
Bayesian variable selection for the Cox regression model with

missing covariates

Joseph G. Ibrahim,

Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA, e-

mail:ibrahim@bios.unc.edu

Ming-Hui Chen, and

Department of Statistics, University of Connecticut, Storrs, CT 06269, USA, e-mail:

mhchen@stat.uconn.edu

Sungduk Kim
Division of Epidemiology, Statistics and Prevention Research, National Institute of Child Health

and Human Development, NIH, Rockville, MD 20852, USA, e-mail: kims2@mail.nih.gov

Abstract

In this paper, we develop Bayesian methodology and computational algorithms for variable subset
selection in Cox proportional hazards models with missing covariate data. A new joint semi-
conjugate prior for the piecewise exponential model is proposed in the presence of missing
covariates and its properties are examined. The covariates are assumed to be missing at random
(MAR). Under this new prior, a version of the Deviance Information Criterion (DIC) is proposed
for Bayesian variable subset selection in the presence of missing covariates. Monte Carlo methods
are developed for computing the DICs for all possible subset models in the model space. A Bone
Marrow Transplant (BMT) dataset is used to illustrate the proposed methodology.
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1 Introduction

Bayesian variable selection in survival analysis is still one of the most challenging problems
encountered in practice due to issues regarding (i) prior elicitation, (ii) evaluation of a model
selection criterion due to the complication of censoring, and (iii) numerical computation of
the criterion for all possible models in the model space. In the context of survival analysis,
these issues have been discussed in Ibrahim et al. (1999a, 2001a) and the many references
therein. There have been numerous papers in the statistical literature on Bayesian variable
selection and model comparison, including articles by George and McCulloch (1993, 1997);
Laud and Ibrahim (1995); George et al. (1996); Raftery (1996); Smith and Kohn (1996);
Raftery et al. (1997); Brown et al. (1998, 2002); Clyde (1999); Chen et al. (1999, 2003,
2008); Dellaportas and Forster (1999); Chipman et al. (1998, 2001, 2003); George (2000);
George and Foster (2000); Ibrahim et al. (2000); Ntzoufras et al. (2003) and Clyde and
George (2004). However, the literature on Bayesian variable selection in the presence of
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missing data and in particular, for survival data in the presence of missing covariates, is still
quite sparse. Part of the reason for this is that in the presence of missing covariate data,
models can become quite complex and closed forms are not even available in the simplest of
models. Thus, computing quantities such as Bayes factors, posterior model probabilities, the
Aikiake Information Criterion (AIC) (Akaike 1973), the Bayesian Information Criterion
(BIC) (Schwarz 1978), and Deviance Information Criterion (DIC) (Spiegelhalter et al.
2002), for example, become serious computational challenges. For example, to compute BIC
in the presence of missing covariate data, one would need to maximize the observed data
likelihood. There are two challenging issues with this: (i) the observed data likelihood does
not have a closed form for most models, even the linear model when the covariates are not
normally distributed, and suitable approximation is often not available, and (ii) maximizing
the observed data likelihood can be a huge challenge even if it is available in closed form.
There are also several technical issues for computing AIC and BIC in the presence of
missing covariates. One could argue that these measures are not well defined in the context
of missing covariate data since the penalty term is not clearly defined. In particular, if we
use the observed data likelihood obtained by averaging over the possible missing values of
the covariates according to the missing covariate distribution, it is not clear how to
appropriately define the dimensional penalty for AIC and BIC. We elaborate more on this
issue in Sect. 5.

This issue becomes even more complex when computing Bayes factors, as one has to
integrate over a very large space and the integrals easily become of very high dimension
even in the simplest missing data problems. Specifically, it is well known that methods
based on Bayes factors or posterior model probabilities, proper prior distributions are
needed. It is a major task to specify prior distributions for all models in the model space,
especially if the model space is large. For survival models with missing covariates, it
becomes even more challenging to specify prior distributions, as in this case, one needs to
specify priors not only for the regression coefficients in the survival model, but also the
parameters involved in the models for missing covariates. The prior elicitation issue has
been discussed in detail by several authors including Laud and Ibrahim (1995); Chen et al.
(1999) and Ibrahim and Chen (2000). In addition, it is well known that Bayes factors and
posterior model probabilities are generally sensitive to the choices of prior hyperparameters,
and thus one cannot simply select vague proper priors to get around the elicitation issue.
Even when informative prior distributions are available, computing Bayes factors and
posterior model probabilities is difficult and expensive as one needs to compute prior and
posterior normalizing constants for each model in the model space. It may be practically
infeasible to compute these quantities in the context of variable subset selection for survival
models with missing data. Alternatively, criterion based methods can be attractive in the
sense that they do not require proper prior distributions in general, and thus have an
advantage over posterior model probabilities in this sense. Several recent papers advocating
the use of Bayesian criteria for model assessment include Geisser and Eddy (1979); Gelfand
et al. (1992); Gelfand and Dey (1994); Ibrahim and Laud (1994); Laud and Ibrahim (1995);
Gelman et al. (1996); Dey et al. (1997); Gelfand and Ghosh (1998); Ibrahim et al. (2001b);
Spiegelhalter et al. (2002); Chen et al. (2004); Huang et al. (2005); Hanson (2006); Celeux
et al. (2006) and Kim et al. (2007).

