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Bayesian Variable Selection in Structured

High-Dimensional Covariate Spaces

With Applications in Genomics
Fan LI and Nancy R. ZHANG

We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the

covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable,

and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it

is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian

variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model

space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional,

structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to

mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k.

Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences.

KEY WORDS: Ising model; Markov chain Monte Carlo; Motif analysis; Phase transition; Undirected graph.

1. INTRODUCTION

Consider the standard multiple regression problem

Y = Xβ + ǫ, (1)

where Y is n × 1 variable response, X = (X1, . . . ,Xp) is a n ×

p matrix of covariates, and ǫ is a n × 1 error term and ǫ ∼

N(0, σ 2I). In this paper, we focus on variable selection for this

model with (a) a very large number of covariates, possibly much

larger than the sample size (i.e., the “large p” paradigm, West

2003), and (b) information about substantial structure among

covariates which can help us in the model building process.

This scenario of variable selection in a high-dimensional

structured covariate space appears often in modern applied sta-

tistics. Here we list a few motivating examples:

1. In cancer genomics, mutations and DNA copy number

aberrations can now be detected in high throughput fash-

ion along the genomic sequence. A common goal is to link

certain features of the genomic profile (X) to clinical phe-

notypes (Y). Regression models, if employed for this task,

would face thousands of covariates (the mutations along

the genome sequence) with possibly only hundreds of pa-

tient samples. However, the fact that these noisy mutation

measurements are spaced linearly along the genome se-

quence provides location information that should be con-

sidered in the model building process. It is often reason-

able, for example, to assume that adjacent measurements

on the chromosome are both assaying the same under-

lying genetic defect, and thus should be grouped when

added to the model.

2. In functional MRI (fMRI) studies of the brain, fMRI im-

ages are collected while subjects are assessed in the per-

formance of tasks (Y). Then, the two-dimensional and
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three-dimensional images are scanned for regions of the

brain that are associated with task performance. The im-

ages are often very large, containing more than thousands

of voxels. The covariates in this case are voxel intensities,

and in variable selection, our goal is to select voxels that

are associated with Y . Since true signals usually repre-

sent connected regions in the brain, the smoothness of the

signal in space should be incorporated into the variable

selection process.

3. Gene expression can now be quantified at the genomic

scale using technologies such as microarrays. With this

data and available genomic sequence data, there has been

much effort in the statistical modeling of the dependence

of gene expression on promoter sequence composition.

Linear regression models have been applied to this prob-

lem, with the response being gene expression, and the co-

variates being the counts of certain word patterns in the

upstream promoter sequence of the gene. The words that

are selected in the model may be binding sites for tran-

scription factors. If we let the set of potential covariates

be all L length words, then p = 4L, which, for example,

would be 16,384 for L = 7. Usually, n would be a sub-

set of all of the genes in the genome, that is comparable

to p. In this problem, we are aided by the fact that, due

to the degeneracy of transcription fact binding sites, true

motifs can be represented by words that are clustered by

Hamming distance. Similar words often have similar ef-

fects on expression. It is this information that we would

like to incorporate into the model building process.

In all of the above examples, the known structure among

the large number of covariates can be represented by an undi-

rected graph: the structure in the DNA copy number data can

be represented by a one-dimensional linear chain; that in the

fMRI data by a two-dimensional or three-dimensional lattice;

and that in the motif data by a regular graph of degree L (more
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detailed discussion is given in Section 5). Bayesian paradigm

is a natural choice to incorporate such prior graphical struc-

ture. For example, Bayesian multivariate sparse latent factor

model (West 2003) provides a flexible platform for introducing

prior design-dependent covariate structure in feature selection

in high-dimensional settings. Our focus is to identify important

covariates instead of latent factors in this paper, and thus we

adopt the Bayesian “spike and slab” approaches to variable se-

lection (e.g., George and McCulloch 1993, 1997; Brown, Van-

nucci, and Fearn 1998; Ishwaran and Rao 2003, 2005a; Clyde

and George 2004; and reference therein). The basic idea behind

this framework is to define latent variables γ = (γi : 1 ≤ i ≤ p),

where γi is the indicator of whether covariate i is included in

the model. Then, Markov chain Monte Carlo (MCMC) meth-

ods are used to stochastically approximate the posterior distrib-

ution of γ given the data. For a detailed comparison of Bayesian

and frequentist penalized regression approaches, see Ishwaran

and Rao (2005a). These MCMC based procedures involve ex-

tensive computing and have been traditionally applied to re-

gression problems where p is not too large, although recently

they have been applied with some success to high-dimensional

problems (Ibrahim, Chen, and Gray 2002; Ishwaran and Rao

2003, 2005b; Tadesse, Sha, and Vannucci 2005). The small

sample size and the high dimensionality in these problems ren-

der the variable selection problem difficult. In this paper, we

introduce dependence in the γ ’s, with the effect of guiding the

Markov chain to effectively search over a smaller set of config-

urations in the γ ’s—configurations that are smooth with respect

to an underlying graph. Thus, instead of the set of 2p possible

models, the search is biased for a much smaller subset, depend-

ing on the graph structure. The main thrust of this paper is to

use a class of Ising priors for the latent variables γ to flexibly

incorporate the covariate space structure and improve stochas-

tic model selection, and to provide guidance on how to avoid

some of the consequent complications when p is large.

Graphical models have been extensively used in Bayesian

methodology for other types of problems, such as segmentation

and smoothing. For example, hidden Markov models assume

a linear graph, and are very useful for segmentation of one-

dimensional data. Two-dimensional to three-dimensional lat-

tices have been used for the smoothing of fMRI data (Smith and

Fahrmeir 2007). Informative priors for related covariates (e.g.,

interactions, grouped covariates), which can be viewed as over-

laying on undirected acyclic graphs, were also discussed be-

fore by Chipman (1996). However, formal methods for graph-

ical representation of substantive structural information among

covariates in Bayesian variable selection, especially in high-

dimensional settings, have since received relatively little atten-

tion. When p becomes large, that is, in the thousands, many

new theoretical and computational issues arise for certain graph

structures, the most interesting and problematic of which is the

phenomenon of phase transitions: Certain global characteristics

of the distribution of γ , such as the model size γ1 + · · · + γp,

undergo a dramatic change given an infinitesimal change in

the hyperparameters. For both efficiency and computational

tractability, it is critically important to understand the phase

transition behavior of the distribution of γ , and to avoid it. Such

phase transition behavior in Ising models has been explored at

great length in statistical physics. To our knowledge, this issue

has not been previously studied in the context of Bayesian vari-

able selection. In Section 3, we give guidance for choosing the

hyperparameters to avoid the phase transition behavior in high

dimensions when the prior distribution on γ is exchangeable.

