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Bayesian Variable Selection for Probit Mixed
Models Applied to Gene Selection

Meli Baragatti∗

Abstract. In computational biology, gene expression datasets are characterized by
very few individual samples compared to a large number of measurements per sam-
ple. Thus, it is appealing to merge these datasets in order to increase the number
of observations and diversify the data, allowing a more reliable selection of genes
relevant to the biological problem. Besides, the increased size of a merged dataset
facilitates its re-splitting into training and validation sets. This necessitates the
introduction of the dataset as a random effect. In this context, extending a work
of Lee et al. (2003), a method is proposed to select relevant variables among tens
of thousands in a probit mixed regression model, considered as part of a larger hi-
erarchical Bayesian model. Latent variables are used to identify subsets of selected
variables and the grouping (or blocking) technique of Liu (1994) is combined with
a Metropolis-within-Gibbs algorithm (Robert and Casella 2004). The method is
applied to a merged dataset made of three individual gene expression datasets, in
which tens of thousands of measurements are available for each of several hundred
human breast cancer samples. Even for this large dataset comprised of around
20000 predictors, the method is shown to be efficient and feasible. As an illustra-
tion, it is used to select the most important genes that characterize the estrogen
receptor status of patients with breast cancer.

Keywords: Bayesian variable selection, random effects, probit mixed regression
model, grouping technique (or blocking technique), Metropolis-within-Gibbs algo-
rithm

1 Introduction

Selection of variables is a common problem in many scientific fields, and particularly in
bioinformatics. Gene expression profiling analyses are notorious for generating a very
large number of predictors compared to the number of observations. Microarray or high
throughput sequencing technologies are important for finding genes that are implicated
in biological processes including development, disease, and response to treatment, and
it plays an important role in the current tendency towards personalized medicine. Iden-
tified genes or sequences can be used to classify future observations, influencing the
treatment of patients. However, these experiments are expensive, and datasets have of-
ten no more than 100 specimens. The goal, therefore, is to advance a method allowing
variable selection from merged microarray datasets, each of them presenting its own
individual experimental bias.
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Several model-based approaches have been developed to select variables. A well-
known example is SVM (Support Vector Machine) with a recursive feature elimination
of the genes (Guyon et al. (2002)). George and McCulloch (1993) and Chipman et al.
(2001) developed Bayesian variable selection with the use of Gibbs sampling for lin-
ear models; a review of this type of selection is provided by O’Hara and Sillanpää.
(2009). Tadesse et al. (2005) proposed a Bayesian variable selection in a model-based
clustering approach, using a multivariate Gaussian mixture model. Recently Bottolo
and Richardson (2010) proposed an algorithm based upon Evolutionary Monte Carlo.
Binary responses are often encountered in biostatistics studies, therefore probit or lo-
gistic models are implied. Bayesian variable selection methods have been proposed by
Lee et al. (2003), Sha et al. (2004), Zhou et al. (2004b), Zhou et al. (2004c) and Yang
and Song (2010) for probit regression, and by Zhou et al. (2004a), Chen and Dey (2003)
and Tüchler (2008) for logistic regression. Extension to multi-category data has been
done for the probit model in Albert and Chib (1993).

The motivation behind the variable selection method developed in this paper is to
take the design of the study into account by using random effects in a mixed model. It
is particularly suited to a merged microarray dataset design, and many such datasets
are freely available from the NCBI GEO website (Edgar et al. 2002). The increased size
of a merged dataset may provide improved power, and facilitates its re-splitting into
training and validation sets. In addition a merged set comprises more data diversity
than an individual set, hence we can avoid bias due to a particular dataset as explained
by various authors, see Cheng et al. (2010) and references therein. Among all the meth-
ods previously proposed for variable selection, that of Tüchler (2008) considered mixed
models. However, her approach was specific for logistic models, and the method was
applied to datasets with only few dozens predictors, whereas the aim of this paper is
to select a few predictors among tens of thousands in a Bayesian framework. Recently
Frühwirth-Schnatter and Wagner (2010) considered variable selection for random ef-
fects, but in this paper we are more interested by variable selection for the fixed effects,
assuming that random effects are present.

The approach developed in this paper extends the approach of George and McCul-
loch (1993) and Lee et al. (2003). George and McCulloch (1993) introduced latent
variables to identify subsets of selected variables in a linear model. Then Lee et al.
(2003) used these latent variables in a probit regression model, which is considered as
part of a larger hierarchical Bayesian model. Our method extends the model used by
Lee et al. (2003) by adding random effects. We are then confronted with several diffi-
culties. One concerns the simulation of conditional distributions, since full conditional
distributions cannot be directly simulated. A solution is to use the grouping (or block-
ing) technique of Liu (1994), and to combine Gibbs sampler and Metropolis-Hastings
algorithms. Therefore the algorithm developed is a combination of the grouping method
of Liu and the Metropolis-within-Gibbs algorithm (Robert and Casella 2004). A com-
putational difficulty due to the large number of genes was also overcome by imposing
a fixed number of selected genes at each iteration of the algorithm. As a consequence
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the influence of the value chosen for the variable selection coefficient of our model is
reduced. That represents an advantage, since the value of this coefficient can impact the
results of other methods, see for instance Bottolo and Richardson (2010) who proposed
to put a hyperprior distribution on this coefficient.

