about 5 times higher than the observed val-
ues, which is large and raises concerns for practical applica-
tions of IUH-type models. On the one hand, we are able to
show that the parameter uncertainty can be greatly reduced
and the prediction improves even with only few discharge
measurements. However, on the other hand, for the Sluzew
Creek, putting more effort into flow monitoring or collecting
long-term records will most probably not improve the results
significantly, because model structure deficits and input un-
certainty remain. Reducing the input uncertainty seems most
promising, but typically has some cost attached to it. For
example, more detailed rainfall information requires invest-
ments into a denser network of rain gauges, weather radar
or retrieving data from microwave links (Berne and Uijlen-
hoet, 2007; McMillan et al., 2011; Wang et al., 2012). In
our case, the model structure can probably be also improved,
but in general this is tied to the availability of runoff data
for calibration. In totally ungauged catchments, however,
one is limited to models where the parameters are roughly
known or can be derived with empirical methods. This is
particularly true if the conditions of the basin are expected to
change, for example due to urban growth which is currently
especially relevant in Eastern European cities (EEA, 2006).
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With continuing urbanization, even a complex model cali-
brated to current conditions will not reliably predict future
runoff. Therefore, despite their limitations, simple concep-
tual models are justified when it is straightforward to derive
parameters and predictions for different future scenarios.

In summary, we agree with predecessors (Sivapalan et
al., 2003; Seibert and Beven, 2009; Reichert and Mieleit-
ner, 2009) that hydrological modelling in small ungauged
or poorly gauged catchments is not a trivial task and find,
once more, that the predictions are very uncertain. Unfortu-
nately, in many cases there is no alternative to predictions of
models that cannot be verified with data (Kapangaziwiri and
Hughes, 2008). Therefore, we believe that it is especially
important in these situations to quantify the prediction uncer-
tainty. Furthermore, the uncertainty must be communicated
to the decision makers and, if possible, taken into account in
the urban planning process (Ramos et al., 2010). This, again,
is especially important for urbanized catchments, where the
economic consequences of floods can be severe.

Despite economic losses due to floods, urban growth usu-
ally affects the receiving water quality through point and
non-point source pollution. In this regard, wet-weather pol-
lution, which is often associated with the amount of to-
tal suspended solids, is especially crucial. Future work
should therefore investigate the uncertainties of water qual-
ity impairments (e.g. from sediment loads) in ungauged
catchments under urbanization. Promising approaches for
multi-objective calibration within a Bayesian framework that
would lend themselves to this task have been recently sug-
gested (Dietzel and Reichert, 2010; Reichert and Schuwirth,
2012; Honti et al., 2012).

6 Conclusions

In this study, we investigated the uncertainty of flood predic-
tions in ungauged urban basins with structurally uncertain
rainfall-runoff models. We used Bayesian statistics to ex-
plicitly account for parameter uncertainty, input uncertainty
and model structure deficits together with measurement er-
rors and successfully demonstrated the approach on an ur-
ban catchment in Warsaw, Poland. Based on our results we
conclude that:

– The proposed procedure to derive prior distributions for
the model parameters from base data by combining five
different empirical methods is concise. It delivers mean-
ingful results and is readily transferable to other un-
gauged catchments. In contrast, it is difficult to specify
prior distributions for the parameters of the error model,
which do not necessarily have a physical meaning. Our
results for the latter might therefore be beneficial for
other studies in similar basins.

– The statistical assumption of independent and normally
distributed residuals does not hold for simple hydro-
logical models because of model structure deficits. In
our case, it was possible to meet the statistical assump-
tions much better using a Box-Cox data transformation
with a continuous-time autoregressive error model. This
lumped error process is convenient and straightforward
to implement.

– Flood predictions of IUH models in ungauged basins are
difficult because predictive uncertainties are large. In
our study, we found that predicted peak flows were up
to 7 times higher than observations. This was reduced
to 5 times with only few discharge measurements.

– The separation of uncertainties is beneficial because it
makes it possible to assess the individual error sources.
The major contribution to the predictive uncertainties
is input uncertainty, i.e. imprecise rainfall information.
Model structure deficits rank second, whereas param-
eter uncertainties were found to be not so important.
Flow predictions will improve most with better rainfall
information, for example from a denser network of rain
gauges or microwave links.