This method can be applied to problems where there is underly-

ing symmetry in the covariate space, such as the three examples

listed at the beginning of this section. Exchangeability in prior

covariate structure is desirable if a priori we do not want to bias

our procedure towards the inclusion of any particular covariate.

As one may expect, in high-dimensional settings one of

the most important determining factors in the practicality of

a Monte Carlo algorithm is its computational efficiency. In

this paper, we adopt the Gibbs sampling algorithms, as first

suggested by George and McCulloch (1993). We discuss the

computational challenges that arise in this method, and imple-

ment an efficient algorithm which we use to analyze a high-

dimensional dataset where p > 8000 in Section 5.

The rest of the paper is organized as follows. Section 2 de-

scribes the formulation of the general Ising prior. Section 3 dis-

cusses the issue of hyperparameter selection, with emphasis on

phase transition behavior. Section 4 presents simulation studies

under a linear chain prior. Section 5 presents a real application

to the modeling of transcription factor binding sites in DNA

sequences. Section 6 concludes with a discussion.

2. FORMULATION OF GENERAL MODEL

2.1 Ising Prior for Covariate Spaces

Let the observed data be X and Y for which we assume

the simple linear model (1) as described in the Introduction.

As mentioned before, the Bayesian variable selection method

relies on introducing a latent variable γi ∈ {0,1} for each co-

variate that indicates whether this covariate is included in the

model. The prior distribution for the regression parameters β is

assumed to depend on γ = (γ1, . . . , γp)
′ as follows: given γ , βi

are independent with conjugate Gaussian mixture priors

βi|γi ∼ (1 − γi)I0 + γiN(0, σ 2v2), (2)

where I0 is a point mass at 0. For the residual variance σ 2, the

inverse gamma (IG) conjugate prior is often assumed

σ 2|γ ∼ IG(ν/2, νλ/2).

When ν = 0, the IG prior reduces to a flat prior, which is

adopted in this paper. With certain prior being further assumed

for γ , the variable selection is then based on a stochastic search

in the posterior covariate spaces γ |Y ∈ {0,1}p given the data.

The prior for γ is traditionally assumed to be iid Bernoulli,

which is equivalent to assuming the covariates are independent

a priori. In other words, the prior information of structure in

X is not incorporated. Intuitively, proper incorporation of such

information would improve stochastic search of the covariate

spaces. In this paper, we propose a general Ising prior for γ and

investigate its consequences under the high-dimensional sce-

nario.

We assume that the covariates i = 1, . . . ,p lie in an undi-

rected graph which can be represented by an edge set E =

{(i, j) : 1 ≤ i �= j ≤ p}. Given this graph, let a = (a1, . . . ,ap)
′ be
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a vector and B = (bi,j)p×p be a symmetric matrix of real num-

bers where bi,j = 0 for all (i, j) /∈ E . Then, we assume the Ising

prior distribution for γ :

P(γ ) = ea′γ+γ ′Bγ−ψ(a,B), (3)

where ψ(a,B) is the normalizing constant:

ψ(a,B) = log

( ∑

γ∈{0,1}p

ea′γ+γ ′Bγ

)
.

The constant ψ(a,B) is referred to as the partition function in

statistical physics. Without loss of generality we assume that

ai < 0. If B were 0, then ψ(a,0) =
∑p

i=1 log(1 + eai), but in

general there is no closed form for ψ .

In the Ising prior (3), the hyperparameters a control the spar-

sity of γ and the entries in B control the smoothness of γ over

E . Often, there is underlying symmetry in the covariate space

such that the prior distribution on γ should be exchangeable,

that is, for any permutation π of {1, . . . ,p}, the law of γ is equal

to the law of γ (π) = (γπ1
, . . . , γπp). Under this setting, we do

not favor a priori the inclusion of any covariate into the model.

Thus, the graph must be regular, that is, each vertex has the

same degree, and a = a(1,1, . . . ,1). The hyperparameters {bij}

represent the prior belief on the strength of coupling between

the pairs of neighbors (i, j). Larger bij means tighter coupling.

When B = 0, the prior is back to iid Bernoulli. Further restric-

tions on bij are often placed to reduce the number of hyperpa-

rameters. For example, with lack of specific prior information

on the strength of connection between each pair of neighbors, it

is natural to assume bij’s to be constant. Then (a,B) reduce to

two hyperparameters (a,b). In many problems, bij is not con-

stant, but exchangeability implies that
∑

j bij is constant across

vertices. An example of nonconstant bij is given in Section 5.

The utility of this general Ising model owes to the fact that

it is easily adaptable to a wide variety of problems. We will

illustrate this by presenting two examples with different graph

(covariate) structure in Sections 4 and 5.

2.2 Gibbs Sampling of f (γ |Y)

To sample from f (γ |Y), we adopt the Gibbs sampling

scheme that samples directly from the ergodic Markov chain:

γ 0,γ 1,γ 2, . . . . When the average model size is sparse, each

update sweep of γ in this scheme can be accomplished in lin-

ear time.

Let γ(−i) = {γj : j �= i}; I(−i) be the set of indices {γj = 1 : j �=

i}; Ii = I(−i) ∪ {i}; pi = |Ii| and p(−i) = |I(−i)|. For the prior dis-

tribution (3), there is a simple form for the conditional distribu-

tion

P
(
γi|γ(−i)

)
=

e
γi(a+b

∑
j∈I(−i)

γj)

1 + e
a+b

∑
j∈I(−i)

γj
.