To overcome some of the methodologic and computational issues mentioned above, we
develop two methodologies in this paper: (i) a class of semi-conjugate priors in the presence
of MAR covariate data, and (ii) a variation of DIC for survival models with missing
covariates. The proposed class of priors overcome the elicitation issues mentioned above as
well as the computational challenges. The proposed priors make elicitation easier than other
conventional informative priors by basing the elicitation on observable quantities rather than
the parameters themselves, along with a scalar quantifying the confidence in that prediction.

Ibrahim et al. Page 2

Lifetime Data Anal. Author manuscript; available in PMC 2010 April 22.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



This is an especially attractive approach in variable selection contexts since in this context
the regression coefficients for every model in the model space have a different contextual
meaning and interpretation, and thus specifying hyperparameters for all of the models in the
model space is a monumental task. This elicitation challenge can be overcome by focusing
on constructing a prior based on a prediction for the response variable, as pointed out by
Laud and Ibrahim (1995) and Chen and Ibrahim (2003). They are also computationally
attractive in that they lead to full conditionals that are log-concave and hence easily sampled
via Adaptive Rejection Sampling (ARS) (Gilks and Wild 1992) within Gibbs. Thus,
sampling the posterior with these priors is computationally very efficient.

The proposed version of DIC is an extension of a version of DIC discussed in Huang et al.
(2005) for generalized linear models with missing covariates. For survival data with
censored observations and missing covariates, DIC has a computational advantage over
other criterion-based methods, such as AIC or BIC. With the computational methods
developed in Sect. 4, the DIC measures can be easily computed for all models in the model
space for a moderate number of covariates. In contrast, computation of AIC or BIC becomes
quite difficult and challenging for variable subset selection for survival data with censored
observations and missing covariates.

The rest of this paper is organized as follows. Section 2 presents a detailed development of
the semi-conjugate prior under the piecewise exponential model in the presence of MAR
covariates. Section 3 sets up all necessary formulas for the survival models, priors, and
posteriors in the context of variable subset selection and presents a novel version of DIC for
survival data with missing covariates. Section 4 presents the computational algorithms for
computing the DIC measures for all models in the model space. A detailed analysis of the
BMT data is given in Sect. 5. We conclude the article with brief remarks in Sect. 6.

2 The model, prior and posterior

2.1 The model

Let yi denote the minimum of the censoring time Ci and the survival time Ti, and let xi =
(xi1, …, xik)′ be the k × 1 vector of covariates associated with yi for the ith subject. Denote
by β = (β1, …, βk)′ the k × 1 vector of regression coefficients. Also, νi = 1{Ti = yi} is the
indicator for the event for i = 1, 2, …, n, where n is the total number of observations. As
usual, we assume throughout that xi does not include an intercept, since the intercept is not
estimable in the Cox proportional hazards model, and that given xi, Ti and Ci are
independent. In the presence of missing covariates, the missing data mechanism is defined
as the distribution of the k × 1 random vector ri = (ri1, ri2, …, rik)′, where rij = 0 when xij is
missing and rij = 1 when xij is observed for i = 1, 2, …, n and j = 1, 2, …, k. We assume that
any missingness in covariates xij is missing at random (MAR) (Rubin 1976; Little and Rubin
2002). As discussed in Ibrahim et al. (2005), for MAR covariates xij we do not need to
model the missing data mechanism.

We consider the Cox proportional piecewise exponential hazards model for [yi|xi], which
has the survival function given by

(2.1)

where H0(t|λ) is the baseline cumulative hazard function. The piecewise exponential model
is assumed for the baseline hazard function h0(t). Specifically, we first partition the time axis
into J intervals: (s0, s1], (s1, s2], …, (sJ−1, sJ], where s0 = 0 < s1 < s2 < ⋯ < sJ. In practice, it
is sufficient to choose sJ to be greater than the largest follow-up time. We then assume a
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constant hazard λj over the jth interval Ij = (sj−1, sj]. That is, h0(y)=λj if y ∈ Ij for j =1, 2, …,
J. Then the corresponding baseline cumulative hazard function, H0(y|λ), is given by

(2.2)

for sj−1 < y ≤ sj, where λ = (λ1, …, λJ). We note that when J = 1, H0(y|λ) reduces to the
parametric exponential model.

We write , where x1i is a k1 × 1 vector of covariates that are observed for all n
observations, x2i is a k2 × 1 vector of covariates that have at least one missing value in the n
observations, and k1 + k2 = k with k1 ≥ 0 and k2 ≥ 1. Furthermore, we let x2i,mis denote the
vector of covariates that are missing for the ith case and let x2i,obs be the vector of covariates
that are observed for the ith case. Let D = {(yi, νi, x1i, x2i,mis, x2i,obs), i = 1, 2, …, n} denote
the complete data. Then, the complete data likelihood function is given by

(2.3)

where δij = 1 if the ith subject failed or was right censored in the jth interval (sj−1, sj], and 0
otherwise.

2.2 Prior and posterior

We first specify a prior distribution for (β, λ). To this end, we extend the conjugate prior
proposed by Chen and Ibrahim (2003) for the generalized linear model (GLM) to the
piecewise exponential model in (2.1). Let X denote the n × k matrix with its ith row equal to

. Given X, we propose a semi-conjugate prior as follows:

(2.4)

where a0 > 0 is a scalar prior parameter, y0 = (y01, …, y0n)′ is an n × 1 vector of prior
parameters, δ0ij = 1 if sj−1 < y0i ≤ sj and 0 otherwise, and π0(λ) is an initial prior for λ.

