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1. INTRODUCTION

The paper considers Bayesian variable selection for random intercept models both
for Gaussian and non-Gaussian data. For Gaussian data the model reads

yit = xitα + βi + εit, εit ∼ N
(
0, σ2

ε

)
, (1)

where yit are repeated responses observed for N units (e.g. subjects) i = 1, . . . , N on
Ti occasions t = 1, . . . , Ti. xit is the (1×d) design matrix for an unknown regression

coefficient α = (α1, . . . , αd)
′
of dimension d, including the overall intercept. For each

unit, βi is a subject specific deviation from the overall intercept.
For efficient estimation it is necessary to specify the distribution of heterogene-

ity p(β1, . . . , βN ). As usual we assume that β1, . . . , βN |θ are independent given
a random hyper parameter θ with prior p(θ). Marginally, the random intercepts
β1, . . . , βN are dependent and p(β1, . . . , βN ) acts a smoothing prior which ties the
random intercepts together and encourages shrinkage of βi toward the overall inter-
cept by ”borrowing strength” from observations of other subjects. A very popular
choice is the following standard random intercept model:

βi|Q ∼ N (0, Q) , Q ∼ G−1 (c0, C0) , (2)

which is based on assuming conditional normality of the random intercept.
Several papers deal with the issue of specifying alternative smoothing priors

p(β1, . . . , βN ), because misspecifying this distribution may lead to inefficient, and
for random intercept model for non-Gaussian data, even to inconsistent estimation
of the regression coefficient α, see e.g. Neuhaus et al. (1992). Recently, Komárek
and Lesaffre (2008) suggested to use finite mixture of normal priors for p(βi|θ) to
handle this issue. In the present paper we also deviate from the commonly used
normal prior (2) and consider more general priors. However, in addition to correct
estimation of α, our focus will be on Bayesian variable selection.

The Bayesian variable selection approach is commonly applied to a standard
regression model where βi is equal to 0 in (1) for all units and aims at separating
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non-zero regression coefficients αj #= 0 from zero regression coefficients αj = 0.
By choosing an appropriate prior p(α), it is possible to shrink some coefficients αr

toward 0 and identify in this way relevant coefficients. Common shrinkage priors
are spike-and-slab priors (Mitchell and Beauchamp, 1988; George and McCulloch,
1993, 1997; Ishwaran and Rao, 2005), where a spike at 0 (either a Dirac measure
or a density with very small variance) is combined in the slab with a density with
large variance. Alternatively, unimodal shrinkage priors have been applied like the
double exponential or Laplace prior leading to the Bayesian Lasso (Park and Casella,
2008) or the more general normal-gamma prior (Griffin and Brown, 2010); see also
Fahrmeir et al. (2010) for a recent review.

Subsequently we consider variable selection for the random intercept model (1).
Although this also concerns α, we will focus on variable selection for the random
effects which, to date, has been discussed only by a few papers. Following Kinney
and Dunson (2007), Frühwirth-Schnatter and Tüchler (2008), and Tüchler (2008)
we could consider variable selection for the random intercept model as a problem of
variance selection. Under prior (2), for instance, a single binary indicator δ could be
introduced where δ = 0 corresponds to Q = 0, while δ = 1 allows Q to be different
from 0. This implicitly implies variable selection for the random intercept, because
setting δ = 0 forces all βi to be zero, while for δ = 1 all random intercepts β1, . . . , βN

are allowed be different from 0.
In the present paper we are interested in a slightly more general variable selection

problem for random effects. Rather than discriminating as above between a model
where all random effects are zero and a model where all random effects are different
from 0, it might be of interest to make unit-specific selection of random effects in
order to identify units which are “average” in the sense that they do not deviate
from the overall mean, i.e. βi = 0, and units which deviate significantly from the
“average”, i.e. βi #= 0.

In analogy to variable selection in standard regression model, we will show that
individual shrinkage for the random effects can be achieved through appropriate se-
lection of the prior p(βi|θ) of the random effects. For instance, if p(βi|Q) is a Laplace
rather than a normal prior as in (2) with a random hyperparameter Q, we obtain
a Bayesian Lasso random effects models where the smoothing additionally allows
individual shrinkage of the random intercept toward 0 for specific units. However,
as for a standard regression model too much shrinkage takes place for the non-zero
random effects under the Laplace prior. For this reason we investigate alternative
shrinkage-smoothing priors for the random intercept model like the spike-and-slab
random effects model which is closely related to the finite mixtures of random effects
model investigated by Frühwirth-Schnatter et al. (2004) and Komárek and Lesaffre
(2008).

2. VARIABLE SELECTION IN RANDOM INTERCEPT MODELS THROUGH
SMOOTHING PRIORS

Following standard practice in the econometrics literature, a fixed-effects approach
could be applied, meaning that each unit specific parameter βi is treated just as an-
other regression coefficient and the high dimensional parameter α" = (α, β1, . . . , βN )
is estimated from a large regression model without any random intercept:

yit = xitα
" + εit, εit ∼ N

(
0, σ2

ε

)
. (3)

We could then perform variable selection for α" in the large regression model (3),
in which case a binary variable selection indicator δi is introduced for each random
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effect βi individually. This appears to be the solution to the variable selection
problem addressed in the introduction, however, variable selection in (3) is not
entirely standard: first, the dimension of α" grows with the number N of units;
second, an information imbalance between the regression coefficients αj and the
random intercepts βi is present, because the number of observations is

∑N
i=1 Ti for

αj , but only Ti for βi. This make it difficult to choose the prior p(α"). Under
a (Dirac)-spike-and-slab prior for p(α"), for instance, a prior has to be chosen for
all non-zero coefficients in α". An asymptotically optimal choice in a standard
regression model is Zellner’s g-prior, however, the information imbalance between
αj and βi make it impossible to choose a value for g which is suitable for all non-zero
elements of α".

The information imbalance suggests to choose the prior for the regression co-
efficients independently from the prior for the random intercepts, i.e. p(α") =
p(α)p(β1, . . . , βN ). Variable selection for βi in the large regression model (3) is then
controlled through the choice of p(β1, . . . , βN ) which is exactly the same problem as
choosing the smoothing in the original random intercept model (1). This motivated
us to use common shrinkage priors in Bayesian variable selection as smoothing priors
in the random intercept model and to study how this choice effects shrinkage for
the random intercept.

Practically all priors have a hierarchical representation where

βi|ψi ∼ N (0, ψi) , ψi|θ ∼ p(ψi|θ), (4)

βi|ψi and βj |ψj are independent and p(ψi|θ) depends on a hyperparameter θ. The
goal is to identify choices of p(ψi|θ) which lead to strong shrinkage if many random
intercepts are close to zero, but introduce little bias, if all units are heterogeneous.