The posterior distribution of γ given the data can be decom-

posed by Bayes formula,

P
(
γi = 1|γ(−i),Y

)

=
P(γi = 1|γ(−i))

P(γi = 1|γ(−i)) + F(i|γ(−i))−1 · P(γi = 0|γ(−i))
, (4)

where F(i|γ(−i)) =
P(Y|γi=1,γ(−i))

P(Y|γi=0,γ(−i))
is the Bayes factor and can be

explicitly computed for the linear regression model under the

priors β and σ specified in the previous section. Specifically,

integrating out β and σ , we have

F
(
i|γ(−i)

)

= v−1 ·
|A(−i)|

1/2

|Ai|1/2
·

(
Y ′Y − Y ′XI(−i)

A−1
(−i)X

′
I(−i)

Y

Y ′Y − Y ′XIi A
−1
i X′

Ii
Y

)n/2

, (5)

where Ai = X′
Ii

XIi + v−2Ipi and A(−i) = X′
I(−i)

XI(−i)
+ v−2Ip(−i)

.

Hence, one can sample directly from the posterior distrib-

ution of γ by constructing a Markov chain on {0,1}p where

at each iteration, an index is picked, say i, and γi is sampled

from P(γi|γ(−i),Y) using Equation (4). The index i can either

be picked in a fixed order, or randomly.

Evaluating F(i|γ(−i)) in (5) is the computationally intensive

step during each iteration, because it involves inverting and cal-

culating the determinant of the pi by pi matrix Ai. Note that

one of the matrices A−1
(−i) and A−1

i is in fact always available

from the last iteration, and that A−1
i can be obtained from A−1

(−i)

by a low-rank update, which is an O(p2
i ) operation. Then, each

sweep through all of the γi’s would be O(pp2
i ) operation. This

underlies the importance of limiting the size of the model dur-

ing the sampling of γ : even though the Bayesian formulation

does not limit the model size in each iteration, it is desirable

in the interest of computation for the model to be sparse. The

model size is greatly affected by the choice of the hyperpara-

meters, which will be discussed intensively in the next section.

Various low-rank update algorithms can be developed using the

numerical methods such as the Cholesky or LU decomposition

of matrix. Details of the algorithm we used is given in the Ap-

pendix.

3. HYPERPARAMETER SELECTION

Hyperparameter selection is an important part of any type

of Bayesian inference. In particular, for regression problems

when p is large, the selection of hyperparameters need to be

based not only on prior beliefs but also on considerations of

computational efficiency. In this section, we focus on exploring

two aspects of hyperparameter selection for the general model:

(1) phase transition of the Ising prior, which induces critical

slow down of the MCMC and dramatic change in model be-

havior; and (2) the influence of hyperparameter choice on the

average size of the selected model, which dictates the computa-

tion time of Gibbs sampler.

3.1 Phase Transition of Ising Model

Under the general models (2) and (3), three hyperparame-

ters need to be specified: the shrinkage v, the sparsity a and

the smoothness b. In this paper, we focus our attention on the

setting of the sparsity a and smoothness b of the underlying

Ising model. The hyperparameter v is the prior variance of βi

given that γi = 1, and should be set based on expectations on

the magnitude of βi if covariate i were indeed a true predictor.

Usually this information is not available, but we find that the

following procedure yields satisfying results in practice: For

every covariate, perform a single linear regression Y ∼ Xi to

obtain a naive estimate of the coefficient β̂i, and then choose v

based on the variance of the β̂i’s. Alternatively, one can adopt

the approach of Ishwaran and Rao (2005a), which assumes a



Li and Zhang: Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces 1205

hierarchical model where v itself follows a bimodal distribu-

tion with a spike at 0 and a continuous right tail. This gives

a more adaptive model that removes subjectivity in the choice

of v, and is shown by Ishwaran and Rao (2005a) to have a de-

sired “selective shrinkage” property when used in combination

with a rescaled spike and slab model. The hierarchical model

for v should give better results in practice, but in this paper we

choose the simpler prior which allows a more transparent study

of the effects of the hyperparameters a and b.

The choice of hyperparameters (a,B) must consider any pos-

sible phase transition points in the Ising prior. It is widely

known, for example, that Ising models on lattices of dimen-

sion ≥ 2 undergo transition between an ordered and a disor-

dered underlying state at or near the phase transition boundary

in terms of (a,B), leading to various dramatic consequences

such as critical slow down of the MCMC. One immediate con-

sequence in Bayesian variable selection for large p is the drastic

change in the proportion of γi = 1, for example, from <1% to

>90% near the phase transition boundary. This is illustrated by

a simple example in Figure 1, which assumes that bij = b and

shows the expected proportion of γi = 1 versus b of an Ising

model defined on a 6 degree regular graph with p = 8192 ver-

tices and a fixed at 4. As one can see, the model size increases

gradually from 150 to 200 as b increases until b reaches 1.35,

where the model size suddenly jumps to over 8000 with small

change in b. After b passes 1.4, the model size becomes stable

again at around 8000. That is, the Ising model undergoes phase

transition near the pair of hyperpameters (a,b) = (−4,1.35).

Since the computational cost of sampling from the posterior of

γ is of quadratic order of the model size, (a,b) must be cho-

sen to avoid the phase transition point and guarantee a small

average model size.

The main difficulty in analyzing a high-dimensional Ising

model lies in the analytical intractability of the partition func-

tion ψ(a,B), due to the many combinatorial interaction terms

when summing over all states, that is,
∑

(i,j)∈E γiγj. Neverthe-

less, the behavior of an Ising model on a wide class of regular

graphs can be approximated by mean field theory (for a nice

overview, see Yedidia 2001), which are useful in providing ball-

park estimates of certain quantities, such as model size, clump-

ing behavior (i.e., E[
∑

(i,j)∈E γiγj]), and phase transition point.

