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Identification of regulatory binding motifs, that is, short specific words, within DNA sequences is a commonly occurring problem
in computational bioinformatics. A wide variety of probabilistic approaches have been proposed in the literature to either scan
for previously known motif types or to attempt de novo identification of a fixed number (typically one) of putative motifs. Most
approaches assume the existence of reliable biodatabase information to build probabilistic a priori description of the motif classes.
Examples of attempts to do probabilistic unsupervised learning about the number of putative de novo motif types and their
positions within a set of DNA sequences are very rare in the literature. Here we show how such a learning problem can be
formulated using a Bayesian model that targets to simultaneously maximize the marginal likelihood of sequence data arising under
multiple motif types as well as under the background DNA model, which equals a variable length Markov chain. It is demonstrated
how the adopted Bayesian modelling strategy combined with recently introduced nonstandard stochastic computation tools yields
a more tractable learning procedure than is possible with the standard Monte Carlo approaches. Improvements and extensions of
the proposed approach are also discussed.
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1. Introduction

A major body of genomic information coded in the DNA
is represented by the regulatory regions, which control the
chronology, extent, and way in which genes are expressed.
A promoter is the most important regulatory region as
it controls the first step of gene expression, that is, the
transcription of messenger RNA. A brief summary of and
introduction to the biology of promoters are given in [1].
The basic characteristic of a promoter is that it contains
binding sites for proteins called transcription factors (TFs).
The binding sites in the DNA reside near the gene controlled
by the promoters. The interaction of several TFs with
their corresponding binding sites regulates the activation or
repression of the gene. Hence, the promoter architecture
is fundamental for understanding gene expression patterns,
regulation networks, and cell specificity. The binding sites of
one single TF are not identical, but contain (i.e., tolerate)

some variation. The shared content of the binding sites rep-
resenting the same TF is typically summarized by specifying
statistically the degree of conservation in a short (5–20 bases)
DNA pattern. The DNA pattern can be understood as a word
or a string on a 4-letter alphabet which may contain some
variation over its positions when multiple realizations from
the same generating source are considered. The substrings
of DNA that correspond to the multiple realizations are here
called motif instances from a gene regulatory binding motif. A
set of long DNA strings may simultaneously harbor multiple
different such motifs, that is, TF binding sites for different
genes. In [2, 3] motifs are defined as sets of words of certain
length, such that the number of mismatches to a consensus
word is smaller than a prescribed threshold. Here, we use
instead a probabilistic classification framework to specify
the motifs by assigning them to classes in an unsupervised
manner.
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An important task in computational biology is to detect
novel motifs using algorithms that are capable of reasoning
from noisy measurements in terms of artificial intelligence.
The core of the motif detection problem is to discover
novel words whose length is within a biologically meaningful
range, such that multiple copies of the words are hidden
inside the promoter regions of a set of genes, when the
genes have shared properties of, for example, the expression
profile. Putative motifs found in a computational manner
could thus correspond to binding sites of some common
transcription factors regulating a particular set of genes. The
algorithms for motif discovery must also be able to avoid
suggesting as novel motifs such DNA patterns that represent
the background variation in the sequences. In a nutshell,
the discovery problem consists of detecting multiple copies
of only partially conserved short words in a long string of
the characters {A,C,G,T}, such that the words are highly
unlikely to occur under a stochastic null model describing
general variation over consecutive letters within the string.

The problem may appear as rather straightforward at first
sight. However, several of the involved computational chal-
lenges make motif discovery and identification a sincerely
complex task [4]. The main obstacles can be listed as follows.
A motif exhibits a certain degree of random variation (lack
of conservation) in its contents, word lengths are unknown,
the background (i.e., areas not containing the target words)
structure of the DNA sequences is not random, and the space
of putative candidates has an astronomic size. In addition,
the motifs may appear in composite patterns, for example, as
pairs of words with a fixed distance between them.

A considerable amount of effort has been devoted to solve
such problems by statistical model families and by scanning
algorithms detecting DNA pattern overrepresentation under
a null background model; see, for example, [5–17]. Several
additional related methodological papers can be found from
the references of the quoted papers. In broad terms the
methodological efforts for the above-mentioned problem
can be divided into two categories, one where the target
is to scan for the existence of a priori determined motifs
within a set of sequences, and the other where one attempts
to identify novel motifs in a given set of sequences. Our
approach is solely concerned with the latter category, that is,
we consider an unsupervised pattern recognition problem,
although some brief remarks on the possibility of extending
our method to a partially supervised situation are given in
the final section.

Most statistical models for motif discovery use a Marko-
vian probabilistic machinery, for example, ordinary Markov
chains or hidden Markov models, to describe the observed
patterns of the background DNA and to improve the motif
specificity. However, some of the recent works, such as
[11, 14], have demonstrated the particular potential of so-
called variable-length (or variable-order) Markov (VLMC)
models. Such models exemplify a rich class of probabilistic
structures for which statistical learning theory has been
developed much earlier in the general context [18–20], and
which are able to compress information efficiently through a
relatively sparse parameterization, while not bargaining the
expressiveness of the probabilistic characterization.