Note that the marginal distribution

p(βi|θ) =

∫
p(βi|ψi)p(ψi|θ) d ψi

is non-Gaussian and that the joint density p(β1, . . . , βN ) is smoothing prior in the
standard sense only, if at least some components of the hyperparameter θ are ran-
dom.

3. VARIABLE SELECTION IN RANDOM INTERCEPT MODELS USING
SHRINKAGE SMOOTHING PRIORS

This subsection deals with unimodal non-Gaussian shrinkage priors which put a lot
of prior mass close to 0, but have heavy tails. Such a prior encourages shrinkage of
insignificant random effects toward 0 and, the same time, allows that the remaining
random effects may deviate considerably from 0. For such a prior, the posterior
mode of p(βi|yi, θ) is typically to 0 with positive probability. We call such a prior
a non-Gaussian shrinkage prior.

3.1. Non-Gaussian Shrinkage Priors

Choosing the inverted Gamma prior ψi|ν, Q ∼ G−1 (ν, Q) leads to the Student-t
random intercept model where

βi|ν, Q ∼ t2ν (0, Q/ν) . (5)
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While this prior has heavy tails, it does not encourage shrinkage toward 0, because
the posterior mode of p(βi|yi, θ) is different from 0 with probability 1.

Following the usual approach toward regularization and shrinkage in a standard
regression model, we choose ψi|Q ∼ E (1/(2Q)) which leads to the Laplace random
intercept model:

βi|Q ∼ Lap
(√

Q
)

. (6)

Since this model may be considered as a Baysian Lasso random intercept model,
we expect a higher degree of shrinkage compared to the Student-t random intercept
model. In contrast to the Student-t random intercept model, the Laplace prior puts
a lot of prior mass close to 0 and allows that also the posterior p(βi|yi, Q) has a
mode exactly at 0 with positive probability.

Even more shrinkage may be achieved by choosing the Gamma distribution
ψi ∼ G (a, 1/(2Q)) which has been applied by Griffin and Brown (2010) for variable
selection in a standard regression model.1 It appears sensible to extent such a prior
to the random effects part. Evidently, the model reduces to the Laplace model for
a = 1. The marginal density p(βi|a, Q) is available in closed form, see Griffin and
Brown (2010):

p(βi|a, Q) =
1√

π2a−1/2Q2a+1Γ(a)
|βi|a−1/2Ka−1/2(|βi|/Q2), (7)

where K is the modified Bessel function of the third kind. The density p(βi|a, Q)
becomes more peaked at zero as a decreases.

An interesting special case is obtained for a = 1/2 in which case ψi|Q ∼ Qχ2
2a,

or equivalently,
√

ψi ∼ N (0, Q). In this case, the random intercept model may be
written in a non-centered version as:

zi ∼ N (0, 1) , (8)

yit = xf
itα +

√
ψizi + εit, εit ∼ N

(
0, σ2

ε

)
. (9)

Hence the normal-Gamma prior with a = 1/2 is related to Frühwirth-Schnatter and
Tüchler (2008) who consider a similar non-centered version of the random effects
model, but assume that

√
ψi ≡ Q follows a normal prior.

3.2. Hyperparameter Settings

For any of these shrinkage priors hyperparameters are present. All priors depend
on a scaling factor Q and some priors depend, additionally, on a shape parameter.
We assume for our investigation that any shape parameters is fixed, because these
parameters are in general difficult to estimate. For instance, we fix ν in the Student-
t prior (5) to a small integer greater than 2. However, we treat Q as a random
hyperparameter with prior p(Q).

In standard regression models shrinkage factors like Q are often selected on
a rather heuristic basis and held fixed for inference. In the context of random
effects, however, this would imply, that the random effects are independent and
no smoothing across units takes place. Hence for variable selection in the random

1Note that Griffin and Brown (2010) use a different parameterization.
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intercept model it is essential to introduce a prior p(Q) for Q, because this turns
a shrinkage prior for an individual random intercept into a smoothing prior across
the random intercepts.

To make the priors p(Q) for Q comparable among the various types of shrinkage
priors introduced in Subsection 3.1, we follow Griffin and Brown (2010) and put
an inverted Gamma prior on the variance vβ = Var(βi|θ) of the distribution of
heterogeneity:

vβ ∼ G−1 (c0, C0) , (10)

Due to our parameterization vβ = cQ for all shrinkage priors, where c is a distri-
bution specific constant, possibly depending on a shape parameter. Conditional on
holding any shape parameter fixed, the prior on vβ immediately translates into an
inverted Gamma prior for Q:

Q ∼ G−1 (c0, C0/c) . (11)

For the normal prior (2), vβ = Q, hence c = 1. For the Laplace prior (6) we obtain
vβ = 2Q and c = 2. For the Student-t prior (5) with vβ = Q/(ν − 1) this induces
a conditionally inverted Gamma prior for Q|ν with c = 1/(ν − 1). For the normal-
Gamma prior where vβ = 2aQ this leads a conditionally inverted Gamma prior for
Q|a with c = 2a.

For the standard regression model, Griffin and Brown (2010) choose c0 = 2,
in which case E(vβ |C0) = C0, while the prior variance is infinite. They select C0

in a data-based manner as the average of the OLS estimators for each regression
coefficient. However, this is not easily extended to random-effects models.

For a = 0.5, where E(ψi) = vβ = Q, the non-centered representation (9) suggests

the g-type prior
√

ψi ∼ N
(
0, gi

∑Ti
t=1 z2

i

)
where gi = 1/Ti, hence E(ψi) = E(z2

i ).

This suggests to center the prior of vβ at 1 for random effects. This implies choosing
C0 = 1, if c0 = 2. By choosing c0 = 0.5 and C0 = 0.2275 as in Frühwirth-Schnatter
and Wagner (2008) we obtain a fairly vague prior with prior median equals 1 which
does not have any finite prior moments.

3.3. Classification

Shrinkage priors have been introduced because they are the Bayesian counter-
part of shrinkage estimators which are derived as penalized ML estimators. For
known hyperparameters θ such priors allow for conditional posterior distributions
p(β1, . . . , βN |y, θ) where the mode lies at 0 for certain random effects βi. While this
enables variable selection in a non-Bayesian or empirical Bayesian framework, it is
not obvious, how to classify the random-effects within a fully Bayesian approach,
because, as argued earlier, it appear essential to make at least some hyperparameters
random.