The main idea of mean field theory is to replace all interactions

Figure 1. Phase transition (in terms of model size) of Ising model.

to any γi with an average interaction, which becomes exact as

the dimension of the graph goes to infinity. This yields useful

approximations for the partition function, which, as the normal-

izing factor of an exponential family, encodes many properties

of the joint distribution of γ . For example, the derivative of the

partition function with respect to a gives the mean of γ . As

shown in Appendix A.2, the phase transition boundary of the

Ising model with exchangeable distribution can be studied by

examining the set of mean field approximations to the partition

function ψ(a,B), which can be expressed as mint φ(t), where

φ(t) = log(1 − t) −

(
a + log

1 − t

t

)
t − kbt2, 0 < t < 1,

(6)

where k =
∑

j bij, which, due to exchangeability, does not rely

on i. To minimize φ(t), we look for solutions t̂ to

dφ

dt
= − log

(
1 − t

t

)
− a − 2kbt = 0, (7)

that satisfy
d2φ

dt2
= 1

t(1−t)
− 2kb > 0. These solutions can be eas-

ily found numerically. To study them qualitatively, the left panel

of Figure 2 shows the two sides of Equation (7) for varying kb.

The intersection of the lines and the logit function are possible

solutions t̂ for given values of (a, kb). The nature of the solu-

tions can be described as follows:

1. When a > −2: there is one minima of φ(t).

2. When a = −2: there is one inflection point (i.e.,
d2φ

dt2
= 0),

t∗ = 1
2

.

3. When a < −2: let the two solutions to equation logit(t) =

a + 1
1−t

be t∗1 (> 1/2) and t∗2 (< 1/2). Then when
1

t∗2(1−t∗2)
< 2kb < 1

t∗1(1−t∗1)
, there are two minima and one

maxima of φ(t); when 2kb = 1
t∗2(1−t∗2)

or 1
t∗1(1−t∗1)

, one

minima and one inflection point; when 2kb < 1
t∗2(1−t∗2)

or

2kb > 1
t∗1(1−t∗1)

, one minima.

Therefore, for any given a < −2, the mean field approxi-

mate φ(t) transits between unimodal and multimodal states at

b∗
i = 1

2kt∗i (1−t∗i )
(i = 1,2), which are the phase transition points.

The right panel of Figure 2 shows these regions in the (a,2kb∗)

plane. In theory, for any given a, any b that is above the solid

line [>b∗
1(a)] or below the dashed line [>b∗

1(a)] avoids phase

transition in the Ising model. However, the model is only sparse

for b below the dashed line. Thus, because of our a priori belief

in a sparse model, and to limit the model size for computational

efficiency, we always choose b that is below the dashed line in

applications.

We have derived a ballpark estimate of the phase transi-

tion boundary for exchangeable Ising prior defined on regular

graphs using mean field approximation. There is no analytical

solution for the phase transition points for the posterior distribu-

tion. In the next section, we derive some heuristic guidelines for

choosing hyperparameters to avoid the phase transition point

when sampling from the posterior distribution in the scenario

where the sample size is large and the true model is sparse.
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Figure 2. Phase transition boundary of Ising model.

3.2 Posterior Model Size

We now examine the influence of hyperparameter choice on

the posterior model size, which depends not only on a and b

but also on the hyperparameter v, the number of data points n,

and the correlation structure within X,Y. Taking the log of the

Bayes factor (5), we have

log F
(
i|γ(−i)

)
= − log v +

1

2
log

(∣∣A(−i)

∣∣/|Ai|
)

+
n

2
log(1 + 
/nσ̂ 2),

where 
 = Y ′(XIi A
−1
(i) X′

Ii
− XI(−i)

A−1
−i X′

I(−i)
)Y is the difference

in sum of squared error between the posterior mean fit of the

smaller model and that of the larger model, and σ̂ 2 = Y ′(I −
XIi A

−1
i XIi)Y is an estimate of the variance σ 2. The second

term log(|A(−i)|/|Ai|) = log n + Cv(X), where Cv(X) = O(1)

depends on the correlation structure within X. For large n, and

assuming that the true βi = 0, the third term 
/σ̂ 2 is approxi-

mately chi-square distributed, giving us the approximation

log
P(γi = 1|γ(−i),Y)

P(γi = 0|γ(−i),Y)
≈ a + b

∑

(i,j)∈E

γj − log v − log n

+ Cv(X) + Z2(X,Y)/2, (8)

where Z(X,Y) ∼ N(0,1). The terms Cv(X) and Z(X,Y) intro-

duce higher than second-order interactions among γi, making

it difficult to analyze the phase transition behavior in the pos-

terior distribution of γ . However, (8) still gives useful insights,

the most important of which is the following: Let n → ∞, and

a,b, v remain fixed. If the true model contains c ≪ p predic-

tors, then phase transition will not occur. This is because in the

right-hand side of (8), a − log v − log n → −∞ while the in-

teraction terms remain bounded for all but c of the predictors.

However, when sample size n is moderate and p is large, log n is

often not large enough to preclude phase transition behavior, in

which case we have found the following heuristics to be useful:

1. The posterior model size decreases with increasing v, with

a C-fold increase in v equivalent to a log C decrease in a.

2. The posterior model size decreases with increasing sam-

ple size, with a C-fold increase in sample size equivalent

to a log C decrease in a.

When the number of covariates is large, we assume that the

bulk of them follow the null model. Such sparse models are

easier to interpret, and make Gibbs sampling in spike and slab

model selection procedures computationally feasible for high-

dimensional data. Thus, the above approximation provides use-

ful guidelines in quantifying the effect of v and n, relative to

(a,b), on the posterior distribution of γ . We found the follow-

ing to be a good strategy: First choose v based on the expected

signal magnitude β , then choose b based on desired smooth-

ness. Finally, based on v, b, and n, choose a based on (1–2)

above and the mean field approximations in Section 3.1 to avoid

phase transition and obtain the desired posterior model size.

4. SIMULATIONS: LINEAR CHAIN PRIOR

The linear chain prior, where P(γi|γ(−i)) = P(γi|γi−1), is a

simple example of the general model (3). Smoothness of mod-

els along the linear chain prior can be easily visualized by plot-

ting the posterior marginal distribution P(γi = 1|Y) versus the

linear ordering i. It is well known that phase transition does not

occur under this setting (see, e.g., Brusch 1967). Also, closed

form formulas are available for marginal probabilities on γi’s.