In this paper, Affymetrix microarray data are used, so predictors (genes) will be
referred to as “probesets”, according to that technology. An Affymetrix U133plus2 mi-
croarray profiles all of the genes in the human genome, many of them more than once,
using over 54000 gene-specific “probesets”. Our Bayesian variable selection method for
probit mixed models is developed to select a few important probesets, among tens of
thousands, which are indicative of the activity of the estrogen receptor gene in breast
cancer. The severity of this common and deadly disease is directly related to estrogen
receptor (ER) status, which is traditionally measured biochemically.
Three different breast cancer datasets were used, all with clinically defined ER status.
One microarray experiment was done per patient, and ten of thousands of probesets
were measured per experiment. The dataset is introduced as a random effect in the
model, thus accounting for the different experimental conditions implicit in each set.
The three merged datasets were split into training and validation sets, and the relevance
of the selected probesets was checked by fitting a probit mixed model on the training
set and predicting the ER status for the patients from the validation set and other in-
dependent sets available from the NCBI GEO website. The stability and the sensitivity
of the algorithm were also checked by using the relative weighted consistency measure
of Somol and Novovicova (2008).

The remainder of the paper is organized as follows. Section 2 describes the probit
mixed model with latent variables. Section 3 gives the full conditional distributions
necessary for the Gibbs sampling algorithm, outlines the algorithm and proposes a way
to construct a classification rule using the selected probesets. Section 4 provides some
experimental results on real datasets, on the relevance of selected probesets, and on the
sensitivity and the stability of the method. Finally Section 5 discusses the method.

2 Probit mixed model for gene selection

2.1 The hierarchical model

Suppose that n binary events are observed, denoted by the Yi, i = 1, . . . , n. The set of
potential regressors is of size p, with p À n. The goal is to select a subset of regressors
related to the events Y1, . . . , Yn. The following probit mixed model is considered,

P (Yi = 1 | U, β) = pi = Φ(X ′
iβ + Z ′iU),

where Φ stands for the standard Gaussian cumulative distribution function, and Xi

and Zi for the fixed and random effect regressors associated with the ith observation.
The parameter β corresponds to the fixed-effect coefficients and the parameter U to the
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random-effect coefficients. X and Z are design matrices associated with the fixed and
random effects.
Assuming that we have K random effects, U = (U ′

1, . . . , U
′
K)′. Each Ul is of size ql, and∑K

l=1 ql = q. The size of β is p.

Following Albert and Chib (1993) and Lee et al. (2003), a vector of latent variables
L is introduced. We write L = (L1, . . . , Ln) and we assume that L | U, β ∼ Nn(Xβ +
ZU, In) with In the identity matrix. We then have

Yi =
{

1 if Li > 0
0 if Li < 0,

(1)

To perform variable selection, a vector γ of p indicator variables is introduced:

γj =
{

1 if βj 6= 0, variable j selected
0 if βj = 0, variable j not selected.

Given γ, βγ is the vector of all nonzero elements of β, and Xγ is the matrix X with
only the columns corresponding to the elements of γ that are equal to 1.

2.2 Prior distributions

To complete the hierarchical model, some prior assumptions have to be made on U | D,
βγ | γ, γ and D, where D is a covariance matrix of dimension q.

� If the data supports γj = 0 over γj = 1, then the jth variable will not be needed
in the model and we can let βj = 0. We then focus on the prior distribution of
the non null vector βγ . Like Lee et al. (2003), we take the following conventional
prior:

βγ | γ ∼ Nd(0, c(X ′
γXγ)−1), with d =

p∑

j=1

γj , (2)

This prior corresponds to the g-prior of Zellner (1986), and c is a positive scale
factor specified by the user. Bottolo and Richardson (2010) called it the variable
selection coefficient. Several authors discussed the choice of its value, see Chipman
et al. (2001), George and Foster (2000), Clyde and George (2000) and Smith and
Kohn (1997) among others. Raftery et al. (1997) used a similar form of prior. In
our algorithm the value of c will be fixed, but will not be too influential (see the
discussion).

� The γj are assumed to be independent Bernoulli variables, with

P (γj = 1) = πj , 0 ≤ πj ≤ 1.

We do not want to use prior knowledge to favor any probesets, so we put πj = π,
∀j = 1, . . . p.
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� The vector of coefficients associated with the random effects is assumed to be
Gaussian and centered:

U | D ∼ Nq(0, D).