In the current paper, the VLMC model is used in two
ways. Firstly, candidates of motif instances are obtained
by fitting the VLMC model to the sequence data using
the algorithm from [20] with the implementation due to
[19], and then calculating probabilities for word counts
using a compound Poisson approximation. The words which
are most improbable under the null background model
represent natural candidates of motif instances and can thus
be used for an efficient initialization of an unsupervised
learning process. Special attention has been devoted in the
motif identification literature to the calculation of word
count probabilities associated with any particular substrings
within the investigated sequences under a null background
DNA model see; [17, 21–23]. However, the earlier works have
not considered the calculation of such probabilities under
a VLMC model, but only under ordinary Markov models
of fixed length. Secondly, sufficient statistics (multinomial
counts) are obtained from the sequence data under the
VLMC context tree identified by the algorithm of [19], and
these are used in the Bayesian unsupervised model learning
to identify different types of motifs. However, it should be
noticed that the sufficient statistics under the VLMC model
are recalculated in the unsupervised stochastic learning steps
when putative motif instances are shifted along the sequence
and when they are reinserted to the background model.

Many Bayesian pattern recognition methods are prin-
cipally based on the concept of latent class models, which
were already early used in motif detection [5, 8]. Standard
Bayesian Markov chain Monte Carlo (MCMC) computation
tools, such as the Gibbs sampler [24], are available for models
with a priori fixed numbers of classes. However, numerical
convergence and mixing problems for such methods are
notorious for challenging applications and motif discovery
is not an exception in this respect, for example, see the
discussion in [8]. The computational problems may arise
already in a situation where only a single motif type is
considered in the de novo detection context. Such problems
are further accentuated in the currently considered frame-
work, where the aim is to make formal statistical inference
about the simultaneous presence of multiple putative a priori
unknown motif types. Bayesian model-based inference in
such a setting has been previously considered only by [15],
where a reversible jump MCMC algorithm [25] was used
for model learning. Motivated by the findings of [26] on
general convergence issues with reversible Markov chains,
we apply here instead the nonreversible Metropolis-Hastings
algorithm they introduced for complex model learning
applications.

The structure of this paper is as follows. First, we intro-
duce the background DNA model based on a variable-length
Markov process and consider a framework for obtaining
putative candidates of motif instances by calculating DNA
pattern probabilities under the background model. There-
after, the unsupervised classification model is derived and in
Section 4 we develop a parallel MCMC algorithm for making
posterior inferences using a general class of nonreversible
Metropolis-Hastings algorithms. Section 5 provides some
illustrations of the developed method, and some remarks are
given in the final section.
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2. A Variable Length Markov Process as
the Background DNA Model

Markov chains of higher-order memory were proposed
a while ago for computing the expected frequencies of
the nucleotides observed outside the motifs, that is, the
background information in DNA; see [27] and the references
therein. In particular, a third order stationary Markov chain
is often chosen; see, for example, [8]. Here we consider
a more general model that can handle longer Markov
memories in a parsimonious manner. The background
model will be formulated by means of the notion of a context
of a symbol. This has been introduced to define a variable-
length Markov chain (VLMC) as well as a universal finite
memory source [18–20, 28]. Only brief details of VLMC
models are given here, for a comprehensive treatment we
refer the reader to the original references.

We consider a DNA sequence x, which can be a long
concatenation of strings of possibly varying length. Let xr
denote a finite substring in x. The values of this string are
denoted as xr j ∈ {1, 2, 3, 4} = X, where j refers to an
arbitrary position within the string xr , and X refers to the
set of bases in the DNA. Let zmn = zm, . . . , zn be a string in
Xm−n+1, which starts at position t = n and ends at position
t = m. Notice that, for m > n the string is written in the
reverse order. In the sequel both t and r will be used as
generic indices of sequence positions, when defining random
processes. A repeated use of the chain rule for a random
process yields (written using the short notation P(Z = z) =
P(z))

P
(
zn1 | z0

−∞
) =

n∏

r=1

P
(
zr | zr−1

−∞
)
. (1)

We introduce next the idea of a memory of variable order,
in the sense that the conditional probabilities in the above
product can depend only on a context relevant for them.
Formally, we define the context as a (variable projection)
function which maps the whole sequence past into a possibly
shorter string.

Definition 1. A context is a map h : z0
−∞ → z0

−q+1, where q
(the context length) is defined by

q
(
z0
−∞
)

= min
{
l ∈ Z+ | P(z1 | z0

−∞
) = P

(
z1 | z0

−l+1

)
∀z1 ∈X

}
.

(2)

Note that the superscript in z0
−∞ and z0

−q+1 refers to the
first element of any string that is given as an input argument
to the function h. Such an input string itself may in the sequel
be indexed with arbitrary sub- and superscripts, such as zr−1

−∞ ,
when it refers to a particular part of a string z. It should also
be noted that the context is independent of t, and it can thus
be called a stationary context.

Definition 2. Let

o = sup
z0−∞∈X∞

q
(
z0
−∞
)
. (3)

If o <∞, then {Zt}t∈Z is a stationary variable-length Markov
chain (VLMC) of order o.