Due to its simplicity and convenience for visualization, we start

with simulations under the linear chain prior assumption to

examine the basic question: When and how does graph-based

smoothing improve the accuracy of variable selection in regres-

sion models?

We will simulate the data (X,Y) from two different models,

summarized in Figure 3. Under the first model, X has a direct

effect on Y , with the effect being smooth along the underlying

graph. We will see that, not surprisingly, our method produces
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Scenario 1 Scenario 2

Figure 3. Design of simulation studies. Scenario 1: Xi has a direct

effect on Y , with the effect being smooth in i. Scenario 2: X and Y

related through Z. X is smooth in i. The online version of this figure is

in color.

more accurate model estimates than the independent prior as-

sumption. In the second simulation, X does not have a direct ef-

fect on Y , but the two are related through a latent variable Z. X

itself, rather than the relationship between X and Y , is smooth.

We will see that under this more subtle scenario, the Ising prior

improves accuracy if the smoothness in X is strong compared

to the strength of the effect of Z on Y .

4.1 The Linear Chain Prior

First, we quantify the effects of the hyperparameters in the

linear chain prior in more detail. In a linear chain, each vertex

γi has two neighbors γi−1 and γi. To make this model exchange-

able, we circularize the chain by adding an edge between γ1 and

γp+1. To reflect the linear ordering of the covariates, we assume

that γ is Markov with transition matrix

Q =

(
q0 1 − q0

1 − q1 q1

)
,

and that γ1 ∼ π , where π = (
1−q1

2−q0−q1
,

1−q0

2−q0−q1
) is the station-

ary distribution with regards to Q. The above formulation is

equivalent to the following 1D Ising model

P(γi = 1|γi−1, γi+1) =
ea+b(γi−1+γi+1)

1 + ea+b(γi−1+γi+1)
, (9)

where a = log(r/w2
0), b = log(w1w0), and

r =
1 − q0

1 − q1
=

π1

π0
, w0 =

q0

1 − q1
, w1 =

q1

1 − q0
. (10)

This parameterization has an intuitive interpretation: r is the

prior odds of γi = 1, w0 reflects the increase in probability of

γi = 0 if we knew that γi−1 = 0, and w1 is the increase in prob-

ability of γi = 1 if we knew that γi−1 = 1. Note that if w1 = 1,

then the γi’s would be iid. The pair (r,w1) completely specifies

the model. With r kept fixed, the expected size of the model

[i.e., pP(γi = 1)] remains fixed. In our simulations, we compare

between models with fixed expected size and varying smooth-

ness, and thus use (r,w) for parameterization instead of (a,b).

4.2 Simulation Model 1: Smooth in γ

First consider the following simulation model:

Yk =
∑

i

Xk,iβγi + ǫk,i, i = 1, . . . ,p; k = 1, . . . ,n; (11)

where ǫi ∼ N(0,1). We let p = 1000 and n = 100, and set

γ to be the piecewise constant vector γi = I(i ∈ [245,260] ∪

[745,760]). The true β is between (0.1,1) and can vary within

a block. In particular, we explore the mixture of strong and

weak signals: the signals at even indices (β1) are strong and

at odd indices (β2) are weak. For covariates X, we assume

Xi ∼ N(0,1) and study two correlation structures: (1) indepen-

dent X: Xi are iid; (2) correlated X: in the blocks [241,265] and

[741,765], let cor(Xi,Xj) = 0.75−0.03|i− j|, that is, the piece-

wise correlation between two covariates is negatively propor-

tional to their distance (maximum 0.75). To add noise, we also

let X be correlated as cor(Xi,Xj) = 0.4 − 0.02|i − j|, in two

blocks that do not contain true signal: [41,60] and [941,960].

We varied v, r, and w while keeping the stationary distribu-

tion π fixed. For each setting of hyperparameters, we ran the

Gibbs sampler 10 times with random start in γ . Each run has

2000 iterations with the first 1000 iterations as burn-in. It takes

2 minutes to run 2000 iterations with average posterior model

size of 40 on a Sun Unix V880 with 1200 Mhz CPU. In all of

our experiments, the 10 simulations lead to highly similar pos-

terior summary statistics.

For high-dimensional covariate spaces, the traditional pos-

terior summary statistics of counting the occurrence of each

particular posterior model is infeasible because any model is

most likely to be sampled only once in a MCMC with workable

length. So here we focus on the posterior marginal probabili-

ties P(γi = 1|Y), an approach used by Smith and Kohn (1996)

and Ibrahim, Chen, and Gray (2002) among others. These pos-

terior marginals are obtained by dividing the number of itera-

tions where γi = 1 over the total number of iterations excluding

the burn-in period. This choice is motivated by its simplicity of

interpretation and the fact that the posterior of γ is a natural

by-product of our Gibbs sampler, which marginalizes over β .

Even though there is no rigorous way to threshold the posterior

marginals, we choose to select the variables corresponding to

the top M (e.g., 100) marginals in our application, a common

procedure that appears to give satisfying results.

With 2000 iterations, the marginal posterior probabilities in

our simulation are very stable over random restarts, implying

convergence. To better visualize and summarize the compar-

ison between models, we further compute the ROC curve as

follows: only those covariates i with P(γi = 1|Y) greater than a

threshold are deemed positives, and those below the threshold

are deemed negatives, then the ROC curve reflects the pair of

(true positive rate, false positive rate) achieved by varying the

calling threshold. The bigger area under the ROC curve (maxi-

mum 1), the better the discriminating power of the model.