As mentioned in the introduction, we would like to classify units into those which
are “average” (δi = 0) and those which are “above average” (δi = 1, Pr(βi > 0|y))
and “below average” (δi = 1, Pr(βi < 0|y)). This is useful in a context where a
random-effects model is used, for instance, for risk assessment in different hospitals
or in evaluation different schools.

To achieve classification for shrinkage priors within a fully Bayesian approach
some ad hoc procedure has to be applied. Alternatively, shrinkage priors could be
selected in such a way that classification is intrinsic in their formulation.
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4. VARIABLE SELECTION IN RANDOM INTERCEPT MODELS USING
SPIKE-AND-SLAB SMOOTHING PRIORS

Many researchers found spike-and-slab priors very useful in the context of variable
selection for regression models (Mitchell and Beauchamp, 1988; George and McCul-
loch, 1993, 1997; Ishwaran and Rao, 2005). These priors take the form of a finite
mixture distribution with two components where one component (the spike) is cen-
tered at 0 and shows little variance compared to the second component (the slab)
which has considerably larger variance. Spike-and-slab priors can easily be extended
to variable selection for random intercept model and lead a two component mixture
prior for βi:

p(βi|ω, θ) = (1− ω)pspike(βi|θ) + ωpslab(βi|θ). (12)

We assume that βi, i = 1, . . . , N are independent a priori conditional on the hyper-
parameters ω and θ.

Note that we are dealing with another variant of the non-Gaussian random
effects model considered in Subsection 3.1, however with an important difference.
The finite mixture structure of p(βi|ω, θ) allows to classify each βi into one of the
two components. Classification is based on a hierarchical version of the mixture
model (12) which introduces a binary indicator δi for each random intercept:

Pr(δi = 1|ω) = ω,

p(βi|δi, θ) = (1− δi)pspike(βi|θ) + δipslab(βi|θ). (13)

4.1. Using Absolutely Continuous Spikes

As for variable selection in a standard regression model we have to distinguish be-
tween two types of spike-and-slab priors. For the first type the distribution modeling
the spike is absolutely continuous, hence the marginal prior p(βi|ω, θ) is absolutely
continuous as well. This has certain computational advantages as outlined in Sec-
tion 5.

The hyperparameters of the component densities are chosen in such a way that
the variance ratio r is considerably smaller than 1:

r =
Vspike(βi|θ)
Vslab(βi|θ)

<< 1. (14)

Strictly speaking, classification is not possible for a prior with an absolutely continu-
ous spike, because δi = 0 is not exactly equivalent to βi = 0, but indicates only that
βi is “relatively” close to 0 compared to βis belonging the second component, be-
cause r << 1. Nevertheless it is common practice to base classification between zero
and non-zero coefficients in a regression model on the posterior inclusion probability
Pr(δi = 1|y) and the same decision rule is applied here for the random intercepts.

The standard spike-and-slab prior for variable selection in a regression model is
a two component normal mixture, which this leads to a finite Gaussian mixture as
random-effects distribution:

βi|ω, Q ∼ (1− ω)N (0, rQ) + ωN (0, Q) . (15)

Such finite mixtures of random-effects models have been applied in many areas, see
Frühwirth-Schnatter (2006, Section 8.5) for some review. They are useful, because
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they allow very flexible modeling of the distribution of heterogeneity. We explore in
this paper, how they relate to variable selection for random-effects. Note that this
prior may be restated in terms of the hierarchical scale mixture prior (4) where ψi

switches between the two values rQ and Q according to ω.
Ishwaran et al. (2001) and Ishwaran and Rao (2005) introduced the NMIG prior

for variable selection in a regression model which puts a spike-and-slab prior on the
variance of the prior of the regression coefficients. For random intercept model, this
suggests to put a spike-and-slab prior on ψi in the hierarchical scale mixture prior
(4):

ψi|ω, Q ∼ (1− ω)pspike(ψi|r, Q) + ωpslab(ψi|Q). (16)

Based on assuming independence of ψ1, . . . , ψN , this choice leads to a marginal
spike-and-slab prior for βi which is a two component non-Gaussian mixture as in
(15).

Ishwaran et al. (2001) and Ishwaran and Rao (2005) choose inverted Gamma
distributions both for the spike and the slab in ψi|ω, Q, i.e. ψi|δi = 0 ∼ G−1 (ν, rQ)
and ψi|δi = 1 ∼ G−1 (ν, Q). Marginally, this leads to a two component Student-t
mixture as spike-and-slab prior for βi:

βi|ω, Q ∼ (1− ω)t2ν (0, rQ/ν) + ωt2ν (0, Q/ν) . (17)

This mixture prior allows discrimination, however, the spike in (17) does not en-
courage shrinkage. Hence it makes sense to modify the NMIG prior by choosing
other component specific distributions in (16). Choosing the exponential densities
ψi|δi = 0 ∼ E (1/(2rQ)) and ψi|δi = 1 ∼ E (1/(2Q)) leads to a mixture of Laplace
densities as spike-and-slab prior for βi:

βi|ω, Q ∼ (1− ω)Lap
(√

rQ
)

+ ωLap
(√

Q
)

. (18)

Note that the corresponding prior ψi|ω, Q, being a mixture of exponentials, is uni-
modal and has a spike at 0, regardless of the choice of ω, Q, and r (Frühwirth-
Schnatter, 2006, p.6). Hence it is a shrinkage prior in the spirit of Subsection 3.1
with the additional advantage that it allows classification.

More generally, we may combine in (16) distribution families which lead to
shrinkage for the spike and, at the same time, avoid too much smoothing in the slab
of the corresponding marginal mixture of βi. One promising candidate is combining
the exponential density ψi|δi = 0 ∼ E (1/(2rQ)) for the spike with the inverted
Gamma density ψi|δi = 1 ∼ G−1 (ν, Q) for the slab. This leads to a finite mixture
for βi, where a Laplace density in the spike is combined with a Student-t distribution
in the slab:

βi|ω, Q ∼ (1− ω)Lap
(√

rQ
)

+ ωt2ν (0, Q/ν) . (19)

Because the mixture ψi|ω, Q is truly bimodal and at the same time the Laplace
spike in (19) encourages shrinkages of small random effects toward 0, this prior is
likely to facilitate discrimination between zero and non-zero random intercepts.
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4.2. Using Dirac Spikes

A special variant of the spike-and-slab prior is a finite mixture where the spike
follows a Dirac measure at 0:

p(βi|ω, θ) = (1− ω)∆0(βi) + ωpslab(βi|θ). (20)

We call this a Dirac-spike-and-slab prior. The marginal density p(βi|ω, θ) is no
longer absolutely continuous which will have consequences for MCMC estimation in
Subsection 5.2. In particular, it will be necessary to compute the marginal likelihood
where βi is integrated out, when sampling the indicators. On the other hand, as
opposed to a spike-and-slab prior with an absolutely continuous spike, δi = 0 is now
equivalent to βi = 0, which is more satisfactory from a theoretical point of view.