Since the context is stationary, (1) can be written as

P
(
zn1 | z0

−∞
) =

n∏

r=1

P
(
zr | h

(
zr−1
−∞
))
. (4)

We recall the kth-order Markov property defined by the
equality of the conditional probabilities

P
(
z1 | z0

−∞
) = P

(
z1 | z0

−k+1

)
(5)

for all z0
−∞. If the context function turns out to be h(z0

−∞) =
z0
−k+1 for all z0

−∞, then the process {Zt}t∈Z is a full Markov
chain of order k. In other words, a VLMC of finite order
is then a full Markov chain of order o with a variable
memory, and the minimal state space represented by the
VLMC contexts has no impact. However, in practice, the
minimal state space represented by the VLMC contexts has
a considerable impact, since in the genomic applications an
estimated VLMC typically has an order of 7 while the size
of the set of contexts |{h(z0

−∞)}| is small. In contrast, the
memory requirements for the implementation of a full 7th-
order ordinary Markov chain are enormous, which hampers
the estimation and use of such models.

Using the contexts {h} from a VLMC as such may lead to
certain problems for a practical implementation with regard
to predicting the next context based on the last one. Such
problems are illustrated by the following small example.

Example 1. Let z5
1 = 43412. If q(z4

−∞) = 1 and q(z5
−∞) =

4, then h(z4
−∞) = 3 (3412 → 3). However, we cannot

determine the probability of transition from h(z4
−∞) = 3 to

h(z5
−∞) = 4341. Note that the superscript in the argument

of q(·) refers to a position in the original string, whereas the
superscript in the Definition 1 refers to the first element in
an arbitrary input argument.

A definition that holds for finite data is also needed to
extend the VLMC model to a finite string, such that proba-
bility transitions between the contexts can be calculated. The
finiteness of real data and transition problems in Example 1
is handled by replacing the context length function q with q̃
according to the following definition.

Definition 3. Let

q̃
(
z
γ
1

)
= min

[
max

(
q
(
z
γ
−∞
)

, q̃
(
z
γ+1
−∞
)
− 1
)

, γ
]

, (6)

such that h̃ corresponding to q̃(z
γ
1) replaces h.
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Note that q̃(z
γ
1) = q(z

γ
1) for the largest contexts, implying

that q̃(z
γ
1) can be constructed recursively starting from the

largest contexts. The presence of γ in (6) ensures that the
context length is well defined for finite sequences and the part

with the maximum ensures that the next context h̃(z
γ+1
1 ) can

be predicted from the current context h̃(z
γ
1).

The motif instance candidates are identified by assuming
the corresponding words to be overrepresented in the string
x with respect to the background VLMC model. Let Rn be
a stochastic number of nonoverlapping instances of a word
calculated from the left, that is, more specifically Rn(z̃l1)
equals the number of z̃l1, such that no prefix of a z̃l1 is a suffix
to another z̃l1 in Zn1 . We then seek to compute

P
(
Rn
(
z̃l1
)

� rn
)

(7)

for the observed occurrences rn = rn(z
j+l−1
j ), within the

range l ∈ [lmin, lmax] and 1 � j � n + 1− l.
While it is theoretically possible to calculate P(Rn(z̃l1) �

rn) exactly for small n as shown in [29], this does not work
for the values of n encountered in practice. Firstly, this is
due to computational difficulties, and more importantly, the
numerical difficulties of the techniques currently available.
Instead, we approximate (7) using a compound Poisson
distribution

Rn ≈ R̂n ∼ CP(λ1, λ2, . . .) (8)

by invoking the results in [30]. The compound Poisson dis-
tribution CP(λ1, λ2, . . .) refers to the probability distribution
of the sum of random number T of random variables Ti

T∑

i=1

Ti, (9)

where {Ti}i�1 are independent, and T is independent of Ti,
P(Ti = k) = λk/λ for any positive integer k and every i, and
T is Poisson distributed, that is, T ∼ Po(λ).

The compound Poisson approximation is here imple-
mented for sequences that are similar to those considered in
[31]. We recall that the background model can be seen as a
oth-order Markov chain. Any oth-order Markov chain with
state space Ω can be transformed into a first-order Markov
chain on the state spaceΩo. In the actual implementation the

state spaceΩ = {h̃(z0
−∞)} is designed under the target to keep

the number of states low. However, for the discussion below,
we assume simply that the model is represented with a state
space Ω such that the corresponding r.v. Y ∈ {1, . . . , |Ω|}
can be constructed to imply a first-order Markov chain
{Y1, . . . ,Yn} with respect to Ω (see Example 2 below).

It is assumed that any putative motif instance z̃l1 can
be unambiguously defined as a sequence of states wa

1 (i.e.,
strings), where any individual element wi ∈ Ω. Additional
states explicitly representing the transitions in the path w1 →
w2,w2 → w3, . . . ,wa−1 → wa are added to the state space
Ω, which leads to the state space Ω′. The probability of
generating the sequencew1 → w2,w2 → w3, . . . ,wa−1 → wa

from other states than these special states is set to 0. Then,

every time the first-order Markov chain visits the end state
of the path, a motif instance candidate has been visited in
the DNA sequence. This generic principle is illustrated in
Example 2 where the candidate string equals z̃2

1 = 11.

Example 2. Suppose that Ω = {0, 1} and z̃2
1 = 11. Then Ω′ =

{0, 1, 11}, and the original transition probability matrix

P =
⎛

⎝
P(0 | 0) P(1 | 0)

P(0 | 1) P(1 | 1)

⎞

⎠ (10)

is transformed into

P =

⎛

⎜
⎜
⎝

P(0 | 0) P(1 | 0) 0

P(0 | 1) 0 P(11 | 1)

P(0 | 11) P(1 | 11) 0

⎞

⎟
⎟
⎠, (11)

where P(0 | 11) = P(0 | 1) and P(1 | 11) = P(11 | 1) =
P(1 | 1).