The posterior marginal probability of γ of a representa-

tive simulation under the independent X model [true signal

(β1, β2) = (0.8,0.4)] is shown in Figure 4, where the true

γi = 1 is labeled by lines. The corresponding ROC curves are

shown in left panel of Figure 5 (only ROC curves are pre-

sented hereafter). The hyperparameters are fixed v = 1, r =

π1/π0 = 0.03, and varying w1 = 1,5,7, where w1 = 1 corre-

sponds to the independent Bernoulli prior. It is clear that in the

simple independent X case the assumed Markov chain prior in-

deed yields significantly better results. The improvement be-

comes even more pronounced for harder tasks with weaker sig-

nal (smaller β). This pattern is consistently observed in each

of our simulations under various settings of hyperparameters

and signals. Under the correlated X model, performance of the

Markov chain prior is similar to that of the independent prior for
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Figure 4. Marginal probability of γ under simulation model (11) and independent X. The online version of this figure is in color.

moderate to strong signal [max(β1, β2) > 0.3], but consistently

better for weak signal [max(β1, β2) < 0.3]. The ROC curves of

a representative simulation under the correlated X model with

(β1, β2) = (0.2,0.1) are shown in the right panel of Figure 5,

where the gain from the Markov chain prior is evident. We also

experimented with other patterns of signals, for example, all β’s

in the same block are the same. The results are similar to what

is represented above.

Figure 5. ROC curves under simulation model (11): independent X (left) and correlated X (right).
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4.3 Simulation Model 2: Smooth in X

It is intuitively obvious that in simulation model (11), a

smoothed model fit performs better: The truth agrees with the

model! We now study a more complicated scenario where the

relationship between consecutive covariates is more subtle. We

let Xk = (Xk,1, . . . ,Xk,p) be piecewise continuous:

Xk,i = δZkI(i ∈ [i∗ − Lk,1, i∗ + Lk,2]) + ξk,i, (12)

where ξk,i ∼ N(0,1), Zk ∼ Bernoulli(1/2), and Lk,1 and Lk,2

are independent Poisson random variables with mean μL. Thus,

with probability 1/2, Xk has a jump of magnitude δ centered at

location i∗. The length of the jump in Xk is a Poisson random

variable. Then, let the response Y depend only on whether a

jump occurred at i∗:

Yk ∼ βZk + ǫk.

Hence, Y is related to X only through the latent variable Z, the

indicator for a jump centered at i∗. The goal is to locate i∗ by

regressing Y and X.

Model (12) poses a much harder variable selection task than

Model (11) because the effect is indirect (goes through Z). This

means that a small underlying effect size (β) usually leads to

poor performance of the Baysian variable selection procedure

with any w. However, our simulations show that setting w > 1

consistently improves performance over w = 1. Figure 6 shows

the covariate matrix X and its correlation structure (heatmap)

for a typical simulation run.

We present the results under model (12) with δ = 0.35,

β = 3.5, and 10 jump locations in X, i∗ = (50,150, . . . ,950).

Figure 7 shows the ROC curves of the posterior marginal prob-

ability of γ with fixed v = 1, r = 0.02 and varying w = 1,5,7.

We can see that the smoothed prior for γ always outperforms

the iid prior. The jump size at δ = 0.35 is small, and pool-

ing information across neighboring covariates in this case can

help significantly in identifying the location of i∗. Here larger w

Figure 7. ROC curves under simulation model (12).

(w > 1) does not necessarily result in better performance, which

is not surprising because the extra signal gained from pooling

information over a large neighborhood is countered by the extra

noise introduced into the model.

5. APPLICATION TO DNA MOTIF FINDING:

HYPERCUBE PRIOR

5.1 Background and Motivation

Transcription factors are proteins that regulate gene expres-

sion by binding to its surrounding sequence in the genome.

Figure 6. The heatmap on the left displays, in rows, the values of covariates X for simulation model 2 (n = 100,p = 1000). Notice the

smoothness in X along the rows. The heatmap on the right displays the correlation structure in X.
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Transcription factor binding sites (TFBS) usually contain low-

entropy patterns called motifs. An important problem in bi-

ology is the modeling of the relationship between expression

level of genes and the repertoire of motifs in their promoter se-

quences. Regression models have been applied to this problem

in studies such as Bussemaker, Li, and Siggia (2001), Conlon

et al. (2003), Tadesse, Vannucci, and Liò (2004), and Zhang,

Wildermuth, and Speed (2008).

Transcription factors are usually degenerate, in the sense that

words which are close together in Hamming distance are more

likely to be alternative binding sites for the same transcription

factor. The degeneracy of transcription factor binding sites have

been modeled in a variety of ways, such as using position spe-

cific scoring matrices (PSSMs) and consensus sequences. Usu-

ally, a binding site is composed of one or multiple core se-

quences, which can tolerate very little variation, and flanking

sequences which can take on different values. The strength of

attraction of the transcription factor to the binding site depends

on the flanking sequence. An example is the MCB motif, which

regulates gene expression at the start of the S-phase in the yeast

cell cycle. Its most common form is ACGCGT. The core se-

quence is the four bases in the center, CGCG, which cannot be

changed. However, the flanking bases are allowed to wobble,

with variants of MCB including TCGCGA and CCGCGT. Even

though different transcription factor binding sites have differ-

ent position specific base patterns, existing studies have shown

that they share position-specific entropy patterns (Schneider et

al. 1986; Mirny and Gelfand 2002; Moses et al. 2003). That

is, if each position in the motif is modeled as an independent

multinomial distribution over the alphabet {A,C,G,T}, then

the entropy of this distribution is low in the middle 3–4 posi-

tions and high in the flanking sequence. This is due to the fact

that each turn of the DNA helix encompasses 3.6 bases, and

transcription factors usually contact DNA in its major or mi-

nor groove, which limits the size of the core sequence. Work

by Kechris et al. (2004) have incorporated such prior knowl-

edge on position-specific entropy to raise the sensitivity in al-

gorithms for motif identification.

We will use linear regression models to find words whose

presence in the promoter sequence is associated with various

gene expression patterns. The response variable is a measure-

ment of the strength of the expression pattern of each gene. The

covariates are the counts of all words of length L in the promoter

sequence of that gene. Therefore, the number of predictors are

on the order of 4L, and the genes used in the analysis usually

number in the thousands. To reflect the fact that motifs should

be clustered in Hamming distance, we model the words as ver-

tices on a L-dimensional hypercube, with the edge weights bij

chosen based on position-specific entropy obtained from previ-

ous studies. Below we give a detailed description of the model.