This definition allows three cases to be distinguished:

General case: No structure is assumed for the variance-covariance matrix D, its
prior distribution is an Inverse-Wishart W−1(Ψ,m).

Case of a block-diagonal matrix D: The different random effects are assumed
independent. The vectors of coefficients associated with each random effect have
Gaussian prior distributions:

Ul | Al ∼ Nql
(0, Al), l = 1, . . . , K,

where the Al are symmetric design matrices of dimension ql. D is a block-diagonal
matrix denoted by diag(A1, . . . , AK). The prior distributions for each Al are
Inverse-Wishart W−1(Ψ,m).

Case of a diagonal matrix D: D = diag(A1, . . . , AK) where Al = σ2
l Iql

, l =
1, . . . , K and Iql

the identity matrix. The prior distributions for the σ2
l are then

Inverse Gamma IG(a, b) (b denotes the scale).

3 Bayesian sampler for variable selection

3.1 The conditional distributions

The posterior distribution of γ is of particular interest since it encapsulates the effective-
ness of the different explanatory variables in explaining the variation in the responses
Y . The number of possible explanatory variables is on the order of tens of thousands, so
the number of possible γ-vectors is extremely large. The idea is to use a Gibbs sampling
algorithm to explore this posterior distribution and search for high probability γ values.

In order to use the classical Gibbs sampler, we must be able to simulate from all of the
full conditional distributions (simplified by the hierarchical structure): f(L | Y, β, U),
f(β | L,U, γ), f(U | L, β,D), f(γ | L,U, β) and f(D | U).

� Full conditional distribution of L.

Li | β, U, Yi = 1 ∼ N (X ′
iβ + Z ′iU, 1) left truncated at 0

Li | β, U, Yi = 0 ∼ N (X ′
iβ + Z ′iU, 1) right truncated at 0. (3)

� Full conditional distribution of β.
Given γ, we know which elements of β are not null. So we focus on the generation
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of the non null elements of βγ . Letting Vγ = c
1+c (X ′

γXγ)−1, we have

βγ | L,U, γ ∼ Nd(VγX ′
γ(L− ZU), Vγ) with d =

p∑

i=1

γi. (4)

� Full conditional distribution of U .
Defining W = (Z ′Z + D−1)−1, we have

U | L, β,D ∼ Nq(WZ ′(L−Xβ),W ). (5)

� Full conditional distributions of γ.

f(γ | βγ , L, U) ∝ (2π)−
d
2 exp

[1
2

(
L′Xγβγ + β′γX ′

γL− β′γX ′
γZU − U ′Z ′Xγβγ (6)

− β′γV −1
γ βγ

)]
× | c(X ′

γXγ)−1 |− 1
2

p∏

j=1

π
γj

j (1− πj)1−γj .

� Full conditional distribution of D.
General case: The full conditional distribution of D is an Inverse-Wishart:

D | U ∼ W−1(UU ′ + Ψ,m + 1). (7)

Case of a block-diagonal matrix D: D = diag(A1, . . . , AK). The full conditional
distribution of Al (∀l = 1, . . . , K) is an Inverse-Wishart:

Al | Ul ∼ W−1(UlU
′
l + Ψ,m + 1). (8)

Case of a diagonal matrix D: D = diag(A1, . . . , AK), and ∀l = 1, . . . , K, Al =
σ2

l Iql
. The full conditional distribution of σ2

l is an Inverse-Gamma:

σ2
l | Ul ∼ IG

(ql

2
+ a,

(1
2
U ′

lUl + b
))

. (9)

3.2 Use of the grouping technique

The classical Gibbs sampler cannot be used because the full conditional distribution of
γ cannot be directly simulated (see (6)). However, this full conditional distribution can
be simulated with a Metropolis-Hastings algorithm, and the complete algorithm would
be a Metropolis-within-Gibbs algorithm. Roberts and Rosenthal (2006) have shown the
Harris-recurrence of this algorithm, therefore its convergence is guaranteed. But even
with a Metropolis-Hastings algorithm, the full conditional distribution of γ is difficult
to obtain, since it depends on the actual value of βγ . Thus the acceptance rate for a
candidate γ∗ in the Metropolis-Hastings algorithm will depend both on the actual γ(t)

and βγ(t) , and on the proposed γ∗ and βγ∗ . The problem is that βγ∗ is unknown.
To get around this problem, we combine the Metropolis-within-Gibbs algorithm with
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the grouping (or blocking) technique of Liu (1994). The idea is to group the parameters
βγ and γ, so we will be interested in the full conditional distribution of (βγ , γ) | L,U .
This technique improves the algorithm and facilitates the convergence of the Markov
chain, see Liu (1994) and van Dyk and Park (2008). We note that the sampler obtained
is then a special case of a Partial Collapsed Gibbs Sampler, see van Dyk and Park
(2008).
As we have

f(βγ , γ | L,U) ∝ f(γ | L,U)f(βγ | γ, L, U),

we remark that simulating from the full conditional distribution (βγ , γ) | L,U is equiv-
alent to simulating γ from its full conditional distribution integrated on βγ , then simu-
lating βγ from its full conditional distribution. The “integrated distribution” for γ will
not depend anymore on the nuisance parameter βγ and will be easily simulated by a
Metropolis-Hastings algorithm.
In each iteration of the algorithm, we will take care to simulate γ before βγ, to keep
the dependence between βγ and γ, as noted by van Dyk and Park (2008).