If the slab has a representation as a hierarchical scale mixture prior as in (4)
with ψi ∼ pslab(ψi|θ), then prior (20) is equivalent to putting a Dirac-spike-and-slab
prior directly on ψi:

p(ψi|ω, θ) = (1− ω)∆0(ψi) + ωpslab(ψi|θ). (21)

This makes it possible to combine in (20) a Dirac measure, respectively, with a
normal slab (ψi ≡ Q), with a Student-t slab (ψi ∼ G−1 (ν, Q) ), with a Laplace slab
(ψi ∼ E (1/(2Q))), or with a Normal-Gamma slab (e.g.

√
ψi ∼ N (0, Q)).

4.3. Hyperparameter Settings

In practical applications of spike-and-slab priors, hyperparameters like ω, Q and r
are often chosen in a data based manner and considered to be fixed. However, as
mentioned above, for random intercept selection it is sensible to include at least
some random hyperparameters, because then the random intercepts β1, . . . , βN are
dependent marginally and p(β1, . . . , βN ) also acts as a smoothing prior across units.
Subsequently, we regard the scaling parameter Q and the inclusion probability ω
as random hyperparameters, whereas we fix shape parameters in any component
density like ν for a Student-t distribution as in Subsection 3.2. Furthermore, under
an absolutely continuous spike we fix the ratio r between the variances of the two
components in order to guarantee good discrimination.

We use the prior ω ∼ B (a0, b0) for ω, where a0/(a0 + b0) is a prior guess of the
fraction of non-zero random effects and N0 = a0+b0 is the prior information, usually
a small integer. Choosing a0 = b0 = 1 leads to the uniform prior applied e.g. in
Smith and Kohn (2002) and Frühwirth-Schnatter and Tüchler (2008) for covariance
selection in random effects models. Making ω random, introduces smoothing also for
a Dirac spike, where the random intercepts would be independent, if ω were fixed.
Ley and Steel (2009) showed for variable selection in standard regression models
that considering ω to be random clearly outperforms variable selection under fixed
ω for a Dirac-spike-and-slab prior.

To make the prior of Q comparable to the prior of Q under the shrinkage priors
introduced in Subsection 3.1, we assume that conditional on ω and possibly a fixed
shape parameter, the variance vβ = V (βi|Q, ω) follows the same inverted Gamma
prior as in (10). Again, vβ is related to Q in a simple way and we derive accordingly
a prior for Q|ω. Because we consider only component densities with zero means, we
obtain for an absolutely continuous spike,

vβ = (1− ω)Vspike(βi|r, Q) + ωVslab(βi|Q),
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where Vspike(βi|r, Q) and Vslab(βi|Q) are linear transformations of the parameter Q.
For spikes and slabs specified by different distributions we obtain Vspike(βi) = c1Qr,
Vslab(βi) = c2Q, and vβ = Q(r(1−ω)c1 + ωc2), where c1 and c2 are the distribution
specific constants discussed after (11). Therefore,

Q|ω ∼ G−1 (c0, C0/s∗(ω)) , (22)

with s∗(ω) = r(1− ω)c1 + ωc2. For density (18), for instance, s∗(ω) = 2r(1− ω) +
ω/(ν−1). If spike and slab have the same distributional form, then c1 = c2 = c and
we obtain vβ = Q((1 − ω)r + ω)c. In this case, Q|ω has the same form as in (22)
with s∗(ω) = c((1−ω)r +ω). Finally, under a Dirac spike vβ = cω. If we define the
variance ratio r under a Dirac spike to be equal to 0, we obtain the same prior as
in (22) with s∗(ω) = cω.

5. COMPUTATIONAL ISSUES

For estimation, we simulated from the joint posterior distribution of all unknown
parameters using a Markov chain Monte Carlo (MCMC) sampler. Unknown pa-
rameters common to all shrinkage priors are α, σ2

ε , Q, and β = (β1, . . . , βN ).
Additional unknown parameters are ψ = (ψ1, . . . , ψN ) for any prior with a non-
Gaussian component densities for p(βi|θ), and the indicators δ = (δ1, . . . , δN ) for
any spike-and-slab priors.

Regardless of the shrinkage prior, the same standard Gibbs step is used to update
the regression parameter α and the error variance σ2

ε conditional on all remaining
parameters. To sample the remaining parameters conditional on α and σ2

ε we focus
on a model where

ỹit = βi + εit, εit ∼ N
(
0, σ2

ε

)
, (23)

with ỹit = yit − xitα. Subsequently ỹi = (ỹi1, . . . , ỹi,Ti)
′
.

5.1. Sampling the random effects distribution

To sample βi, ψi and Q we use following hierarchical representation of the random
effects distribution

βi|ψi, δi ∼ N (0, τi) , τi = (δi + (1− δi)r)ψi = r(δi)ψi, (24)

where δi ≡ 1, if no mixture structure is present. Note that τi = ψi and ψi|δi = 1 ∼
pslab(ψi|Q) as in in the previous section, whenever δi = 1.

For a Dirac spike r = 0 for δi = 0, hence τi = 0. For an absolutely continuous
spike, τi = rψi and ψi|δi = 0 ∼ pspike(ψi|Q), whenever δi = 0. Evidently repre-
sentation (24) slightly differs in the spike from the representation we used earlier,
because ψi is drawn from the distribution family underlying the spike with scaling
factor Q (rather than rQ) and reducing the variance by the factor r takes place
when defining τi. By defining the latent variances in our MCMC scheme in this
slightly modified way we avoid problems with MCMC convergence for extremely
small latent variances.

Sampling from βi|ψi, δi, ỹi is straightforward, because (23) in combination with
(24) constitutes a standard Gaussian random intercept model:

βi|δi, ψi, ỹi ∼ N
(

Bi

Ti∑

t=1

ỹit, σ
2
εBi

)
, B−1

i = Ti + 1/(r(δi)ψi). (25)
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For any Gaussian component density ψi = Q, hence ψi is deterministic given Q. For
any non-Gaussian component density ψi is sampled from ψi|βi, δi, Q. The precise
form of this posterior depends on the prior p(ψi|δi, Q). If ψi|δi, Q ∼ G−1 (ν, Q), then

ψi|βi, δi, Q ∼ G−1 (
ν + 1/2, Q + β2

i /(2r(δi))
)
. (26)

If ψi|δi, Q ∼ E (1/(2Q)), then

ψi|βi, δi, Q ∼ GIG
(
1/2, 1/Q, β2

i /r(δi)
)
, (27)

where GIG (·) is equal to generalized inverse Gaussian distribution. Alternatively,

1/ψi may be drawn from the inverse Gaussian distribution InvGau
(√

r(δi)/(
√

Q|βi|), Q
)
.