5.2 Model Description

Let A = {A,C,G,T} be the DNA alphabet, and let L be a

fixed word length. We denote by W = WL = AL the set of all

words of length L on A. For any pair of words w,w′ ∈ W , let

d(w,w′) be their Hamming distance, that is,

d(w,w′) =

L∑

i=1

I(wi �= w′
i).

Based on the studies of Schneider et al. (1986) and Kechris et

al. (2004), we formulate the matrix B in the Ising prior based

on the Hamming distance and the location of the mismatches

between the pairs of words

Bw,w′ =

⎧
⎪⎨
⎪⎩

0, d(w,w′) > D

b

L∑

i=1

giI(wi �= w′
i), d(w,w′) ≤ D,

(13)

where gi > 0 is a weight corresponding to the ith position. The

above model defines a L-d hypercube on vertices V = WL,

where there is an edge between two words if they are within

D of each other in hamming distance. If the two words are con-

nected by an edge, then the weight on that edge depends on the

position(s) of mismatch. As the studies Schneider et al. (1986),

Kechris et al. (2004), Mirney and Gelfand (2002), and Moses et

al. (2003) show, gi should be small in the middle of the motif,

and large in the flanking regions. The parameter b controls the

strength of the clustering effect.

In the example below we let L = 7, which is long enough to

cover the core region (3–4 bases) and a few flanking bases, but

still allow computational tractability. We let D = 1 and

gi =

{
1, i ∈ L1

0, i ∈ L2,
(14)

where L1 = {1,2,6,7} are the “flanking positions” and L2 =

{3,4,5} are the “core positions.” Thus, no mismatch is allowed

in the core positions, and only 1 mismatch is allowed in the

flanking positions. We chose this model because it is the sim-

plest model that distinguishes between core and flanking re-

gions, and we show in the next section that the simple structural

information already substantially improves detection accuracy

over the independent prior.

5.3 Analysis of Spellman et al. (1988) Data

As an illustration, we analyze the α-arrest yeast sporulation

experiment of Spellman et al. (1998) to find motifs that are re-

lated to the cell cycle. This is a classic dataset that has been

analyzed previously by many motif finding methods (Busse-

maker et al. 2001; Tadesse, Vannucci, and Liò 2004; Zhang,

Wildermuth, and Speed 2008). Previous regression based ap-

proaches have used as covariates either nondegenerate words,

degenerate words on the IUPAC alphabet, or a known set of

precurated PSSMs. A reliable list of precurated PSSMs is not

always available, and the set of degenerate words using the IU-

PAC alphabet is too large (the IUPAC alphabet consists of 17

letters, thus the set of all words of length 7 on the IUPAC al-

phabet is 177 = 410,338,673 instead of 47 = 16,384). Thus,

we find the approach of starting with nondegenerate words and

using a graphical model to borrow strength between “neighbor-

ing” words to be more attractive.

This dataset consists of samples taken at 18 timepoints span-

ning two cell cycles. Using any single timepoint as the response

variable in the regression is not sufficient in capturing the com-

plexity of the experiment. We follow the approach suggested in

Zhang, Wildermuth, and Speed (2008) and use the scores of the

first principal component of the data, the loadings of which are

plotted versus time in Figure 8. We used a list of 1600 genes

in the regression, which includes the original 800 “cell cycle
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Figure 8. Loadings of the first principal component for yeast cell

cycle dataset. The online version of this figure is in color.

genes” identified by Spellman et al. (1998) as well as 800 con-

trol genes that are not differentially expresses across time. A

minor technical detail is that in yeast, a word and its reverse

complement should be considered the same motif. Thus, there

are 8192, instead of 47 = 16,384, covariates, with each being

the pair of words {w,wRC} where wRC
7−i is the complement base

of wi for i = 1, . . . ,7. It is straightforward to show that for

length 7 words, these 8192 covariates still lie on a hypercube

with degree k = 6 (a regular graph). Thus, its phase transition

boundary can be directly obtained from the general results in

Section 3.1. Specifically, we use the model in (14) with a = −5,

2kb = 10 (i.e., b = 0.83), and v = 1. By (8), this is equivalent to

a sparsity parameter of a′ = − log n − log v − 5 = −8.2 for the

posterior model, which gives a posterior model size of ∼47±5.

These values lie within the phase transition boundary.

Although yeast is one of the most well-studied organisms in

terms of transcription regulation, much is still unknown about

the possible forms of cell cycle motifs. Unless otherwise noted,

we use as a gold standard the set of experimentally validated

motifs in the Sachromyces cerevisiae Promoter Database (Zhu

and Zhang 1999).

Figure 9 shows the histogram of the marginal probabilities

log10 P(γi = 1|Y). Due to the large size of the covariate space,

and the sparsity of our model, most of the motifs (including

some that are known to be biologically relevant to the cell cy-

cle) have very low log10 P(γi = 1|Y). However, many known

cell cycle related motifs are ranked high in the list. Thus, as for

the previous example, we find that it is more meaningful to filter

motifs based on ranking or relative (rather than absolute) pos-

terior marginal probability. For example, in the top M = 100

motifs, 29 have a neighboring motif in the hypercube that is

also selected. We call such clusters of more than one selected

motif that are connected in the hypercube graph islands. There

are 12 islands in the top 100 motifs, listed in Table 1. Almost

Figure 9. Histogram of log10 P(γi = 1|Y) for Spellman et al. yeast

cell cycle dataset.

all known cell cycle regulatory motifs are part of an island, in-

cluding MCB (ACGCGT), SCB (TTTTCGTG), SFF (TTGTTT),

and SWI5 (GCTGG). The words that are grouped together in

the same island are also known variants of the same TRBS.