We use f(L | γ, U) and the Bayes Theorem to get the integrated distribution of
γ | L,U (the target distribution):

f(γ | L,U) ∝ (1 + c)−
∑

γi
2 exp

[
− 1

2

{
(L− ZU)′(L− ZU) (10)

− c

1 + c
(L− ZU)′Xγ(X ′

γXγ)−1X ′
γ(L− ZU)

}]
×

p∏

j=1

π
γj

j (1− πj)1−γj .

3.3 The Metropolis-within-Gibbs sampler modified by the grouping
technique

A Metropolis-Hastings step to simulate γ

At iteration (i + 1) of the Metropolis-Hastings algorithm, a candidate γ∗ will be pro-
posed from γ(i). We want a symmetric transition kernel, to simplify the acceptance rate
of the algorithm. The simplest way to have a symmetric transition kernel is to propose
a γ∗ which corresponds to γ(i) in which r components have been randomly changed (see
Chipman et al. (2001) and George and McCulloch (1997)).

Given the target distribution (10), the acceptance rate ρ is then:

ρ(γ(i), γ∗) = min

{
exp

[ c

2(1 + c)
(L− ZU)′

(
Xγ∗(X

′
γ∗Xγ∗)

−1X ′
γ∗ −Xγ(i)(X

′
γ(i)Xγ(i))

−1X ′
γ(i)

)

× (L− ZU)
]
× (1 + c)

∑(
γ
(i)
j
−γ∗

j

)
2 ×

( π

1− π

)∑p
1

(
γ∗j−γ

(i)
j

)
, 1

}
. (11)
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To facilitate the computation of the algorithm, the proposed γ∗ still corresponds to
γ(i) for which r components have been changed, but in such a way that the number of
components whose values are 1 (and so the number of selected variables) is invariant. In
so doing, r/2 components among the 1 values, and r/2 components among the 0 values
are chosen at random and switched. There are several advantages to propose such a γ∗:

• In an iteration of the algorithm, if we have the number of variables selected d
higher than the number of observations n, the X ′

γXγ matrix would be singular,
and the prior distribution of βγ could not be defined as in (2). An advantage of
fixing the number of variables to be selected at each iteration is that this number
cannot increase during a run of the algorithm, and if d is chosen lower than n this
case of non singularity of X ′

γXγ is avoided.

• The acceptance rate is simplified, as we obtain
∑(

γ
(t)
j − γ∗j

)
= 0.

• The choice of the prior value for the variable selection coefficient c used in the
prior distribution of β is less influent (see the discussion).

Remark. In the method of Lee et al. (2003), the γ vector is generated component
by component at each iteration, while in our method a Metropolis-Hastings algorithm is
used to generate it. There are two advantages to use a Metropolis-Hastings algorithm:
it is computationally advantageous for a very large number of variables compared to a
generation component by component, and it enables us to easily generate a γ vector
with an invariant number of components whose values are 1.

The sampler

The Metropolis-within-Gibbs sampler modified by the grouping technique of Liu gener-
ates a sequence:

γ(1), β(1)
γ , D(1), L(1), U (1), . . . . . . , γ(b+m), β(b+m)

γ , D(b+m), L(b+m), U (b+m).

The sequence of the γ(t), which is of interest for the variable selection problem, is
embedded in this ”Gibbs sequence”. To generate it, at each iteration γ is simulated from
its integrated distribution and βγ , L, U and D are simulated from their full conditional
distributions.

Algorithm:
Starting with initial values γ(0), β(0), D(0), L(0), U (0). At iteration t + 1:

1. Simulate γ(t+1) from f(γ | L(t), U (t)) (see 10), using the Metropolis-
Hasting (MH) step. The MH step begins with γ(t) as an initial value,
and k iterations are performed given L(t) and U (t) (k arbitrarily fixed).
At iteration i + 1 of the MH step:

(a) Generate the γ∗ candidate, by randomly switching r/2 components
among the 1 values, and r/2 components among the 0 values.
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(b) Take

γ(i+1) =
{

γ∗ with probability ρ(γ(i), γ∗) see (11)
γ(i) with probability 1− ρ(γ(i), γ∗)

γ(t+1) will be the γ(k) obtained at the kth iteration of the MH step.