As seen from the above, the compound Poisson random
variable Rn =

∑T
i=1 Ti approximates the number of occur-

rences of z̃l1 in a sequence. In the implemented model the
First success distribution (Fs) is used for Ti, that is, Ti ∼
Fs(θ) and M ∼ Po(λ∗). Let τy′i = inf{ j > 1 | Y ′j = y′i }
and set the compound Poisson approximation parameters
as in [30], that is, θ := P(τy′l < τy′k | Y ′1 = y′k) and
λ∗ = nP(Y ′1 = y′k)P(τy′l < τy′k | Y ′1 = y′k). In general y′l
can be chosen rather freely, for example, to minimize the
bound in [30]. In the practical implementation y′l is instead
set to the random variable representing the starting context
of the motif, as the execution time for the currently available
algorithm for evaluating the approximation bound in [30]
is ∼1 day on a standard computer, and in this context the
typical number of putative motif instance candidates to be
evaluated is larger than 10000.

3. An Unsupervised Stochastic Learning
Framework for Motif Discovery

The present learning model for motif detection operates
by sequentially inserting randomly positioned contiguous
windows onto the considered total DNA string and classi-
fying their contents into groups representing putative motif
types, such that the number of groups is unknown a priori.
From an evolutionary perspective, the substrings inside the
windows can also be viewed as fragments inserted into
specific positions of a previously existing DNA sequence.

We now summarize the concepts for the motif detection
task as follows.

(i) A putative gene regulatory motif can be interpreted as
a statistical model of a binding site which defines for
any particular DNA string of an appropriate length
how well it fits to that site.

(ii) A motif instance can be interpreted as an actual
realization of the DNA under a particular regulatory
motif model, which specifies a probability distribu-
tion over the bases at the positions belonging to
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the motif. The unknown (multinomial) parameters
that specify this joint distribution are nuisance
parameters and they are thus integrated out when
making Bayesian inference.

(iii) A motif type refers here to any particular motif. The
type can be represented by a class of motif instances
that are judged by the Bayesian model to correspond
to the same motif. We assume that the number of
motif models discoverable from the considered DNA
sequence is a priori unknown and a primary target
of the statistical learning. A putative gene regulatory
motif type will be here indexed by c, c = 1, . . . ,K ,
such that K ∈ [0, kmax] is a stochastic number
of motif types, each of which corresponds to an a
priori unknown number of motif instances that are
localized in x.

A representation of the components included in our
unsupervised model is shown in Figure 1, with the used
notation explained in detail below. Now, given K = k, let
Uc, c = 1, . . . , k, be a stochastic number, or the abundance,
of motif instances representing the motif type c, governed
by the probability P(Uc = uc). Further, we let the common
length lc of the Uc motif instances be within the range
[lmin, . . . , lmax], such that lmin and lmax are positive integers
with lmin < lmax. Here lmin, lmax are the lower and
upper bounds, respectively, on the motif length that can
be modified using biological domain knowledge; see, for
example, [11].

Given the k outcomes of (uc, lc), there are in total
∑k

c=1 uc
motif instances to be allocated onto x, such that an arbitrary
motif instance of type c contains lc contiguous positions. Let
ic ∈ {1, . . . ,uc} index an arbitrary motif instance of type c.
Within x, a motif instance is represented by the pair (ric , lc)
identifying a substring xr which contains the motif instance
ic of the length lc.

The substring representing the motif instance is explicitly
denoted as xic = xric xric+1 · · · xric+lc−1. The random variables
corresponding to the bases observed within a motif instance
are governed by the probabilities pc j = (pc ja)a∈X, such
that pc ja represents the probability of observing base a at
position j among the instances of type c. Generally, this
parametric construction is referred to as a weight matrix
in the bioinformatics literature. Given the motif types with
the unknown underlying distributions, the bases observed at
each position are here modeled as conditionally independent
multinomial trials with respect to any type.

An allocation of the motif instances onto x implies
that the sequence x is split into two distinct parts, one
containing the

∑k
c=1 uc strings xic , and the other containing

the remainder of x representing the background. Hence,
we consider the sequence structure in terms of a model of
randomly inserted motif instances as in [32].

Let now m denote a particular configuration of a motif
allocation model as described above. Thus, m designates uc
motif instances of type c, c = 1, . . . , k, allocated in random
positions in a generic sequence. In probabilistic terms, m
partitions the data x into conditionally independent groups.
Let M be the space of all eligible such partitions. The

partitions are defined using a set of random variables Yi
according to

P
(
Yi = zi | zi−1

−∞,m
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pc j(zi = a) = pc ja,

if Yi is represented by motif type c at position j,

P
(
Zi = zi | zi−1

−∞
)
,

if Yi is in the background.
(12)

Both the motif instance classification structure and the
sequence realizations are thus embedded into the set of Yi.
An arbitrary realization of these is denoted in the sequel by
y. Note here that the motif data depend only on the motif
type and position in the motif instance, not the surrounding
data. The background model is restarted, with the same
probability law, after every motif instance, but we do not
burden the notation further by this.