Note that for a Dirac spike the likelihood p(ỹi|δi = 0, βi, σ
2
ε) is independent from

βi, hence drawing from (25) and (26) or (27) is required only, if δi = 1. This saves
considerable CPU time, if

∑N
i=1 δi << N . For δi = 0, βi = 0, and ψi is sampled

from the slab, i.e. ψi ∼ pslab(ψi|Q).
Finally, sampling of Q|ψ, β, δ depends on spike/slab combination. For Laplace

mixtures or a Dirac spike with a Laplace slab we obtain with Q|ψ, ω ∼ G−1 (N + c0, CN )
with:

CN =
C0

s∗(ω)
+

1
2

N∑

i=1

ψi.

For Student-t mixtures or a Dirac spike with a Student-t slab

Q|ψ, δ, ω ∼ GIG
(

νN − c0, 2
N∑

i=1

1/ψi, 2C0/s∗(ω)

)
.

If a Laplace spike is combined with a Student-t slab, then

Q|ψ, δ, ω ∼ GIG ((ν + 1)n1 −N − c0, 2Ψ1, 2C0/s∗(ω) + Ψ0) ,

where Ψ0 =
∑

i:δi=0 ψi, Ψ1 =
∑

i:δi=1 1/ψi, and n1 =
∑N

i=1 δi. For normal mixtures

Q|β, δ ∼ G−1 (c0 + N/2, CN ) with

CN =
C0

s∗(ω)
+

1
2

N∑

i=1

βi
2/r(δi),

while for a Dirac spike with a normal slab Q|β, δ ∼ G−1 (c0 + n1/2, CN ) with

CN =
C0

ω
+

1
2

∑

i:δi=1

βi
2.
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5.2. Additional Steps for Spike-and-Slab Priors

For all spike-and-slab smoothing priors it is possible to sample δ = (δ1, . . . , δN )
simultaneously, because δi, i = 1, . . . , N are conditionally independent a posteriori
given ω. A computational advantage of an absolutely continuous spikes compared
to a Dirac spike is that is possible to sample δi conditional on βi, however, we
marginalize over ψi for non-Gaussian components to improve the efficiency of this
step:

Pr(δi = 1|βi, ω, θ) = 1

1+ 1−ω
ω Li

, Li =
pspike(βi|θ)

pslab(βi|θ) . (28)

For a Dirac spike δi is drawn without conditioning in the slab on βi, but conditional
on ψi (which is equal to Q for a normal slab). Hence

Pr(δi = 1|ψi, ỹi, ω) = 1

1+ 1−ω
ω Ri

, Ri = p(ỹi|δi=0)
p(ỹi|ψi,δi=1) . (29)

Using ỹi|δi = 0 ∼ NTi

(
0, σ2

εI
)

and ỹi|ψi, δi = 1 ∼ NTi

(
0,11

′
ψi + σ2

εI
)

it is

possible to work out that

2 log Ri = log

(
σ2

ε + Tiψi

σ2
ε

)
− ψi

σ2
ε + Tiψi

Ti∑

t=1

ỹ2
it/σ2

ε . (30)

Finally, we draw ω from ω|δ ∼ B (a0 + n1, b0 + N − n1) where n1 =
∑N

i=1 δi.

6. EXTENSIONS TO MORE GENERAL MODELS

6.1. Random Intercept Models for Non-Gaussian Data

To introduce shrinkage and smoothing priors for non-Gaussian data, any of the
distributions for βi considered in Section 3 and 4 could be combined with a non-
Gaussian likelihood depending on a random intercept βi. A very useful non-Gaussian
model is a binary logit model with random effects, where

Pr(yit = 1|α) =
exp(xiα + βi)

1 + exp(xiα + βi)
. (31)

Other examples are count data models where a likelihood based on the Poisson or
the negative binomial distribution includes random intercept βi.

To extend MCMC estimation to such models, data augmentation is applied in
such a way that a conditionally Gaussian model results, where the responses zit are
not directly observed but are latent variables resulting from data augmentation:

zit = xitα + βi + εit, εit ∼ N
(
0, σ2

it

)
. (32)

For binary data, for instance, data augmentation could be based on Albert and
Chib (1993) for probit models, on Frühwirth-Schnatter and Frühwirth (2010) for
logit models, while Frühwirth-Schnatter et al. (2009) is useful for repeated count
data and binomial data.

Also the structure of the error variance appearing in (32) depends on the dis-
tribution of the observed data. Data augmentation leads to σ2

it = 1 for the probit
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model. Data augmentation for the logit model and the Poisson model involves a
finite normal mixture approximation with H components, hence the error variance
depends on an additional latent component indicator rit taking values in {1, . . . , H}:
σ2

it = σ2
rit

. Since σ2
1 , . . . , σ2

H are known constants, the error variance is heteroscedas-
tic, but fixed given rit.

We omit the details of the corresponding MCMC sampler, but provide an ex-
ample of a random-intercept model for binomial data in Subsection 7.2.

6.2. Bayesian Variable Selection for Mixed-effects Model

Model (1) is a special case of the more general linear mixed-effects model for mod-
eling longitudinal data (Laird and Ware, 1982), defined by

βi|Q ∼ Nr (0,Q) , (33)

yit = xf
itβ + xr

itβi + εit, εit ∼ N
(
0, σ2

it

)
. (34)

xr
it is the (1 × r) design matrix for the unknown coefficient βi = (βi1, . . . , βir)

′
of

dimension r. The covariates appearing in xr
it are called the random effects, because

the corresponding regression coefficient βi depends on unit i.
A common approach to variable selection for the random-effects part of a mixed-

effects model focuses on the variance of the random-effects (Chen and Dunson, 2003;
Frühwirth-Schnatter and Tüchler, 2008; Kinney and Dunson, 2007; Tüchler, 2008).
Model specification for the random effects is translated into variable selection for the
variances. Consider, for instance, a random coefficient model where xf

it = xr
it = xit

and assume, for simplicity, that Q = Diag(Q1, . . . , Qr), i.e. βij ∼ N (0, Qj), for
j = 1, . . . , r. Introduce r binary variable selection indicators δ1, . . . , δr. If δj = 0,
then Qj = 0 and the random effect βij disappears for all units, leading to a fixed
effect of the covariate xj,it equals βj . On the other hand, if δj = 1, then Qj is
unrestricted leading to a random effect of the covariate xj,it equals βj + βij .