2. Simulate β
(t+1)
γ from f(βγ | L(t), U (t), γ(t+1)) (see (4)).

3. Simulate D(t+1) from f(D | U (t)) (see (7), (8) or (9)).

4. Simulate L(t+1) from f(L | Y, β(t+1), U (t)) (see (3)).

5. U (t+1) from f(U | L(t+1), β(t+1), D(t+1)) (see (5)).

We use the fact that Xβ = Xγβγ and that β can be obtained from γ and βγ . The
number of iterations is b + m, where b corresponds to the burn-in period and m to the
observations from the posterior distributions.

The selected probesets

For selection of variables, the sequence {γ(t) = (γ(t)
1 , . . . , γ

(t)
p ), t = b + 1, . . . , b + m}

is used. The most relevant variables for the regression model are those which are
supported by the data and prior information. Thus they are those corresponding to
the γ components with higher posterior probabilities, and can be identified as the γ
components that are most often equal to 1.

3.4 Classification and prediction

Once a set of relevant variables have been selected, it can be used to fit a probit mixed
model in a classical way and to classify future observations. However, if more variables
than necessary to fit a probit mixed model have been selected in the Bayesian selection
step, a second selection has to be performed on them in order to build a reliable probit
mixed model. This second selection is performed on the training set using standard
selection tools like AIC, BIC, Bayes factors,. . . . The final probit mixed model can be
tested on the validation set. Moreover, the variables selected in the Bayesian selection
step can be used in other classification methods, such as Support Vector Machines (but
random effects are not taken into account).

4 Experimental results

4.1 Application to the ER status of patients with breast cancer

Description of the datasets

Three different datasets were used: one private dataset from the Institut Paoli Calmettes
(Marseille, France), consisting of 151 samples, and two datasets freely available from
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the NCBI GEO public website (Edgar et al. 2002): accession numbers GSE2109 (310
samples) and GSE5460 (124 samples). Each dataset was treated for background noise
and normalized with respect to a reference distribution by the RMA procedure (Irizarry
et al. 2003). Each dataset was split into a training set and a validation set having the
same proportions of ER positive and ER negative observations. Then the three training
datasets were merged on one side (497 patients) and the three validation sets were
merged on the other side (88 patients).
For each patient, more than 54000 probesets were available. Two filters were applied
on all of these probesets. Only the probesets sufficiently expressed so that they can
be differentiated from noise and which could not be considered as invariant were kept,
resulting in 19384 probesets. The goal was to select only a few probesets which are
related to the ER status of the patients, by taking into account the different experimental
conditions between the different merged datasets.

In this illustration, there are thousands of fixed regressors corresponding to the
expression measurements of probesets, and only one random effect, which corresponds
to the different datasets. Xij corresponds to the measurement of the expression level of
the jth probeset for the ith patient, and Zil = 1 if the ith patient is from the lth dataset,
0 otherwise.

Prior settings for the algorithm

� Following the recommendations of Smith and Kohn (1997), a value of c = 50 was
chosen for the variable selection coefficient used in the prior distribution of β.

� Thirty probesets were selected at each iteration of the Gibbs sampler, when γ
is generated; r = 10 of them were changed at each iteration of the Metropolis-
Hastings step (5 zeros and 5 ones).

� The random effect corresponds to the dataset, and the three datasets are consid-
ered independent: they were generated in different countries, by different teams,
using different equipments and different patients. Therefore the variance-covariance
matrix of the random effect D was a diagonal matrix 3× 3 with A1 = σ2

1I3. Gel-
man (2006) noted that an inverse-gamma prior should not be too non-informative,
otherwise serious problems can arise. Given our data, we knew that σ2

1 is probably
not too high, and a IG(2, 3) seemed reasonable for the prior distribution of σ2

1 .

� For the Metropolis-within-Gibbs sampler modified by the grouping technique,
60000 iterations were computed, among which 30000 were burn-in iterations. For
the Metropolis-Hastings step in this sampler, 500 iterations were computed, and
the simulated γ was the one corresponding to the 500th iteration.

Results and predictions

We performed a first selection of variables by selecting the top-rank probesets, those
which have been selected the most often. A boxplot can help, see Figure 1. Forty
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probesets were selected at least once from the 30000 post-burn-in iterations of the
simulated Markov Chain for γ. Twenty three probesets were selected in the 30000
iterations, and thirty were selected at least from 20000 iterations. There is a gap between
probesets selected in more than 20000 iterations and others, so the first selection is made
of these probesets selected at least in 20000 iterations.
A second selection was performed on the thirty probesets from the first selection, to build
a reliable probit mixed model. This second selection was performed on the training set,
using a stepwise selection (with AIC and BIC criteria) and the classification performance
of the model on the validation set. Five probesets were kept: Affymetrix symbols
228241 at, 205862 at, 202376 at, 216222 s at and 1568760 at. See Table 1 for the
associated gene symbols and coefficients. The estimated random effects of this final
model were reasonable: −0.284 for the dataset from the Institut Paoli Calmettes, 0.199
for the GSE2109 dataset and 0.087 for the GSE5460 dataset.