The unsupervised motif discovery model is now formally
defined by the joint probability

P
(

y,m
) = P

(
y | m)P(m), (13)

where P(y | m) is a the marginal distribution (likelihood) of
the data given modelm and P(m) is a probability distribution
representing our prior uncertainty about different models.

Here, motif discovery task is formulated as joint max-
imization of the posterior distribution of the background
model and the partition of the motif instance candidates into
classes representing distinct motif types, which leads to

m̂ ∈ arg max
m∈M

P
(
m | y

)
, (14)

where

P
(
m | y

) = P
(

y | m)P(m)
∑

m∈M P
(

y | m)P(m)
. (15)

The joint maximization reflects the fact that the marginal
likelihood of the sequence data under the background model
increases when substrings that have a low probability of
occurring are instead considered as motif instances. On the
other hand, increasing the number of motif types and their
lengths increases the number of multinomial parameters
that are needed to represent the probabilities of observing
the different bases over the motifs. Thus, the model must
target a balance between these two aspects when aiming at a
simultaneous identification of the posterior optimal number
of motif types k, as well as allocation and alignment of motifs
into the classes representing the different types.

To enable efficient identification of the posterior optimal
model structure we will use a constant prior P(m) = 1/|M|
for the structural layer of our model. Notice that the space
of eligible model structures depends on the a priori limits
specified for motif lengths and number of motif types. A
constant prior can be described to conceptually arise through
the following generating model for a set of fragments
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Motif discovery model:

Occurrence:

Allocation of motif
instances to a sequence x

Motif types:

c = 1, · · · , k
r.v. Uc =abundance of type c
r.v. Lc = length of motif of type c

pc = (pc ja); j = 1, · · · ,Lc , a ∈ {A,C,G,T}

Motif instances:

uc words of length lc drawn from pcm

x = w1xicw2 · · ·

k∑

c=1
uc Motif instances

allocated to x

xic = xric xric +1 · · · xric +lc−1

Figure 1: A schematic representation of the unsupervised motif
discovery model.

randomly inserted within a DNA sequence. Consider an
initial sequence of length w. Given a stochastic total number
U of fragments (i.e., all motif instances), one can choose

the first positions for the fragments in
( w
U

)
ways, such

that for each of them, a corresponding motif instance of a
certain length lc will be inserted into the sequence z between
that position and the subsequent one. The probability for

any particular arrangement of the fragments is thus
( w
U

)−1
.

Furthermore, every fragment can now be chosen with the
probability k−1 from the k alternative sources, which specifies
the generating model for the prior probabilities of the
structural layer. By specifying suitable distributions for U
and k, a uniform distribution for the structure m is implied,
similarly to the random urn model considered in [33].

Next we derive an expression for the marginal likelihood
under the classification model using an approach similar to
that adopted in [33]. Let Ixric , j(a) be an indicator function
that has value one if the value a ∈X is found at position j in
the motif xric and has value zero otherwise. Then

nc ja =
uc∑

ic=1

Ixric , j(a) (16)

is the number of times the symbol a appears at position j in
the motifs in class c and nc j = nc is the total number of motif
instances of type c. Similarly, let nga and ng be the number
of times a appears after the context denoted by g and the
number of times the context g appears, respectively, where
the context can have parts belonging to both the background
and one or several motif instances. Recall that the context g
refers to a particular string with elements from the alphabet
X. Now we can continue with the actual calculation of P(y |
m).

We use different priors for the probabilities in the
background and the motifs. Both are Dirichlet, however,
with hyperparameters α (for the background) and λ (for
the motifs). Dirichlet distribution is the standard choice of
a prior in Bayesian modeling of DNA sequences, and in

addition to the computational convenience related to this
prior, there are theoretical arguments supporting it in a
variety of different contexts, see, for example, the discussion
in [33, 34]. Let

βga = P
(
Zr = a | Zr−1

r−1−q(zr−1−∞ ) = g
)

(17)

and let us next introduce

Vg =
⎧
⎨

⎩βg =
{
βga
}

a∈X
| βga � 0,

∑

a∈X

βga = 1

⎫
⎬

⎭, (18)

and the Dirichlet density

φ
(
βg

)
= Γ

⎛

⎝
4∑

a=1

αga

⎞

⎠
4∏

a=1

β
αga−1
ga

Γ
(
αga
) (19)

on Vg . Another prior is considered for the motifs

φ
(

pc j
)
= Γ

⎛

⎝
4∑

a=1

λc ja

⎞

⎠
4∏

a=1

p
λc ja−1
c ja

Γ
(
λc ja

) (20)

on the simplex

Vc j =
⎧
⎨

⎩pc j =
{
pc ja

}

a∈X
| pc ja � 0,

∑

a∈X

pc ja = 1

⎫
⎬

⎭. (21)

Let us set

β =
|{g}|∏

g=1

βg , p =
k∏

c=1

lc∏

j=1

pc j (22)

as well as

φ
(
β, p

)
=
|{g}|∏

g=1

k∏

c=1

lc∏

j=1

φ
(
βg

)
φ
(

pc j
)
. (23)

Consider now the conditional probability P(Yn
o+1 = zno+1 |

zo1,β, p), which can be factorized using the chain rule of
probabilities as

P
(
Yn
o+1 = zno+1 | zo1,β, p

)
=

n∏

i=o+1

P
(
Yi = zi | zi−1

1 ,β, p
)
. (24)