The prior (2.4) is called semi-conjugate since, by ignoring π0(λ), the prior has an identical
form as the complete data likelihood given in (2.3). As discussed in Chen and Ibrahim
(2003), y0i can be viewed as a prior prediction for the marginal mean of yi. Since y0i is the
prior prediction of yi, we assume that y0i is an “observed” failure time. Thus, in eliciting y0,
we must focus on a prediction (or guess) for E(yi), which narrows the possibilities for
choosing y0i. To obtain a noninformative prior for (β, λ), we specify all the y0i equal. As
shown in Chen and Ibrahim (2003), this specification under the GLM yields a prior in which
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the prior modes of the slopes in the regression model are the same. For the piecewise
exponential model, we consider y01 = ⋯ = y0n = y0, where 0 < y0 ≤ s1. Under this
specification of y0, (2.4) reduces to

(2.5)

We further specify π0(λ) as follows

(2.6)

where b1 > 0 and b2 > 0. Note that in (2.5), we assume an improper uniform initial prior for
β and an improper Jeffreys-type initial prior for λ1. Thus, π0(λ) introduced in (2.4) and
further specified in (2.6) is an improper prior. However, under some mild conditions, the
prior (2.5) is proper and (log λ1, β) has a prior mode of (−log y0, 0, …, 0)′. We formally
characterize these properties in the following theorem.

Theorem 2.1—Let Xobs denote a submatrix of X with rows consisting of those completely

observed xi’s and . Also, let . Assume that  is of

full rank (k + 1) and π0(λ) is given by (2.6). Then, for any given xmis, (i) (log λ1, β) has a

unique prior mode of (−log y0, 0, …, 0)′ and (ii) π(β, λ|y0, X, a0) is proper.

The proof of Theorem 2.1 is given in Appendix A. We note that the conditions of Theorem
2.1 require at least k + 1 complete observations with linearly independent covariate vectors
including an intercept. From Theorem 2.1, we see that when y01 = ⋯ = y0n = y0, the prior
mode of β is 0 and with this prior prediction for the yi, both β and λ1 are identifiable in the
sense that the joint prior is proper. Note that if we assume a general gamma prior instead of
a Jeffreys-type prior for λ1 in (2.6), we can show that the prior mode of β is still 0, but the
prior mode of log λ1 is no longer −log y0. Thus, a different specification of the initial prior
for λ1 only changes the prior mode of the “intercept” in the survival model. Although we
assume y0 ≤ s1 in Theorem 2.1, we can show that the prior mode of β is still 0 even when y0

> s1. This is intuitively appealing since, in this case, the prior prediction y0i does not depend
on the ith subject’s specific covariate information. We further note that the parameter a0 in
(2.4) or (2.5) can be generally viewed as a precision parameter that quantifies the strength or
confidence of our prior belief in y0. From Theorem 2.1, we see that the prior mode of β does
not depend on a0. Thus, a0 controls only the prior precision of β. This is an attractive feature
that allows us to do sensitivity analyses by varying a0 in the prior.

Next, we specify the distribution for the missing covariates. Since we are primarily
interested in inferences about β, we only need to model x2i since x1i is observed for all n
observations. Therefore, we model x2i conditioning on the completely observed covariates
x1i throughout. Using a sequence of one-dimensional conditional distributions proposed by
Lipsitz and Ibrahim (1996) and Ibrahim et al. (1999b), we specify the distribution of the k2-
dimensional covariate vector x2i = (x2i1, x2i2, …, x2ik2)′ as

(2.7)
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where αl is a vector of parameters for the lth conditional distribution, the αl’s are distinct,

and moreover, . To complete the prior specification, we take independent
priors for α1, …, αp so that

(2.8)

Let . Using (2.5)–(2.8), the joint prior for β, λ, xmis, and α is
given by

(2.9)

Let Dobs = (y, ν, xobs) denote the completely observed data, where y = (y1, y2, …, yn)′ and ν
= (ν1, ν2, …, νn)′. Then, the joint posterior distribution is given by

(2.10)

where L(β, λ|D) and π (β, λ, xmis, α|y0, a0, xobs) are given by (2.3) and (2.9), respectively.
Although the posterior distribution in (2.10) is analytically intractable, a Gibbs sampling
algorithm can be easily developed to sample from this posterior distribution. The
implementational details of the Gibbs sampling algorithm are discussed in Appendix B.

3 Bayesian variable subset selection

Let ℳ denote the model space. We enumerate the models in ℳ by m = 1, 2, …, , where 
is the dimension of ℳ and model  denotes the full model. Also, let β( ) = (β1, β2, …, βk)′

denote the regression coefficients for the full model including an intercept, and let  and
β(m) denote km × 1 vectors of covariates and regression coefficients for model m, and a

specific choice of km covariates. We write , and β( ) = (β(m)′, β(−m)′)′,

where  deleted, and β(−m) is β( ) with β(m) deleted. We also write

 and , where  is a k1m(≤ k1) dimensional vector,

 is a k2m (≤ k2) dimensional vector, and  are x1i and x2i with 

deleted, respectively. Furthermore, we write  and

, where  are x2i,mis and x2i,obs with 
deleted, respectively.