Figure 1: Boxplot of the number of selections of a probeset after the burn-in period, for
the real datasets example. Forty probesets were selected at least once, all of the other
probesets were never selected. A point represents a probeset (or several probesets if
they have been selected the same number of times).

Using this 5-probeset model, two methods were used to predict the ER status of the
patients in the validation set:

1. Using knowledge of the dataset to which each patient belonged and using the
estimated random effects coefficients.

2. The estimated random effects coefficients are not used in order to mimic a real-life
scenario of an experiment for a patient coming from an unknown dataset.

The patients were predicted positive if their probability to be positive was higher
than 0.5 and negative if it was lower than 0.5. The two methods gave us the same
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Probeset gene Coefficient Pvalue
Intercept -9.12074 1.92e-05
228241 at AGR3 0.45046 1.12e-15
205862 at GREB1 0.77639 4.18e-08
202376 at SERPINA3 0.37965 0.000149
216222 s at MYO10 -0.63551 0.004967
1568760 at MYH11 0.42742 0.050219

Table 1: Probesets selected in the final model and associated coefficients.

predictions, which were very good: a specificity of 1 and a sensitivity of 0.98 (1 wrong
predictions among 88), see Figure 2.

Figure 2: Histogram of probabilities to be ER positive given by the final model, for
patients from the validation set.

Remark. In biomedical studies, when continuous variables are often reclassified as
binary, it is common to define an “undetermined zone” of probabilities for which no
prediction are given. Indeed, it is sometimes better than giving a wrong prediction,
because these predictions imply treatments. Defining an “undetermined zone” between
10% and 90% probability of being positive, false predictions were eliminated, and 10
were considered undetermined (11.4%) (estimated random effects coefficients not used).

As a final test of our model, two more independent datasets were brought in from
the NCBI GEO website: the GEO series GSE6532 and the GEO series GSE12763. The
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random effects associated with these datasets were entirely unknown, simulating an even
more realistic case of prediction for a patient coming from an unknown dataset. Once
again the results were very good : only 1 wrong prediction among 29 for the GSE12763
dataset, and no wrong predictions among 86 for the GSE6532 dataset.

4.2 Sensitivity and stability studies

The sensitivity and the stability of the algorithm were assessed by using the relative
weighted consistency measure of Somol and Novovicova (2008), denoted by CWrel. It
is a measure evaluating how much subsets of selected variables for several runs over-
lap, and it shows the relative amount of randomness inherent in the concrete variable
selection process. It takes values between 0 and 1, where 0 represents the outcome of
completely random occurrence of variables in the selected subsets and 1 indicates the
most stable variable selection outcome possible.
Stability is defined as sensitivity to variations in the training set. Referring to our
breast cancer data set, 4000 probesets were randomly chosen from among the 19384
originally available. Since the aim here was only to check the sensitivity and stability
of the method, these 4000 were not chosen in relation to the ER status.
Several runs of the algorithm were performed, and are reported in Table 2. Concerning
the stability, the algorithm was run on three different training sets of 497 microarrays
(among 585), using the same prior values for the hyperparameters. Concerning the
sensitivity, the algorithm was run on the same training set with different values of c,
different prior distributions for σ2

1 , different numbers of probesets to be selected at each
iteration of the algorithm and different numbers of iterations. For the prior distribu-
tions for σ2

1 , we chose a IG(2, 3) which seemed reasonable given our data, a IG(2, 5) to
have a prior favoring higher values compared to the first one, a IG(3, 1) to favor lower
values, and a IG(1, 1) to have a non-informative prior without too small parameters to
avoid problems, see Gelman (2006).

For each run, a reasonable number of probesets could be easily selected. Indeed, two
to ten probesets were selected much more often than the others, see Figure 3 (two to
four probesets were selected for most of the runs). Hence there is no need to perform
a second selection, as in section 4.1. To compare the results of the different runs, the
relative weighted consistency measure of Somol and Novovicova CWrel was used.

Using the results of the 15 runs together, CWrel = 0.398. Subsets of selected vari-
ables for the different runs overlapped: among the 15 runs the probesets 215552 s at,
209603 at and 209602 s at were kept in 12, 12 and 6 runs respectively. Apparently
the prior for σ2 (CWrel = 0.292) has more impact than the number of probesets to be
selected at each iteration (CWrel = 0.5). We note that the number of probesets to be
selected at each iteration of the algorithm and the number of iterations do not seem to
modify the number of probesets more often selected than the others during the run.