Here (12) and the VLMC property in the sense of (4) are
used, resulting in

P
(
Yn
o+1 = zno+1 | zo1,β, p

)
=
|{g}|∏

g=1

k∏

c=1

lc∏

j=1

4∏

a=1

β
nga
ga p

nc ja
c ja . (25)

By combining the above distributions, it is possible to derive
the marginal data distribution analytically for our classi-
fication model. The formula for the marginal distribution
is given in Theorem 1, for which a proof is provided in
appendix.
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Theorem 1. If P(Yn
o+1 = zno+1 | zo1,β, p) is given in (25) and

φ(β, p) is as in (23), then the marginal likelihood under the
classification model equals

P
(
Yn
o+1 = zno+1 | zo1,m

)

=
|{g}|∏
g=1

Γ
(∑4

a=1 αga
)

Γ
(
ng +

∑4
a=1 αga

)

×
k∏

c=1

lc∏

j=1

Γ
(∑4

a=1 λc ja
)

Γ
(∑4

a=1 λc ja + nc
)

×
4∏

a=1

Γ
(
nga + αga

)

Γ
(
αga
)

Γ
(
λc ja + nc ja

)

Γ
(
λc ja

) .

(26)

4. Learning Sequence Partitions by
Stochastic Search Operators

Standard MCMC algorithms such as the Gibbs sampler
or Metropolis-Hastings algorithm [24] have regularly been
used for the earlier inferential problems associated with
motif discovery [5]. However, numerical convergence and
mixing problems for such methods are burdening the motif
discovery task. Furthermore, as the objectives here are even
more challenging due to the a priori unknown number of
motif types, standard stochastic computation is not expected
to provide a feasible strategy. The unsupervised learning
model for motif discovery developed in the previous section
has the characteristics that enable the use of the nonstandard
Bayesian computational strategy as developed in [26]. We
will now describe the search operators embedded in the
nonreversible algorithm.

Let pprop(· | m) denote a generic fixed distribution
that assigns probabilities on the space M, conditional on
the model structure m. A nonreversible Metropolis-Hastings
algorithm may then be constructed by defining its transition
kernel according to the acceptance probability

ν(m∗ | m) = min

(

1,
P
(

y | m∗)

P
(

y | m)
)

, (27)

where m∗ is a candidate state (model structure), generated
from a current state m under pprop(· | m). The important
difference between this algorithm and the ordinary reversible
Metropolis-Hastings is the lack of the ratio of the proposal
probabilities pprop(m | m∗), pprop(m∗ | m) which ensures
that the stationary distribution of the generated Markov
chain equals the sought posterior distribution. However, as
shown by [26], consistent estimates of the model posterior
probabilities can still be constructed from a realization of the
nonreversible chain. The major strength of this algorithm
is that it can use more complex proposal mechanisms than
the ordinary reversible MCMC algorithms, when it is not
feasible in practice to calculate analytically the proposal
probabilities. Also, the direct utilization of the analytically
calculated marginal likelihood P(y | m) avoids the effects
of Monte Carlo error in the estimation of the underlying

parameters, for example, as compared to ordinary Gibbs
sampler estimation where values for all model parameters
are sequentially sampled. The latter advantage has been
discussed also in the earlier motif discovery literature, where
collapsed Gibbs samplers have been used for the model
learning [5, 8].

In addition to the nonreversible transition kernel of the
algorithm, we utilize n parallel interacting search processes
analogously to [26]. The search process as a whole can be
defined as follows.

Let {mt j , t = 0, 1, . . . ; j = 1, . . . ,n} and {It, t = 0, 1, . . .}
be n + 1 stochastic processes defined as follows.

(1) Define a sequence of strictly decreasing probabilities
{αt, t = 1, 2, . . .}, such that αt > αt+1, and αt → 0 as
t → ∞.

(2) Define the stochastic process {It, t = 0, 1, . . .} as
I0 = 0, and P(It = 1) = αt, P(It = 0) = 1 − αt ,
independently for t = 1, 2, . . ..

(3) Let m0 j , j = 1, . . . ,n, be arbitrary initial states of
{mt j , t = 0, 1, . . . ; j = 1, . . . ,n}. Given a realization
{It, t = 0, 1, . . .}, the transition mechanism of the
processes {mt j , t > 0; j = 1, . . . ,n} depends on values
of It according to steps (4) and (5).

(4) For each t, such that It = 0, transition from mt j

to the next state m(t+1) j is determined according to
the probability (27) under the proposal distribution
pprop(· | m), for j = 1, . . . ,n.

(5) For each t, such that It = 1, transition from mt j to
the next state m(t+1) j is determined according to the
following distribution over the set {mt j , j = 1, . . . ,n}
of candidate states:

Pt
(
m(t+1) j = mt j

)
=

P
(

y | mt j

)

∑n
j=1 P

(
y | mt j

) , (28)

independently for j = 1, . . . ,n.

The n processes {mt j , t = 0, 1, . . . ; j = 1, . . . ,n} defined
above are not time homogeneous Markov chains. However,
as t → ∞, their transition probabilities converge to those of
the time homogeneous Markov chain defined in (27). The
parallel interacting processes are defined to yield an efficient,
yet consistent scheme for exchange of information between
them. The processes have a tendency to coalesce towards the
states which are associated with higher marginal likelihoods.
Also, when multiple model structures with roughly equal
marginal likelihoods are present, the probabilities (28) lead
to a more dispersed proposal distribution.