While this approach is very attractive for potentially high-dimensional random
effect models, it might be too simplified for applications with a low-dimensional
random effect, like panel data analysis, multilevel analysis or two-way ANOVA ap-
plications. For such models, it might be of interest to apply the shrinkage priors
introduced in Section 3 and 4 independently to each coefficient βij .

7. APPLICATIONS

7.1. Application to Simulated Data

We generated data with N = 100 subjects, Ti = 10 replications, and 4 covariates
according to the model yit = µ + xitα + βi + εit, εit ∼ N

(
0, σ2

ε

)
, where µ = 1,

α = (0.5,−0.5, 0.7,−0.7), and σε = 0.5. The covariates are simulated independently
as xit,j ∼ N (0, 1).

Four different data sets were generated with different percentage of non-zero
random effects. Data Set 1 has an extremely high fraction of zero random effects:
(β1, . . . , β5) = (1, 1, 1,−1.5,−1.5), and βi = 0 for i = 6, . . . , 100. In Data Set 2, half
of the random effects are zero, βi = −4 for i = 1, . . . , 5; βi = −1 for i = 6, . . . , 25;
βi = 0 for i = 25, . . . , 75 βi = 1 for i = 76, . . . , 95 and βi = 4 for i = 96, . . . , 100. For
Data Set 3 and 4 all random effects are nonzero, and are drawn independently from
the standard normal distribution, βi ∼ N (0, 1) for Data Set 3 and from an Type I
extreme value distribution centered at 0 for Data Set 4, i.e. βi = − log(− log Ui))−γ,
where Ui is a uniform random numbers and γ = 0.5772 is Euler’s constant.
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Table 1: Comparing the different random effect priors for Data Set 1

Prior of the random effects RMSEµ RMSEα RMSEβ TZDR TNDR
Normal 0.0185 0.0184 0.133 100 60
Student 0.0058 0.0177 0.117 100 60
Laplace 0.0111 0.0173 0.0992 100 89.5
Normal-spike-normal-slab 0.0132 0.0166 0.0321 100 100
Student-spike-Student-slab 0.0133 0.0165 0.0316 100 100
Laplace-spike-Laplace-slab 0.0133 0.0164 0.0347 100 100
Laplace-spike-Student-slab 0.0131 0.0165 0.0319 100 100
Dirac-spike-normal-slab 0.0133 0.0164 0.0316 100 100
Dirac-spike-Student-slab 0.0132 0.0165 0.0317 100 100
Dirac-spike-Laplace-slab 0.013 0.0164 0.0334 100 100

For Bayesian estimation, we use the improper prior p(µ, σ2
ε , α) ∝ 1/σ2

ε for the pa-
rameters in the observation equation. The hyperparameters for the inverted Gamma
prior for vβ = V (βi|θ) are selected as c0 = 2 and C0 = 1 and, for spike-and-slab
priors, for the Beta prior for ω as a0 = b0 = 1. The remaining parameters were
chosen as ν = 5 for Student-t component densities and the variance ratio is set to
r = 0.000025. MCMC was run for 20 000 iterations after a burn-in of 10 000; for
spike-and-slab priors in the first 1000 iterations random effects were drawn from the
slab only.

Table 2: Comparing the different random effect priors for Data Set 2

Prior of the random effects RMSEµ RMSEα RMSEβ TZDR TNDR
Normal 0.0056 0.00761 0.18 100 78
Student 0.0058 0.00743 0.179 100 66
Laplace 0.0117 0.00722 0.176 100 72
Normal-spike-normal-slab 0.0183 0.00963 0.156 94 100
Student-spike-Student-slab 0.0173 0.00954 0.158 94 100
Laplace-spike-Laplace-slab 0.016 0.00904 0.16 92 100
Laplace-spike-Student-slab 0.0149 0.00993 0.151 98 100
Dirac-spike-normal-slab 0.017 0.00971 0.156 94 100
Dirac-spike-Student-slab 0.0166 0.0096 0.157 94 100
Dirac-spike-Laplace-slab 0.0156 0.00901 0.159 92 100

We consider different kinds of criteria to compare the various shrinkage priors.
Statistical efficiency with respect to estimating the intercept µ and the regression
coefficients α is measured in terms of the root mean squared error RMSEµ = |µ− µ̂|
and RMSEα =

√
||α − α̂||2/

√
d, where d = dim(α) = 4. Additionally, we deter-

mine the root mean squared error for the random effects as RMSEβ = (
∑N

i=1(βi −
β̂i)

2/N)1/2. All parameters are estimated in the usual way as average of the corre-
sponding MCMC draws.

Furthermore, in the present context correct classification of truly zero and truly
non-zero random effects is important. For spike-and-slab priors variable selection is
based on the posterior inclusion probability pi, i.e. accept βi #= 0 and set δ̂i = 1,
if pi ≥ 0.5; otherwise accept βi = 0 and set δ̂i = 0. For an absolutely continuous
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spike, we apply the heuristic rule suggested recently by Li and Lin (2010), i.e.
accept βi = 0 and set δ̂i = 0 if an 100p% credible interval of βi covers 0; otherwise
accept βi #= 0 and set δ̂i = 1. A certain difficulty here is the choice of p, because
we are dealing with a multiple comparison problem. As in Li and Lin (2010) we
choose p = 0.5. Aggregate classification measures are the truly-zero-discovery-rate
TZDR = 100/N0

∑
i∈I0

I{δ̂i = 0} and the truly-nonzero-discovery-rate TNDR =

100/N1
∑

i∈I1
I{δ̂i = 1}, where I0 and I1 denote, respectively, the set of observation

indices for all truly zero and truly non-zero random effects, and N0 and N1 are the
corresponding cardinality. Both rates should be as close to 100 percent as possible.