Under model m, let  denote the complete data
and then the complete data likelihood function is given by

Ibrahim et al. Page 6

Lifetime Data Anal. Author manuscript; available in PMC 2010 April 22.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(3.1)

where δij is defined in (2.3). Using exactly the same order of the sequence of one-

dimensional conditional distributions for the covariates x2i in (2.7) by deleting , we

specify the distribution of the k2m-dimensional covariate vector 
as

(3.2)

where . It is important to note that in (3.2), α(m) is a subvector
of α in (2.7). We further write α = (α(m)′, α(−m)′)′ where α(−m) is α with α(m) deleted. Similar

to (2.8), the prior for α(m) is specified as .

Let . By applying the

semi-conjugate prior (2.5) to model m, we have the joint prior for β(m), λ, , and α(m)

given by

(3.3)

where π0(λ) and  are defined by (2.6) and (3.2), respectively. Note
that all models in the model space share the same prior for λ, that is, the prior for λ is the

same for all models in the model space. Let  denote the completely
observed data. Under model m, the joint posterior distribution is given by

(3.4)

where L(β(m), λ|Dm) and  are given by (3.1) and (3.3),
respectively.
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We carry out Bayesian variable selection via DIC, originally proposed by Spiegelhalter et al.
(2002). The use of DIC for missing data models has been discussed in detail in Celeux et al.

(2006). Let . DIC is defined as follows:

(3.5)

where Devm(θ(m)) is a deviance function and θ ̄(m) is the posterior mean of θ(m). In (3.5), pm

is the effective number of model parameters, which is calculated as

(3.6)

where

(3.7)

and the expectation is taken with respect to the posterior distribution given in (3.4). Since we
are primarily interested in inferences about the survival model, we define the deviance
function, Devm(θ(m)) in (3.5) as follows:

where L(β(m), λ|Dm) is given by (3.1). Following Huang et al. (2005), we compute
Devm(θ¯ (m)) as

(3.8)

where all expectations are taken with respect to the posterior distribution in (3.4). In (3.8),

instead of computing  we compute  in the
presence of missing covariates, which yields a more appropriate dimensional penalty term
pm.

The DIC defined above is a Bayesian measure of predictive model performance, which is
decomposed into a measure of fit and a measure of model complexity (pm). The smaller the
value of DIC, the better the model will predict new observations generated in the same way
as the data. As discussed and shown in Chen et al. (2008), the performance of DIC is similar
to AIC. Moreover, the DIC defined in (3.5) has a nice computational property for Bayesian
variable selection, which will be discussed in detail in the next section.

4 Computation of DIC measures

To carry out Bayesian variable selection, we need to compute DICm in (3.5) for m = 1, 2, …,
. Due to the complexity of the survival model in (3.1), analytical evaluation of DICm does
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not appear possible. Thus, a Monte Carlo (MC) method is needed to compute all DICm’s in
the model space. To this end, we propose two approaches for computing the DICm’s. The
first approach, called “the direct sampling method”, is based on direct Monte Carlo samples
from each model in the model space. The second approach is “the single MC sample
method,” which was proposed by Chen et al. (2008). The latter method requires only one
Markov chain Monte Carlo (MCMC) sample from the posterior distribution under the full
model and computes the Bayesian criterion simultaneously for all possible subset models in
the model space. From (3.7) and (3.8), we observe that for DICm in (3.5), we need to

compute the following quantities: (i) E[Devm(θ(m))|Dm,obs]; (ii) ; and

(iii) E[λj|Dm,obs] for j = 1, 2, …, J. For (ii), we note that when  is completely observed,

then . Thus, for (ii), we may further consider (iia)

E[β(m)|Dm,obs] and (iib)  with at least one missing covariate in . It is
interesting to observe that there is a common feature among (i), (iia), (iib), and (iii). That is,
all of these quantities can be written as

(4.1)

for various functions g, where  and the expectation is taken with respect to
the joint posterior distribution in (3.4) under model m.

First, we discuss the direct sampling method. Using the Gibbs sampling algorithm given in

Appendix B, we generate a Monte Carlo sample  from the joint posterior
distribution in (3.4) under model m. Then, a Monte Carlo estimate of gm is given by

(4.2)

for all g’s listed in (i)–(iii). Then, plugging various ĝm’s in (3.5) gives a Monte Carlo
estimate of DICm.

Next, we discuss the single MC sample method. Using the notation given in Sect. 3, we

write , and , where  is

xmis with  deleted and γ(−m) is γ with γ(m) deleted. Thus, the marginal likelihood under
model m is given by

(4.3)

where

(4.4)
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, and L(β(m), λ|Dm), π0(λ) and  are defined
by (3.1), (2.6) and (3.2), respectively. Then, for a given function g, we have

(4.5)

where Cm is defined in (4.3).

For any given function g such that E[|g(θ(m))||Dm,obs] < ∞, we have the following identity

(4.6)

where C  is the marginal likelihood given in (4.3) under the fill model, π*(γ|y0, a0, Dobs) is
given in (4.4) corresponding to the full model, which is essentially the kernel of the joint
posterior distribution in (2.10), and the expectation is taken with respect to the joint
posterior distribution in (2.10) under the full model. In (4.6), w(γ(−m)| γ(m)) is a completely
known conditional density, whose support is contained in, or equal to, the support of the
conditional density of γ(−m) given γ(m) with respect to the joint posterior distribution in
(2.10) under the full model.

Observe that as a special case of (4.1), we have gm = 1 when g ≡ 1. Using this result, we
further obtain that

(4.7)

Using (4.6) and (4.7), we have

(4.8)

We note that as the dimension of λ does not change across all models, π*(λ) cancels out in

the ratio .