Appendix A

Likelihood function

To predict the uncertainty of model output, the likelihood
function in Eq. (6) in Sect. 2.2 needs to be derived. Following
the notation of Yang et al. (2007) a deterministic conceptual
rainfall-runoff model can be written as:

yM(θ) =

[
yM

t0
(θ),yM

t1
(θ),...,yM

tn
(θ)
]

(A1)

WhereyM
ti

(θ) is the predicted runoff at timeti (i=1,2,...,n)

and θ denotes the parameter vector. A random error term
ε is then introduced to consider measurement errors, input
uncertainty, and the imperfect model structure. In many ap-
plications a transformation helps to meet the statistical as-
sumptions of the considered error model:

Y M
ti

(θ) = g−1
(
g
(
yM
ti

(θ)
)
+εti

)
(A2)

Hence, the model outputY M
ti

(θ) is a random variable and
therefore written in capitals. The transformation function
g and its inverseg−1 are the forward and backward Box-
Cox transformation (Box and Cox, 1964, 1982; Yang et al.,
2007, 2008):

g(y) =

{
(y+λ2)

λ1−1
λ1

λ1 6= 0
ln(y +λ2) λ1 = 0

(A3)

g−1(z) =

{
(λ1z+1)1/λ1 −λ2

exp(z)−λ2

λ1 6= 0
λ1 = 0

(A4)
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dg

dy
= (y +λ2)

λ1−1 (A5)

Wherey is the runoff (observed or modelled),z is the for-
ward transferred runoff,λ1 andλ2 are Box-Cox transforma-
tion parameters. Note thatg includes the identity(λ1=λ2 =

1) and a log-transformation (λ1=λ2 = 0) as special cases,
y +λ2 andz must be larger than zero for all valuesy andz.

The simplest assumption for the error process in Eq. (A2)
is thatεti is independently and identically distributed. How-
ever, it is often reported that this assumption does not hold
for runoff (Yang et al., 2007, 2008). To consider auto cor-
related error terms, a continuous autoregressive error model
based on the Ornstein-Uhlenbeck process proposed by Yang
et al. (2007, 2008) was used. Thereby, the independence and
normal distribution is assigned not to the error but rather to
the random distributes, called innovations (Chatfield, 2003;
Yang et al., 2007, 2008):

Iti = εti −εti−1 exp

(
−

ti − ti−1

τ

)
(A6)

σIti
= σ

√
1−exp

(
−2

ti − ti−1

τ

)
(A7)

whereσIti
is a standard deviation of the innovationIti , σ

is a standard deviation of the errorε, and τ is a charac-
teristic correlation time. In combination with the Box-Cox
transformation, the following likelihood function results:

p(y|θ ,R) =
1

√
2π

1

σ
exp

(
−

1

2

[
g
(
yt0

)
−g

(
yt0 (θ)

)]2
σ 2

)

·

∣∣∣∣dg

dy

∣∣∣y=yt0

∣∣∣∣ · n∏
i=1

 1
√

2π

1

σ

√
1−exp

(
−2 ti−ti−1

τ

)
·exp

−
1

2

[
g
(
yti

)
−g

(
yti (θ)

)
−
[
g
(
yti−1

)
−g

(
yti−1 (θ)

)]
exp

(
−

ti−ti−1
τ

)]2

σ 2
(
1−exp

(
−2 ti−ti−1

τ

))


·

∣∣∣∣dg

dy

∣∣∣y=yti

∣∣∣∣] (A8)

whereyt is an observation andyt (θ) is a simulated response
of a model at timet .

Appendix B

Input uncertainty

To simplify the notation, all rainfall multipliers are combined
in a vectorζ =

[
ζ 1,ζ 2,...ζN

]
. The distribution of all mul-

tipliers between the events is denoted byp(ζ |θζ ), whereθζ

are the parameters of this distribution. The likelihood func-
tion of the runoff model now depends on the parametersθζ of

p(ζ |θζ ) and the model parametersθ . The joint distribution
of y andζ is p(y,ζ |θ ,θζ ) = p(y|ζ ,θ)p(ζ |θζ ).

Hence, to get the predictive distribution we integrate over
θ , θζ andζ :

p(y)=

∫ ∫ ∫
p(y|ζ ,θ)p(ζ |θζ )p(θ)p(θζ )dθdθζ dζ

=

∫ ∫ ∫
p(y,ζ |θ ,θζ )p(θ)p(θζ )dθdθζ dζ (B1)

In case datayC are available for calibration, the posterior of
ζ , and the parametersθ andθζ is given by:

p(θ ,θζ ,ζ |yC) ∝ p(yC
|ζ ,θ)p(ζ |θζ )p(θ)p(θζ ) (B2)

Thus, the distribution of the prediction becomes:

p(y|yC) =

∫ ∫ ∫
p(y,ζ |θ ,θζ )p(θ ,θζ ,ζ |yC)dθdθζ dζ (B3)

Supplementary material related to this article is available
online at:
http://www.hydrol-earth-syst-sci.net/16/1221/2012/
hess-16-1221-2012-supplement.pdf.
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