Table 3: Comparing the different random effect priors for Data Set 3

Prior of the random effects RMSEµ RMSEα RMSEβ TNDR
Normal 0.086 0.0138 0.181 92
Student 0.104 0.0137 0.19 92
Laplace 0.1 0.0138 0.189 91
Normal-spike-normal-slab 0.0835 0.0138 0.179 100
Student-spike-Student-slab 0.106 0.0137 0.191 100
Laplace-spike-Laplace-slab 0.1 0.0137 0.189 100
Laplace-spike-Student-slab 0.0877 0.0138 0.183 100
Dirac-spike-normal-slab 0.0884 0.0138 0.182 100
Dirac-spike-Student-slab 0.107 0.0137 0.191 100
Dirac-spike-Laplace-slab 0.104 0.0137 0.191 100

The results of comparing the different random effect priors are summarized in
Table 1 to Table 4. In general, for random effect priors without a mixture structure
classification based on confidence regions as in Li and Lin (2010) is less reliable than
classification based on spike-and-slab priors. This is even true for Data Set 3, where
the normal prior corresponds to the true model, but classification is perfect only
for spike-and-slab priors. Even in this case, using a mixture of normals instead of
the normal distribution leads to a comparably small loss in efficiency for estimating
the regression parameters. These results clearly indicate that spike-and-slab priors
are preferable as random effects distribution, if individual variable selection is of
interest.

Concerning differences between Dirac and absolutely continuous spikes, we find
that there is surprisingly little difference between a spike from the same distribution
as the slab and a Dirac spike. Hence, both approaches seem to make sense, although
we tend to prefer the Dirac spike for the theoretical reasons outlined above.

The most difficult issue is the choice of the distributions underlying spike-and-
slab priors. For Data Set 1, priors based on a Laplace slab perform worse than the
other spike-and-slab priors, in particular with respect to RMSEβ which indicates
too much shrinkage in the slab. The other spike-and-slab priors yield more or less
similar results.

For Data Set 2, a Student-t slab with a Laplace spike yields better results than
the other spike-and-slab priors, apart from RMSEα . This prior has, in particular,
the best classification rate.

For Data Set 3 priors based on a normal slabs (either with Dirac or normal spike)
are better than the other spike-and-slab priors. This is not surprising, because the
true random effects distribution is a standard normal distribution. Interestingly, a
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Student-t slab with a Laplace spike yields results which are nearly as good as priors
with a normal slab, while the remaining priors perform worse.

Also Data Set 4, where the true distribution is equal to the extremely skew Type
I extreme value distribution, all priors based on a normal slab outperform the other
ones. In addition, we observe quite an influence of the distributions underlying
the spike-and-slab prior on the efficiency of estimating the mean µ of the random
intercept.

Hence, from this rather limited simulation study we are not able to identify a
uniformly best component density and further investigations are certainly necessary.

Table 4: Comparing the different random effect priors for Data Set 4

Prior of the random effects RMSEµ RMSEα RMSEβ TNDR
Normal 0.0094 0.0137 0.149 95
Student 0.119 0.0139 0.192 93
Laplace 0.251 0.014 0.293 86
Normal-spike-normal-slab 0.091 0.0134 0.176 100
Student-spike-Student-slab 0.183 0.0135 0.237 100
Laplace-spike-Laplace-slab 0.271 0.014 0.311 100
Laplace-spike-Student-slab 0.305 0.0132 0.341 81
Dirac-spike-normal-slab 0.0925 0.0134 0.177 100
Dirac-spike-Student-slab 0.183 0.0136 0.237 100
Dirac-spike-Laplace-slab 0.267 0.0138 0.307 100

7.2. Application to the Seed Data

We reconsider the data given by Crowder (1978, Table 3) reporting the number Yi of
seeds that germinated among Ti seeds in N = 21 plates covered with a certain root
extract. The data are modelled as in Breslow and Clayton (1993) and Gamerman
(1997), assuming that Yi is generated by a binomial distribution, where dependence
of the success probability on covariates xi is modelled through a logit transform:

Yi ∼ BiNom (Ti, πi) , (35)

log
πi

1− πi
= xiα + βi, βi ∼ N (0, Q) .

The covariates are the type of root extract (bean or cucumber), the type of seed
(O. aegyptiaco 73 and O. aegyptiaco 75), and an interaction term between these
variables. The normally distributed random intercept βi is added by these authors
to capture potential overdispersion in the data.

Subsequently, the binomial model (35) is estimated by recovering the full binary
experiment as in Frühwirth-Schnatter and Frühwirth (2007). Any observation Yi

from model (35) is equivalent with observing Ti repeated measurements yit from a
binary model with random effects,

Pr(yit = 1|α) =
exp(xiα + βi)

1 + exp(xiα + βi)
,

where yit = 1, 1 ≤ t ≤ Yi, and yit = 0, for Yi < t ≤ Ti. Hence we are dealing with
repeated measurement in a logit model with a random intercept.
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Table 5: Seed Data; Variable and covariance selection in the full random
coefficient model using Tüchler (2008)

const root seed root*seed
(j = 1) (j = 2) (j = 3) (j = 4)

Pr(αj "= 0|y) 0.969 0.975 0.431 0.895
Pr(Q1j "= 0|y) const 0.243 0.005 0.006 0
Pr(Q2j "= 0|y) root 0.005 0.044 0.021 0.002
Pr(Q3j "= 0|y) seed 0.006 0.021 0.05 0.002
Pr(Q4j "= 0|y) root*seed 0 0.002 0.002 0.055

Table 6: Seed Data; Variable and covariance selection in the random intercept
model using log marginal likelihoods (based on Frühwirth-Schnatter and Wagner
(2008))

k Mk logit (Q = 0) βi ∼ N (0, Q)
1 const -578.50 -555.78
2 const, root -553.11 -551.35
3 const, seed -579.18 -556.11
4 const,root*seed -580.05 -556.77
5 const, root, seed -553.46 -551.58
6 const, root, root*seed -550.58 -550.32
7 const, seed, root*seed -578.47 -556.59
8 const, root, seed, root*seed -552.06 -551.49

7.2.1. Variable and Covariance Selection
First, we consider the full random-effects model where all covariates are included and
βi ∼ Nd (0,Q). We consider variable and covariance selection as in Tüchler (2008)
based on a spike-and-slab prior for the regression coefficients and the Cholesky
factors of Q where a fractional normal prior is used for the non-zero coefficients.
In terms of the elements of Q this prior means, for instance, that, marginally, the
diagonal elements Qjj follow a χ2

1 distribution. Table 5 reports marginal inclusion
probabilities for all regression coefficients and we find that the covariable seed may
be eliminated from the full model. The same table reports also marginal inclusion
probabilities for the elements of the covariance matrix Q. All elements of this matrix
but Q11 have a practically zero probability of being non-zero, meaning that all effects
but the intercept are fixed with very high probability. This leaves either a logit
random intercept model or a standard logit model as possible model specifications.
Evidence for the random intercept model is not overwhelming, but not practically
zero either.