Let {γq = (βq, λq, xmis,q, αq), q = 1, 2, …, Q} denote an MCMC sample of size Q from the

joint posterior distribution (2.10) under the full model. Write , where

, and . Also let .
Then, an MC estimate of gm is given by

(4.9)
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Under certain regularity conditions, such as ergodicity, we have

implying that ĝm is consistent.

As shown in Chen et al. (2008) the optimal choice of w(γ(−m) | γ(m)) is the conditional
posterior distribution of γ(−m) given γ(m) under the full model in the sense that ĝm achieves
the minimum asymptotic variance. However, the optimal choice of w(γ(−m) | γ(m)) is not
computationally feasible. Thus, we propose the following weight function

(4.10)

Note that in (4.10), when model m includes all missing covariates x2i, we do not need to

compute  as in this case,  is a null vector in the sense that it has zero
dimension. In (4.10), a good w(β(−m)|β(m), λ, xmis), which is close to the optimal choice, can
be constructed based on the asymptotic approximation to the joint posterior posterior. Let
β̂(−m) (λ, xmis) denote the conditional posterior mode of β(−m) given β(m), λ and xmis under
the full model. Specifically, we first compute

(4.11)

where

(4.12)

and then compute

Thus, a good w(β(−m) | β(m), λ, xmis) can be constructed as follows:

(4.13)
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which approximates the joint conditional posterior π(β(−m) | β(m), λ, xmis, y0, a0, Dobs) under
the full model. Similarly, we can construct a good w(α(−m)|α(m), xmis) in (4.10). For

, we use a Monte Carlo estimate given by

(4.14)

where

and  is given by (2.7) under the full model.

5 Analysis of the BMT data

The BMT data set consists of n = 2397 cases who received HLA-identical sibling transplant
from 1995 to 2004 for AML or ALL in CR1 (pre-transplant status = 1st complete remission)
with graft source of BM or PB/PB+BM. Infants were excluded (age < 2 year old). The
outcome variable, yi in years, was the time from transplant to death or end of follow up, and
νi denotes the censoring indicator which equals 1 if the ith subject died, and is 0 otherwise.
The median follow-up was 5.1 years with interquartile range of 3.0 to 7.8 years. There were
904 deaths in the data set. We consider ten covariates: disease (disease type: AML, ALL),
age, yeartx (transplant year), karnofprg (Karnofsky score at pre-transplant), gsource
(graftype: BM, PB/PB+BM), sexmatch (Donor-Patient sex match: MM, MF, FM, FF),
regimprg (conditioning regimen: CY+TBI±oth, TBI + other, Busulf + CY ± oth, Other/
Unknown), prevgvh1 (GVHD prophylaxis: mtx ± other, csa ± other, mtx + csa ± other, tdep
± other, Other/Unknown), cytoabnew (cytogenetics: Poor, InterMed, Normal, Good), and
wbcdx (WBC at diagnosis (109/l)). The covariates age, yeartx, karnofprg, and wbcdx are
continuous, and the covariates disease and gsource are binary. We dichotomize sexmatch as
sexmatch1, sexmatch2, and sexmatch3, where (sexmatch1, sexmatch2, sexmatch3) takes
values (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), which correspond to MM, MF, FM, and FF,
respectively. In exactly the same fashion, we dichotomize regimprg, prevgvh1, and
cytoabnew as (regimprg1, regimprg2, regimprg3), (prevgvh11, prevgvh12, prevgvh13,
prevgvh14) and (cytoabnew1, cytoabnew2, cytoabnew3). For instance, the values (0,0,0),
(1,0,0), (0,1,0), and (0,0,1) for (cytoabnew1, cytoabnew2, cytoabnew3) correspond to Poor,
InterMed, Normal, and Good for cytoabnew, respectively.

Let x1 = disease, x2 = age, x3 = yeartx, x4 = karnofprg, x5 = gsource, x6 = (sexmatch1,
sexmatch2, sexmatch3)′, x7 = (regimprg1, regimprg2, regimprg3)′ x8 = (prevgvh11,
prevgvh12, prevgvh13, prevgvh14)′, x9=(sexmatch1, sexmatch2, sexmatch3)′ and x10 =
log(wbcdx). For these 10 covariates, x1, x2, …, x8 were completely observed for all cases
and x9 and x10 had missing information. There were 488 (20.36%) individuals with
cytogenetics (x9) missing and 230 (9.6%) individuals with WBC missing, and 96 individuals
with both cytogenetics and WBC missing. Overall, there were 623 (25.99%) individuals
with at least one covariate missing. We assume that the missing covariates are MAR. In all
computations, we standardized all completely observed covariates.