This was satisfying and the method appears relatively stable. First because the ran-
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Figure 3: Boxplot of the number of selections of a probeset after the burn-in period, for
two runs of the sensitivity analysis. A point represents a probeset (or several probesets
if they have been selected the same number of times). The left boxplot corresponds
to the run with c = 1000: there is a gap between the two probesets selected in more
than 4000 iterations and the others, hence we selected these two probesets. The right
boxplot corresponds to the run with σ2

1 ∼ IG(2, 5): there is a gap between the four
probesets selected in more than 1500 iterations and the others, hence we selected these
four probesets.

dom selection of 4000 probesets carries a risk of destabilization of the results, since these
4000 are not necessarily those which are most indicative of ER status. Secondly, several
probesets can represent the same gene, and different genes can be implied in the same
biological pathway. Thus, it is possible that subsets of probesets are more similar than
they appear, and therefore that CWrel is underestimated. For example, the probesets
209603 at and 209602 s at mentioned above both represent the gene GATA3. Finally,
these simulations indicate that there is not a parameter whose choice introduces more
sensitivity than the others.

4.3 Comparison with other methods

We compared the performance of our method with the performances of other methods
which do not take into account random effects: we considered the model of Lee et al.
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Value Prior Nb selected at each Nb
Simu Data- of for iter of the algo iter burn- CWrel

set c σ2 (nb changed at each total in
iter of the MH)

1 1
2 2
3 3

50 IG(2, 3) 15 (6) 12000 6000 0.25

4 10
5 50
6 100
7

1

1000

IG(2, 3) 15 (6) 12000 6000 0.375

8 IG(2, 3)
9 IG(1, 1)
10 IG(1, 1)
11

1 50

IG(2, 5)

15 (6) 12000 6000 0.292

12 15 (6)
13 5 (2)
14

1 50 IG(2, 3)
30 (10)

12000 6000 0.5

15 1 50 IG(2, 3) 15 (6) 30000 15000

Table 2: Parameters of the runs for the stability and sensitivity study and associ-
ated relative weighted consistency measure of Somol and Novovicova CWrel. For the
Metropolis-Hastings step, always 500 iterations are computed.

(2003) and Support Vector Machine with Recursive Feature Elimination of the variables,
with linear or non linear kernels (Guyon et al. 2002). We used simulated data: 200
observations of 1000 variables following a uniform distribution U[−5,5] are generated.
We assumed that 5 variables and a random effect U of size 4 explain a vector of binary
variables Y by a probit mixed model:

pi = Φ(X ′
iβ + Z ′iU), i = 1, . . . , 200

Yi ∼ B(pi), i = 1, . . . , 200

We took βγ = (−1,−1, 1, 1, 2) and we assumed that 50 observations are coming from
each modality of the random effect. Different values of U were used: U1 = (0, 0, 0, 0),
U2 = (−3,−2, 2, 3), U3 = (−5,−3, 3, 5), U4 = (−10,−5, 5, 10) and
U5 = (−30,−10, 10, 30). This set of 200 observations was splitted into training and val-
idation sets, each of them of size 100, with 25 observations coming from each modality
of the random effect. For our method and the method of Lee et al. we took c = 50, 5
probesets were selected at each iteration of the Gibbs sampler and r = 2 of them were
changed at each iteration of the Metropolis-Hastings step (1 zero and 1 one), D was
a diagonal matrix 3 × 3 with A1 = σ2

1I3 and a prior IG(1, 1) was chosen for σ2
1 , 500

iterations were performed for each Metropolis-Hastings step, and a total of 3000 and
5000 iterations were performed for the whole algorithm.
Concerning our method and the method of Lee et al. (2003), the top-ranked variables
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(variables selected more often than others, box-plots were used) were used to perform
predictions on the validation set. The RFE-SVM method gave us directly sets of ”best
variables” and associated models, and these models were used to perform the predic-
tions. The results obtained are in Table 3.

Random effect Our method Lee et al. (2003) RFE-SVM
U 3000 iter 5000 iter 3000 iter 5000 iter linear non linear
U1 17 26 19 22 25 23
U2 19 21 19 19 20 26
U3 21 23 24 24 25 26
U4 19 19 35 35 29 31
U5 14 11 44 44 52 56

Table 3: Number of misclassifications on the validation set, for different methods and
different random effects.

When there is no random effect or when the magnitude of the random effect is
small, our method is comparable to the one of Lee et al., and the results of these two
methods are better than or comparable with those obtained by RFE-SVM. But when
the magnitude of the random effect is high, especially for U4 and U5, it appears that
our method outperforms the method of Lee et al. and the RFE-SVM method.