Frühwirth-Schnatter and Wagner (2008) computed marginal likelihoods for these
data in order to perform variable selection and testing for the presence of a random
intercept model. The results are reproduced in Table 6 and confirm Table 5, al-
though a different prior was used. To make model comparison through marginal
likelihoods feasible, the improper prior p(α, Q) ∝ 1/

√
Q used by Gamerman (1997)

was substituted by the proper priors α ∼ N (0, I) and the usual inverted Gamma
prior Q ∼ G−1 (c0, C0) where c0 = 0.5 and C0 = 0.2275. Among all models con-
sidered, a random intercept model where the covariable seed is eliminated has the
largest marginal likelihood, however, evidence in comparison to a model with the
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same predictors, but no random intercept is pretty weak, with the posterior proba-
bilities of both models being roughly the same.
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Figure 1: Estimated marginal posterior density p(±
√

Q|y) (bold line) under
the inverted Gamma prior Q ∼ G−1 (0.5, 0.2275) (left hand side) and under
the normal prior ±

√
Q ∼ N (0, 1) (right hand side) for a model excluding the

covariable seed; the dashed lien corresponds to the prior

To get more insight how the prior on Q effects posterior inference, Figure 1
compares the posterior distribution of ±

√
Q under the usual inverted Gamma prior

Q ∼ G−1 (0.5, 0.2275) with the normal prior ±
√

Q ∼ N (0, 1) which corresponds to
a χ2

1 distribution for Q or, Q ∼ G (0.5, 0.5). This figure clearly indicates that the
inverted Gamma prior assigns zero probability to values close to 0, bounding the
posterior distribution away from 0, while the χ2

1 prior allows the posterior distribu-
tion to take values close to zero. For the χ2

1 prior, the ratio of the prior over the
posterior ordinate at 0, also known as Savages density ratio, is an estimator of the
Bayes factor of a model without and with heterogeneity, see e.g. McCulloch and
Rossi (1991). This ratio is roughly 1 which is in line with the evidence of Table 6
although a different prior was used in this table.

7.2.2. Individual Random Effects Selection

Since these results from pure covariance selection are rather inconclusive concerning
the presence (or absence) of a random intercept in the logit model we consider indi-
vidual random effects selection using the shrinkage priors introduced in this paper.
We consider a random intercept model where the covariable seed is eliminated and
use the prior α ∼ N (0, 100I) for the regression coefficients. The hyperparameters
for the inverted Gamma prior for vβ = V (βi|θ) are selected as c0 = 2 and C0 = 1
and, for spike-and-slab priors, for the Beta prior for ω as a0 = b0 = 4. The remain-
ing parameters were chosen as ν = 5 for Student-t component densities and the
variance ratio is set to r = 0.000025. MCMC was run for 20 000 iterations after a
burn-in of 10 000; for spike-and-slab priors in the first 1000 iterations random effects
were drawn from the slab only.The estimated posterior means of the random effects are plotted in Figure 2,
while Table 7 summarizes individual random effects selection. All priors find that
a considerable fraction of the random effects are 0, meaning that only for a few
units unobserved heterogeneity is present. This clearly explains why pure variance
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Table 7: Seed data; units where 0 is not included in the 50% credible interval are
marked with x for shrinkage priors; for the remaining priors the estimated posterior
inclusion probabilities Pr(δi = 1|y) are reported (bold numbers correspond to
accepting βi #= 0).

Shrinkage Priors Continuous Slab Dirac Slab
Unit N t10 Lap N t10 Lap N t10 Lap

1 x x x 0.47 0.43 0.44 0.44 0.45 0.46
2 0.29 0.27 0.26 0.24 0.24 0.29
3 x x x 0.50 0.45 0.45 0.44 0.46 0.48
4 x x x 0.65 0.62 0.57 0.58 0.59 0.60
5 0.34 0.32 0.32 0.31 0.32 0.35
6 0.43 0.41 0.39 0.39 0.39 0.42
7 0.32 0.29 0.31 0.28 0.28 0.32
8 x x 0.46 0.43 0.39 0.39 0.42 0.44
9 0.44 0.37 0.34 0.34 0.35 0.37
10 x x x 0.68 0.60 0.61 0.57 0.58 0.58
11 0.44 0.36 0.35 0.35 0.35 0.38
12 0.43 0.41 0.37 0.38 0.38 0.40
13 0.31 0.25 0.31 0.28 0.28 0.33
14 0.39 0.36 0.36 0.34 0.34 0.38
15 x x x 0.61 0.56 0.60 0.55 0.57 0.57
16 0.56 0.50 0.44 0.49 0.50 0.51
17 x x 0.62 0.59 0.54 0.58 0.59 0.59
18 0.32 0.27 0.32 0.28 0.28 0.32
19 0.34 0.30 0.32 0.29 0.29 0.33
20 x x 0.52 0.42 0.44 0.45 0.45 0.47
21 0.43 0.41 0.40 0.36 0.36 0.39

#{βi "= 0|y} 8 8 5 7 5 4 4 5 5

selection based on deciding whether Q = 0 or not is too coarse for this data set.
Among the shrinkage priors, the Laplace prior leads to the strongest degree of
shrinkage and βi = 0 is rejected only for 5 units. There is quite an agreement across
all shrinkage priors for several units that βi #= 0, while for others units the decision
depends on the prior, in particular, if the inclusion probability is around 0.5. What
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Figure 2: Seed data; Estimated posterior mean E(βi|y) for the various random
effects. Left: Shrinkage priors, middle: continuous spikes, right: Dirac spikes.
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8. CONCLUDING REMARKS

Variable selection problems arise for more general latent variable models than the
random intercept model considered in this paper and some examples were already
mentioned in Section 6. Other examples are variable selection in non-parametric
regression (Shively et al., 1999; Smith and Kohn, 1996; Kohn et al., 2001), struc-
tured additive regression models (Belitz and Lang, 2008) and in state space models
(Shively and Kohn, 1997; Frühwirth-Schnatter and Wagner, 2010). Typically, these
problems often concern the issue of how flexible the model should be.

Variable selection in time-varying parameter models and in more general state
space models, for instance, has been considered by Shively and Kohn (1997) and
Frühwirth-Schnatter and Wagner (2010). In these papers, variable selection for the
time-varying latent variables is reduced to a variable selection for the variance of the
innovations in the state equation. The resulting procedure discriminates between
a model where a certain component of the state variable either remains totally
dynamic and possibly changes at each time point and a model where this component
is constant over the whole observation period. To achieve more flexibility for these
type of latent variable models, it might be of interest to apply the shrinkage priors
discussed in this paper to the innovations independently for each time point. This
allows to discriminate time points where the state variable remains constant from
time points where the state variable changes. However, we leave this very promising
approach for future research.
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20 S. Frühwirth-Schnatter and H. Wagner
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