For the BMT data, we fit the piecewise exponential model given by (2.1) and (2.2) for the
outcome variable yi, where sj is chosen to be the (j/J)th quantile of the failure times yi, for j =
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1, 2, …, J − 1. Since x1, x2, …, x8 are always observed, they do not need to be modeled, and
thus we condition on those covariates throughout. We then use a proportional odds logistic
regression model for x9 and a normal regression model for x10. Specifically, under the full
model with all ten covariates, f(x9|x1, x2, …, x8, α9) is specified as follows:

and ,

where F(u) = exp(u)/{1+exp(u)}, α9,10 ≤ α9,20 ≤ α9,30, ,

,  and

. We note that α9,10, α9,20, and α9,30 are three
intercepts in the proportional odds logistic regression model. Furthermore, f (x10|x1, x2, …,
x8, x9, α10) is taken to be the density of a

 distribution, where
α10,10 > 0 denotes the variance. The prior for (β, λ) is given by (2.5) and (2.6). In (2.5), we
consider several values for a0 such as a0 = 0.1, 0.01, 0.001, and 0.0001 and in (2.6), we take
b1 = b2 = 0.001. For the parameters in the models for the missing covariates, an inverse
gamma prior with scale and shape parameters equal to 0.001 is specified for α10,10, and
independent normal priors, N(0, 1000), are specified for all other parameters. We wish to
compare the following 210 = 1024 models: no covariates (null model), (x1), …, (x10), (x1,
x2), …, (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) (full model). In all computations, the Gibbs
sampling algorithm given in Appendix B was used to sample from the posterior distributions
and 10,000 Gibbs samples after a burn-in of 1,000 iterations were used to compute all DIC
measures and other posterior estimates. The convergence of the Gibbs sampling algorithm
was checked using several diagnostic procedures as recommended by Cowles and Carlin
(1996).

We first carry out the complete case (CC) analysis of the BMT data. There were n* = 1,774
subjects with all ten covariates completely observed. In the CC analysis, we first perform
subset variable selection using the AIC and BIC criteria, since with no missing data, these
two criteria can be easily computed. Let Lcc(β(m), λ|Dcc,m) denote the likelihood function
given in (3.1) with the completely observed data Dcc,m under model m in a model space that
consists of 210 possible subset models. Then, AIC and BIC are given by

(5.1)

where β̂(m) and λ ̂ are the maximum likelihood estimates of β(m) and λ and pm = km + J, and

(5.2)
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Table 1 shows the best three AIC or BIC models for J = 10, 15, and 20. From Table 1, we
see that the best three AIC models are (x1, x2, x4, x9), (x1, x2, x4, x5, x9), and (x1, x2, x3, x4,
x5, x9), and the best three BIC models are (x1, x2, x9), (x1, x2, x4, x9), and (x1, x2, x5, x9). In
Table 1, under the model (x1, x2, x3, x4, x5, x9), the values of pm = km + J = 8 + J are 18, 23,
and 28 for J = 10, 15, and 20, respectively while the values of pm become 15, 20, and 25 for
J = 10, 15, and 20, respectively, under the model (x1, x2, x9). Thus, (x1, x2, x9) is the
smallest model while (x1, x2, x3, x4, x5, x9) is the largest model among the five models listed
in Table 1. We note that the order of the best three models under either AIC or BIC remains
the same for J = 10, J = 15, and J = 20. Thus, subset variable selection under both AIC and
BIC is robust to the choice of J.We also see from Table 1 that the lowest values of AIC are
attained at J = 15 for all five models while the lowest values of BIC are attained at J = 10.
This result is expected since BIC favors smaller and more parsimonious models than AIC,
due to a larger dimensional penalty imposed by BIC.

For the CC case, we used the direct sampling method to compute the DIC values for all
1024 models under various choices of J and a0. The results based on the best three DIC
models under various choices of J and a0 are shown in Table 2. From Table 2, we see that
when a0 is small, for example, a0 = 0.001 or a0 = 0.0001, the DIC values are very close to
the corresponding values of AIC and the values of pm in DIC are also very close to those in
AIC. We also observe that there is a convex pattern in the DICs as functions of J and a0.
Specifically, the DIC values with J = 15 are smaller than those with either J = 10 or J = 20
for all the best three models, and, in addition, the DIC values with a0 = 0.001 are smaller
than those with a0 = 0.1, a0 = 0.01, and a0 = 0.0001 under these same models, though the
DIC values with a0 = 0.001 are close to those with a0 = 0.0001. These results are quite
desirable as they empirically show that DIC may be used to guide the choices of J and a0 in
achieving the best predictive model performance. In this CC case, among the values of J and
a0 being considered, based on the DIC measure, the best choices of J and a0 are J = 15 and
a0 = 0.001. In the CC case, we also implemented the single MC sample method discussed in
Sect. 4 for computing the DIC measures. Using a Gibbs sample of 10,000 iterations after a
burn-in of 1,000 iterations from the posterior distribution under the full model, the Monte
Carlo estimates of DICm and pm are 3595.25 and 20.99 for model (x1, x2, x4, x9), 3595.40
and 21.94 for model (x1, x2, x4, x5, x9), and 3595.74 and 22.99 for model (x1, x2, x3, x4, x5,
x9). These estimates are very similar to those given in Table 2 using the direct sampling
method.

For the best two DIC models with J = 15 and a0 = 0.001, we also computed the posterior
means (Estimates), the posterior standard deviations (SD’s), and 95% highest posterior
density (HPD) intervals of the model parameters. The results are shown in Table 3. Under
model (x1, x2, x4, x9), all 95% HPD intervals do not contain 0, indicating the importance of
all these covariates. The results given in Table 3 indicate that an ALL patient has a higher
risk of death compared to an AML patient, an older patient has a higher risk of death, a
higher Karnofsky score at pre-transplant leads to a lower risk of death, and a patient with
poor cytogenetics is likely to have a high risk of death. Under model (x1, x2, x4, x5, x9), all
covariates except for gsource have 95% HPD intervals that do not contain 0.