5 Discussion

In this article we have developed an approach for Bayesian gene selection for a probit
mixed model, as an extension of previous works by George and McCulloch (1993) and
Lee et al. (2003). An important contribution of our method is that it allows selection
of variables in a mixed framework, taking into account the design of the data. It is par-
ticularly useful for gene selection, as it enables the use of merged datasets in order to
introduce more observations and greater diversity. That may provide improved power,
and we can avoid bias due to a particular dataset. The increased size of a merged
dataset facilitates its re-splitting into training and validation sets, hence we do not need
to evaluate the performance of a classification rule by a cross-validation procedure. It
is advantageous compared to other methods which do not take into account random ef-
fects. Indeed, as these methods can use only one dataset which is usually of small size,
they often need to perform leave-one-out-cross-validation, which can be time-consuming
(see Lee et al. (2003), Yang and Song (2010), Sha et al. (2004), Zhou et al. (2004b) and
Zhou et al. (2004c) for instance). On the contrary, if several datasets are merged then
a separated training set can be used and the performance of a classifier can be directly
obtained on it. Using simulations to make comparisons with other methods which do
not take into account random effects, we showed that the proposed method is compara-
ble to others when the magnitude of the random effects is low, but performs better than
the others for classification when the magnitude of the random effects is high. This
method should prove widely useful in microarray bioinformatics, since many diverse
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datasets are freely available on the Internet. But it can also be used for data obtained
from high throughput sequencing technologies, which will probably be used a lot in few
years. Indeed, the method can be applied when we have a matrix with n << p and an
associated vector of random effects.

In practice, before running an analysis, one must decide how many variables will
be selected at each iteration of the Gibbs sampler. We do not consider this to be a
drawback, since in order to have a reliable selection, the number of probesets should be
limited compared to the size of the training set. Besides, fixing the number of variables
selected at each iteration is a computational advantage, as discussed in section 3.3. In
particular, the singularity of the X ′

γXγ matrix is avoided.
In addition, one must choose a value for the hyperparameter c which is large enough
to have a relatively non-informative prior. Only the simulations of βγ | L, U, γ and of
γ | L,U directly depend on c. Concerning βγ | L,U, γ, we can see in (4) that the density
is proportional to c/(1 + c), which is relatively close to 1 if c is large. Concerning the

density of γ | L,U (see (10)), it depends on c/(1 + c) and on (1 + c)−
∑

γi
2 . The factor

(1+c)−
∑

γi
2 does not play a role in the simulation of γ, because the number of variables

to be selected at each iteration is fixed: this factor vanishes in the acceptance rate of
the Metropolis-Hastings step of the algorithm. Therefore the value chosen should not
be too influential, as long as it is large enough. We chose arbitrarily c = 50, following
Smith and Kohn’s (1997) recommendations. However different authors suggested differ-
ent ranges, see Chipman et al. (2001), George and Foster (2000) and Clyde and George
(2000) among others. For example Zhou et al. (2004b) and Zhou et al. (2004c) used
c = 10, and Lee et al. (2003) used c = 100. However, it is possible to include another
level in our Bayesian hierarchical model and to put a prior distribution on c. Zellner
and Siow (1980) for instance proposed a mixture of g-priors and an inverse-gamma prior
on c. Recently Bottolo and Richardson (2010) considered putting a hyperprior on c and
using a Metropolis-within-Gibbs with adaptive proposal for updating this coefficient.
In our application this coefficient was held fixed for convenience, and good results were
obtained. Besides the sensitivity study showed us that the method is not overly sensi-
tive to the value chosen for c, as expected.
More generally, it appeared that the algorithm is fairly stable to variations in the train-
ing set, and is robust to prior value of any of the hyperparameters.

Convergence could not be verified because we did not have formal diagnostic tools to
prove it, as the parameters vectors used in the proposed algorithm were not associated
to the same variables from one iteration to the next. Besides, the different runs could
have converged to a local mode of the posterior distribution of γ, and not to a global
one. But the results obtained in the stability and sensitivity analyses were satisfactory,
as different runs with different starting points and different prior hyperparameters se-
lected broadly the same variables, which means that these different chains had basically
the same behavior. From our experience, it appeared that having a total number of
iterations equal to three times the size of the set of predictors is sufficient, the results
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were not significantly different when more iterations were performed.

The probesets selected by our method to characterize the estrogen receptor status
enabled us to fit a model with good predictions. Moreover, three genes among the five
used in the model were also selected using a Support Vector Machine method (twenty-
four genes were selected by SVM), and another group of three among those five is known
to be associated with estrogen receptor pathways and breast cancer: GREB1 (Nagaraja
et al. 2006; Townson and O’Connell 2006; Rae et al. 2005), SERPINA3 (Cimino et al.
2008) and MYH11 (Singh and Chaturvedi 2009). Therefore, it seems that the probesets
selected by our method are quite biologically relevant.

The algorithm developed is efficient and feasible, even for very large datasets with
around 20000 variables. Therefore this approach has a clear advantage over other se-
lection methods which handle less variables or which do not take into account random
effects. However, Bayesian variable selection is an active research area, and it would
be interesting to combine our method with recent proposals. For instance by studying
the performance of the method with other prior distributions for σ2, like half-Cauchy or
folded-noncentral-t distributions, see Gelman (2006). Or by putting a prior distribution
on c, like in Bottolo and Richardson (2010). It would also be of interest to consider an
alternative prior distribution for βγ to handle a non-invertible X ′

γXγ (when γ is itself
singular or when n < d), by combining our approach with the concept of ridge regression
(work in progress, Baragatti and Pommeret (2011)).
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