One of the major challenges in the MCMC compu-
tation is the need to design proposal operators for new
models. Therefore, our emphasis is on developing intelligent
proposals that are able to discriminate the information
content of different segments of the data. We now specify
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the search operators that generate candidate states according
to the distribution pprop(· | m), which in fact consists of
several components as typically in MCMC. Some of these
are intelligent operators similar to those used in protein
sequence classification by [35], and some are locally random
operators similar to those used in [26].

Assume first that a nonempty set {xri , i = 1, 2, . . .}
of initial candidates of motif instances has been made
available out of the total sequence x. Such candidates could
also be continuously chosen and/or discarded as a part
of the nonreversible algorithm according to a stochastic
search operator under our learning model. However, to limit
the computational burden, we chose in our experiments
to utilize a number of results from renewal theory and
compound Poisson approximations to provide a set of
putative motif instances (as explained in Section 2).

To identify an optimal classification of the candidate
motif instances we use for each process repeatedly the
following four search operators in the transition kernel:
Merge, Split, Slide, and Move. These are defined as follows.

(1) Merge. Let cmax be the motif type with the largest
index. For each pair of motif types find the optimal
alignment of the motif instances with respect to the
marginal likelihood, when the instances are merged
into a single group. When the lengths of the motif
instances in the two classes are distinct, the bases in
the shorter strings that are lacking in a column of
any particular alignment are treated as missing data.
The marginal likelihood P(y | mt j) can then still
be calculated as in (26), because the expression is
based on the sufficient statistics (counts) arising for

each column in the alignment. If any of the
( cmax

2

)

mergings results in a higher marginal likelihood than
P(y | mt j), use that model structure as the proposal
value m∗

j , else use mt j .

(2) Split. Choose a motif type c randomly. Calculate the
pairwise Hamming distances of the corresponding
motif instances and cluster them using the standard
hierarchical single linkage algorithm. Split the group
of motif instances optimally into two subgroups
according to the hierarchical clustering.

(3) Slide. Choose a motif type c randomly. Slide the
corresponding motif instances randomly backwards
or forwards and change their length randomly. Both
the sliding and length change are preformed with
respect to a simple uniform proposal distribution.
The sliding step relocates the motif instance max-
imally 5 bases backwards or forwards with equal
probabilities for all possible configurations, apart
from those that would place the motif instance
outside of the sequence. The length is changed by 1 or
2 bases, by randomly either shortening or extending
the motif instances with equal probabilities. If the
resulting sequence does not satisfy the prior limits
lmin, lmax, the proposal will be discarded and a new
value is generated from the original motif instance.

(4) Move. Choose a motif instance randomly among all
instances and choose a motif type c randomly among
the remaining cmax − 1 types. Slide the motif instance
randomly backwards or forwards and group it with
the motif type c.

In addition to the above operators, both randomly
chosen single motif instances and motif types are proposed
to be reinserted into the background model. Since there
is a strictly positive probability of associating each motif
instance with any type or the background by a successive use
of the proposal steps, the MCMC framework is irreducible.
Consequently, the following result holds for the stochastic
learning, as the algorithm introduced here satisfies the
general conditions stated in [26].

Theorem 2. Let M′ be a model space for any given set of
motif instance candidates, and let Mt ⊆ M′ be the part of the
space explored at time t by the search process defined by the
parallel nonreversible Metropolis-Hastings algorithm defined
above. Let

P̂t
(
m | y

) =

⎧
⎪⎨

⎪⎩

P
(

y | m)
∑

m∈Mt
P
(

y | m) , if m ∈Mt,

0, elsewhere.
(29)

Then

P̂t
(
m | y

) a.s.−→ P
(
m | y

)
, m ∈M′ (30)

as t → ∞.

5. Empirical Illustration

To briefly illustrate the unsupervised learning framework
we have generated simulated data for the motifs reb1,
matalpha2, pdr1/3 from the SCPD database [36]. The
simulation was performed by first estimating a VLMC based
on the SCPD background sequence for these motifs. Then,
a sequence was generated using the estimated VLMC model,
into which motif data was randomly inserted. Each inserted
motif instance was generated using the positional weight
matrices of the corresponding motifs [36]. This resulted in
a sequence of approximately 10000 nucleotides.

To obtain a set of motif instance candidates, we applied

the following procedure. First, we neglected the words z
j+l−1
j

that occur in x less than 4 times, because they are deemed
to have very small chances of being conclusively judged
not to belong to the background DNA sequence. Then,

probabilities for the remaining substrings z
j+l−1
j were ranked.

Those among the 100 most improbable according to the

background model, with respect to P(R̂n(z
j+l−1
j ) � rn), were

finally considered as candidates for being motifs. The prior
limits of motif length were set according to the interval
[7, 15] and the upper boundK = 10 was used for the number
of motif types.

The behavior of the MCMC optimization for parallel 50
processes is shown visually in Figure 2. Out of the 80 motif
instances (30 reb1, 30 matalpha2, 20 pdr1/3) embedded
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Figure 2: An illustration of the behavior of the parallel stochastic
search process. The vertical axis corresponds to the logP(y | mt j),
and the horizontal axis is the time index.

in the SCPD-like sequence of length approximately 10000
nucleotides, our algorithms were able to identify 64. The
adjusted Rand index (see, [37, 38]) between the optimal
unsupervised classification of the candidates and the under-
lying true classification is 0.9623, which indicates a high
fidelity of the results for those motif instances that were
found.