Next, we carry out an all case (AC) analysis of the BMT data, that is, an analysis
incorporating all of the cases. In the AC case, due to the additional complication of
modeling the missing covariates, AIC and BIC are computationally infeasible, as discussed
earlier and in fact, one could even argue that these measures are not well defined here since
the penalty term is not clearly defined. In particular, if we use the marginal likelihood
L(β̂(m),λ ̂|Dm) and then average over all of the possible missing values of the covariates
according to the missing covariate distribution, it is not clear how to appropriately define the
dimensional penalty pm for AIC and BIC. Thus, for the AC case, we used DIC as the
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criterion for performing variable subset selection. To this end, we used the the direct
sampling method to compute the DIC values for all 1,024 models under various choices J
and a0. The DIC values for the best three models are presented in Table 4. Note that models
(x1, x2, x4, x5, x8, x9) and (x1, x2, x4, x5, x9) are consistently the best and second best models
for all the values of J and a0 considered in Table 4, while model (x1, x2, x3, x4, x5, x9) is the
third best for most combinations of J and a0 except for (J, a0) = (15, 0.1) and (J, a0) = (10,
0.001). For (J, a0) = (15, 0.1) the third best model is (x1, x2, x3, x4, x5, x9, x10) with DICm =
4973.88 and pm = 24.75, and for (J, a0) = (10, 0.001) the third best model is (x1, x2, x4, x5,
x9, x10) with DICm = 4743.10 and pm = 22.46. From Table 4, we also see that the second
best DIC model (x1, x2, x4, x5, x9) in the CC analysis remains the second best DIC model in
the AC analysis. In the AC analysis, when a0 = 0.001, the values of DICm and pm for the
best CC analysis model (x1, x2, x4, x9) now become 4744.66 and 20.71 for J = 10, 4731.20
and 25.69 for J = 15, and 4750.68 and 30.80 for J = 20, which are much larger than the
corresponding DIC values under the best AC model (x1, x2, x4, x5, x8, x9) and the second
best AC model (x1, x2, x4, x5, x9). When a0 = 0.001, the best CC model (x1, x2, x4, x9) is the
ninth best AC model for J = 10 and the tenth best model for both J = 15 and J = 20.
Interestingly, similar to the CC analysis, the “optimal” choices of J and a0 are J = 15 and a0

= 0.001. Compared to the CC analysis, another noticeable change in the AC analysis is that
the values of the dimensional penalty pm are larger than the corresponding values in the CC
analysis, which is expected since the dimension of those missing covariates leads to the
additional dimensional penalty in pm.

For the best two DIC models with J = 15 and a0 = 0.001, we also computed the posterior
estimates of the model parameters, and the results are shown in Table 5. Under both the best
two DIC models, all covariates except for gsource in the survival model for the time from
transplant to death have 95% HPD intervals that do not contain 0. As x9 is the only missing
covariate in both models, using (3.2), we only need to model x9 via the proportional odds
logistic regression model conditional on the other covariates, namely, disease, age,
karnofprg, gsource, and prevgvh1 for model (x1, x2, x4, x5, x8, x9) and disease, age,
karnofprg, and gsource for model (x1, x2, x4, x5, x9). The corresponding posterior estimates
for these two missing covariate models are also shown in Table 5. Under these two models
for the missing covariate cytoabnew (x9), we see that all covariates except for karnofprg
have 95% HPD intervals that do not contain 0. Under the second best model, Table 3
compares the posterior estimates from the AC analysis to those of the CC analysis. In Table
3, we see that the AC analysis leads to smaller posterior standard deviations and shorter
HPD intervals for all parameters in the survival model. In particular, gsource is nearly
“significant” in the response model and “significant” in the covariate model in the AC
analysis, where significance means that the 95% HPD interval does not contain 0.

6 Discussion

We have proposed a joint semi-conjugate prior for the regression coefficients β and
piecewise hazard parameters λ and examined their theoretical properties in the piecewise
exponential model for right censored survival data. The proposed prior is quite attractive in
the context of variable subset selection for survival data with missing covariates. It is proper
and the functional form of the prior is immediately determined for all models once the
functional form of the prior is written for the full model. In addition, the prior is completely
specified by only one hyper-parameter, namely, a0. This indeed makes the elicitation of
priors for all models in the model space much easier. Otherwise, prior elicitation would be
an enormous task. In addition, we have empirically shown that the DIC measure can be used
to guide the choice of a0 to achieve the best posterior predictive performance. In Sect. 5, for
the BMT data, we see that the best model for the AC is different than the one based on a CC
analysis. This empirical result demonstrates that one cannot do variable selection just based
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on the completely observed cases. In fact, it is important to use all cases in performing
variable selection.

Our computational methods in this paper are intended for situations where the number of
models in the model space can be enumerated, so with this in mind, our proposed procedure
works best when the number of covariates is 9–15. We have considered two Monte Carlo
methods for computing the DIC measures. The direct sampling method is easy to
implement. However, care needs to be taken in monitoring convergence of the Gibbs
sampling algorithm for each model in the model space. On the other hand, the single MC
sample method requires only one Gibbs sample from the posterior distribution under the full
model. Thus, one needs to monitor convergence of the Gibbs sampling algorithm only once.

However, in this case, one needs to construct a “good” weight function  to

obtain an efficient single MC sample method. The choice of  proposed in Sect.
4 works well. However, it requires finding the conditional posterior modes, which may be
computationally expensive. Finding a less efficient but less computationally expensive
weight function is an important future project, which is currently under investigation. We
note that both Monte Carlo methods can be easily implemented using multiple computers.
Thus, a parallel computing system can greatly speed up the computation of the DIC
measures for variable selection. With a Linux cluster, the proposed computational procedure
can work well when the number of covariates is up to 20.

Another important criterion used in model assessment is Bayesian Model Averaging
(BMA). Since we have focused this paper on variable selection and selecting a set of top
models, we have not addressed the issue of BMA at all, as this is an entirely different topic
with different inferential goals and different computational strategies. The performance of
the proposed semi-conjugate priors in the presence of MAR covariates and the effects of
covariates such as sexmatch within the BMA context will be explored in future work.

Acknowledgments

The authors wish to thank Dr. Mei-Jie Zhang for providing the BMT data. The authors also wish to thank the
Editor-in-Chief, the Editor, and a referee for their helpful comments and suggestions, which have improved the
paper. This research was partially supported by NIH grants #GM 70335 and #CA 74015.

Appendix A: proofs of Theorem 2.1

Observe that the marginal prior of (λ1, β) is of the form

Let β0 = log λ1. We have

(A.1)

Since  is of full rank, then X* = (1, X) is of full rank. It is easy to show that π(β0, β|y0, X,
a0) is log-concave in (β0, β′)′. This implies that π(β0, β|y0, X, a0) has a unique mode. Set
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(A.2)

Thus, (−log y0, 0, …, 0)′ is the unique solution of (A.2). This implies that (−log y0, 0, …, 0)′
is the unique prior mode of (log λ1, β).

For (ii), it suffices to prove that π(β0, β|y0, X, a0) in (A.1) is proper since π0(λ2, …, λJ) is a
proper prior. We write

It is easy to observe that

for i = 1, 2, …, n, where K0 > 0 is a constant. Since  is of full rank, there exist i1 < i2 <
⋯ < ik+1 such that xi1, xi2, …, xik+1 are completely observed and the (k+1) × (k+1) matrix

 is of full rank. Let u = (u1, u2, …, uk+1)′. Taking a one-to-one
transformation u = X**(β0, β′)′ leads to

(A.3)

which completes the proof of Theorem 2.1.

Appendix B: posterior sampling

In this appendix, we discuss how to sample from the posterior distribution under the full
model given in (2.10). To this end, we propose a Gibbs sampling algorithm, which requires
sampling from the following full conditional distributions in turn:

i. [β|λ, xmis, a0, Dobs];

ii. [λ|β, xmis, a0, Dobs];

iii. [xmis|β, λ, α, a0, Dobs];

iv. [α|xmis, a0, Dobs].

We briefly discuss how we sample from each of the above full conditional distributions. For
(i), the full conditional density of β given λ, xmis, a0, and Dobs is of the form
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It is easy to show that π(β|λ, xmis, a0, Dobs) is log-concave in β. Thus, we can sample the βj’s
via the adaptive rejection algorithm of Gilks and Wild (1992). For (ii), given β and xmis, λ1,

λ2, …, λJ are conditionally independent. Let . Then,
we have

(B.1)

and

(B.2)

for j = 2, …, J. Hence, sampling the λj from (B.1) and (B.2) is straightforward.

For (iii), given β, λ, and α, the x2i,mis’s are conditionally independent, and the conditional
distribution for x2i,mis is

Thus, the conditional distribution of x2i,mis depends on the form of f (x2i|x1i, α). In Sect. 5,
for the BMT data, f (x2i|x1i, α) is a product of a proportional odds logistic density and a
normal density, and hence, sampling x2i,mis is relatively straightforward. In fact, the
conditional distribution for (cytoabnew1, cytoabnew2, cytoabnew3) is multinomial while the
conditional distribution for log(wbcdx) is log-concave, which can be sampled via the
adaptive rejection algorithm of Gilks and Wild (1992). For (iv), the full conditional

distribution is . For various covariate
distributions specified through a series of one dimensional conditional distributions,
sampling α is straightforward. For example, in Section 5, the full conditional distribution for
each component of α9 is log-concave, and hence we can sample these α9j’s via the adaptive
rejection algorithm of Gilks and Wild (1992), and the full conditional distributions for the
components of α10 are either normal or inverse gamma, which are easy to sample from.
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Table 3

Posterior estimates of β under best two DIC models with J = 15 and a0 = 0.001 for the completely observed

BMT data

Model Variable Estimate SD 95% HPD interval

(x1, x2, x4, x9) Disease 0.164 0.039 (0.086, 0.239)

Age 0.269 0.040 (0.193, 0.350)

Karnofprg −0.086 0.036 (−0.152, −0.013)

Cytoabnew1 −0.400 0.113 (−0.621, −0.185)

Cytoabnew2 −0.586 0.107 (−0.802, −0.382)

Cytoabnew3 −0.638 0.209 (−1.065, −0.241)

(x1, x2, x4, x5, x9) Disease 0.167 0.039 (0.091, 0.246)

Age 0.250 0.042 (0.167, 0.331)

Karnofprg −0.086 0.036 (−0.154, −0.014)

Gsource 0.054 0.041 (−0.027, 0.133)

Cytoabnew1 −0.399 0.111 (−0.626, −0.190)

Cytoabnew2 −0.580 0.108 (−0.786, −0.372)

Cytoabnew3 −0.621 0.207 (−1.037, −0.217)
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