We also tested the algorithm on real data under compa-
rable prior settings for the motifs MCB and PDR1/3 from
SCPD. This was done by providing the upstream regulating
regions containing MCB and PDR1/3 (with a total length
of 6149 nucleotides) as an input data set for the algorithm.
This resulted in 7/32 motifs identified (2 MCB and 5
PDR1/3), which were all correctly grouped with respect to
the classification in SCPD.

6. Discussion

The unsupervised classification model was developed under
the assumption that the bases at the different positions of
a motif instance are conditionally independent given the
motif type. This assumption is analogous to the strategy
used in a majority of motif identification methods, however,
a more elaborate model structure could also be developed
by a factorization of the marginal likelihood under a low-
order dependence structure, such as a sparse Bayesian
network or a context tree similar to that utilized in the
construction of the VLMC. This type of a factorization
principle has earlier been successfully used in the ordinary
likelihood-based motif scanning; see, for example, [11, 13].
The advantage of such likelihood factorizations would in
the Bayesian setting be that the marginal likelihoods could
still be analytically calculated under suitable Dirichlet priors,
thus enabling the utilization of the nonreversible MCMC
computation for model learning. However, such a strategy
would nevertheless significantly increase the computational

complexity associated with the learning procedure, as the size
of the model space would increase considerably.

The statistical learning method described here could be
modified to incorporate more specific biological knowledge
in terms of informative prior distributions for occurrence
of certain nucleotides in any given part of a motif instance.
Such priors may be designed from well curated biologi-
cal databases using the basic properties of the Dirichlet
distribution. To reduce the computational intensity of our
experiments, we used the stochastic search initialized only by
the candidate motif instances. Also, the VLMC model for the
background was first fitted to the data, whereafter the context
tree was not re-estimated during the motif discovery phase.
In a fully coherent Bayesian learning procedure it would
necessary to consider both aspects entirely as parts of the
structural layer of the model and to learn them in parallel
with the motif discovery. Similarly, it would be preferable to
also monitor the learning process by creating an extensive
set of posterior summaries of the motif configurations and
visited segments of the sequence as in [15], instead of solely
targeting the posterior mode of the model structure.

The fact that sequence scanning yields a large number
of motifs that cannot be explained with the knowledge
built from the current databases is an open problem in the
scanning field, as confirmed by similar studies using YMF
[39] and Weeder [40], as well as metastudies such as [41]
and even supervised clustering algorithms such as LOGOS
[10]. Despite such high “noise” level, we have illustrated
that a model-based approach has potential to simultaneously
discover multiple motif types hidden in the sequences. From
an intuitive perspective such an approach should make more
sense than screening for a single motif type at a time.
The latter can be suboptimal, for example, in cases where
separate motif types are present in the data, such that
they are closely related in an evolutionary sense. Here our
focus has been more on the mathematical formulation of a
statistical framework that has potential for a simultaneous
discovery of multiple motif types. We wish to emphasize
the advantages of formulating the statistical problem using
a Bayesian learning framework which enables the use of
nonstandard MCMC computation. In future our aim is to
develop more concrete practical tools extending the basic
model and the implementation of the learning algorithm, by
exploiting a massively parallel computation architecture to
pursue large-scale validatory and exploratory experiments.

Appendix

Mathematical details of the derivation of the result in
Theorem 1 are given below. For convenience of reference we
recall the definition of the Dirichlet integral

∫

{x|xi�0, i=1,...,n,
∑
xi=1}

· · ·
∫

xα1−1
1 xα2−1

2 · · · xαn−1
n dx

=
∏n

i=1Γ(αi)
Γ(
∑
αi)

,

(A.1)

where αi ∈ R and for all i,αi > 0.
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A marginal distribution for zno+1 given zo1 is

P
(
Yn
o+1 = zno+1 | zo1,m

)

=
∫

V1×···×V|{g}|×V11×···×Vklk

× P
(
Yn
o+1 = zno+1 | zo1,β, p

)
φ
(
β, p

)
d
(
β, p

)
.

(A.2)

Now (23) and (25) yield that (A.2) is equal to

=
∫

V1×···×V|{g}|×V11×···×Vklk

×
|{g}|∏

g=1

k∏

c=1

lc∏

j=1

4∏

a=1

β
nga
ga φ

(
βg

)
p
nc ja
c ja φ

(
βc j

)
d
(
β, p

)
.

(A.3)

The Dirichlet integral can now be used to establish (for each
context g)

∫

Vg

4∏

a=1

β
nga
ga φ

(
βg

)
dβg =

Γ
(∑4

a=1 αga
)

Γ
(
ng +

∑4
a=1 αga

)
4∏

a=1

Γ
(
nga + αga

)

Γ
(
αga
)

(A.4)

and similarly for each motif type c this yields

∫

Vc j

4∏

a=1

p
nc ja
c ja φ

(
pc j
)
dpc j

=
Γ
(∑4

a=1 λc ja
)

Γ
(
nc j +

∑4
a=1 λc ja

)
4∏

a=1

Γ
(
nc ja + λc ja

)

Γ
(
λc ja

) .

(A.5)

Further, using (A.4) and (A.5) the stated result is established.
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