For example, it is known that TTTCGTG and TTTCGCG are

the two most common alternative forms of the SCB motif, and

that the first ‘A’ in the MCB motif ACGCGT can be replaced

by other letters, such as a ‘T.’ Other than the known motifs, a

few interesting candidates also appear in Table 1. The island of

4 motifs comprising GCCCGTT, GCCCGAT, GTCCGAT, GTC-

CGCT are a putative MCM1 domains (Zhang, Wildermuth, and

Speed 2008). MCM1 is an important regulator in the cell cy-

cle, but due to the high degeneracy of its binding sites it is of-

ten missed by existing motif finding algorithms. For example,

Bussemaker, Li, and Siggia (2001), which is the first paper on

regression based modeling of this problem, can only detect this

motif by considering motif pairs rather than singletons. How-

ever, due to the hypercube graphical structure, this cluster has

quite a strong signal. Another interesting cluster is GAGAACG,

GCGAACG, which contains the ABF/BAF1 site. BAF1 is known

to be a regulator of genes involved in the cell cycle, including

CDC19.

It is meaningful to compare the results obtained from the hy-

percube model to results obtained from the model that assumes

prior independence of γ . Out of the top 100 motifs in the inde-

pendent model, there are eight islands comprising 19 different

motifs, which are also listed in Table 1. The fact that these is-

lands appear in the independent model, and that they include

many of the known motifs of the cell cycle (MCB, SCB, SFF,

and SWI5), is independent evidence that the graphical model

based on Hamming distance is appropriate for analysis of motif

data. However, without the underlying graphical model, weaker

signals, such as the MCM1 cluster and the ABF/BAF1 site, are

lost. The effect of the hypercube model can also be seen in the

relative magnitude of the marginal probabilities. Known mo-

tifs, such as TACGCGT (MCB), TTTCGTG (SCB), TTGTTTA

(SFF), TTGGTCG (MCM1) have a large increase in marginal

probability under the hypercube model, the set of motifs that

have a decrease in marginal probability are not enriched with

known cell-cycle regulatory motifs.

6. DISCUSSION

Model building in high-dimensional covariate spaces with a

priori known structure is a frequently met problem in modern

statistics. In this paper, we have explored the use of Ising pri-

ors on the latent indicator variables γ under the framework of

Bayesian variable selection. We proposed a general framework

that can flexibly adapt to a large variety of problems. As illustra-

tion, we studied two scenarios in Sections 4 and 5. In both sce-

narios the assumed structure on the covariate space can be en-

coded into graphs, but the different nature of the graphs called

for different approaches to hyperparameter selection. In the first

example, the graph is a linear chain, which allows easy plotting

and closed-form analysis. Of particular interest is the second

example involving the hypercube prior, where the selection of

hyperparameters need to take into consideration the phase tran-

sition behavior induced by the graph. We have found that mean

field approximations are useful in this context. Avoiding phase

transition and controlling the posterior model size is crucial for
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Table 1. Islands in top 100 motifs ranked by P(γi = 1|Y) from hypercube model

Independent model Hypercube model

P(γi = 1|Y) Name P(γi = 1|Y) Name

Island 1, 5 words: Island 1, 5 words:

GACGCGT 1 MCB GACGCGT 1 MCB

TACGCGT 0.7876 MCB TACGCGT 0.9262 MCB

GGCGCGT 0.711 GGCGCGT 0.7691

TTCGCGT 0.1529 TTCGCGT 0.2284

TTCGCGA 0.0982 TTCGCGA 0.1554

Island 2, 2 words: Island 2, 2 words:

GCTGGTT 0.9418 Swi5 GCTGGTT 0.9589 Swi5

GCTGGAT 0.0916 GCTGGAT 0.2477

Island 3, 2 words: Island 3, 4 words:

TTTCGCG 0.8678 SCB GCCCGTT 0.9547 MCM1

TTTCGTG 0.6117 SCB GCCCGAT 0.1062

GTCCGAT 0.0633 MCM1

GTCCGCT 0.097

Island 4, 2 words: Island 4, 2 words:

CTGCGCT 0.3865 TGTTTGT 0.8589

CTGCGTT 0.0962 RME1 TGTTTTT 0.1202 STE12

Island 5, 2 words: Island 5, 2 words:

TCGCGTC 0.2053 TTTCGCG 0.8318 SCB

GCGCGTC 0.2017 TTTCGTG 0.79 SCB

Island 6, 2 words: Island 6, 2 words:

TTGGTCG 0.1029 CTGCGCT 0.4159

TCGGTCG 0.0742 MCM1 CTGCGTT 0.1423 RME1

Island 7, 2 words: Island 7, 2 words:

GCCGACT 0.0992 BAS1 TAGCCAG 0.3352

GCCGACG 0.0541 BAS1 TAGCCGG 0.1142

Island 8, 2 words: Island 8, 2 words:

TTGTTTA 0.0941 SFF, ROX1 TCGCGTC 0.2332

TTGTTTT 0.064 ROX1 GCGCGTC 0.1932

Island 9, 2 words:

GAGAACG 0.1483

GCGAACG 0.063 ABF1, BAF1

Island 10, 2 words:

TTGTTTA 0.1409 SFF, ROX1

TTGTTTT 0.0861 ROX1

Island 11, 2 words:

TTGGTCG 0.1394

TCGGTCG 0.0958 MCM1

Island 12, 2 words:

GCCGACT 0.1135 BAS1

GCCGACG 0.0743 BAS1

computational feasibility of Bayesian variable selection algo-

rithms in high dimensions, which is a main concern dictating

the methods in this paper.

The inference in this paper is based on the latent variables via

thresholding the posterior inclusion probabilities P(γi = 1|Y),

where the coefficients β is integrated out, an approach advo-

cated first by Smith and Kohn (1996). Barbieri and Berger

(2004) proposed to use instead the posterior median model [the

model consisting of those variables with P(γi = 1|Y) ≥ 50%],

which they showed is predictively optimal. Under the spike

and slab regression setting, the median model is equivalent

to the posterior model (Barbieri and Berger 2004). Alterna-

tively, Ishwaran and Rao (2005a) and Dey, Ishwaran, and Rao

(2008) proposed a procedure based on rescaling the responses

Y , which is shown to have better finite sample performance.

Furthermore, approaches based on thresholding posterior val-

ues of β’s (which are not integrated out) (e.g., Ishwaran and

Rao 2003, 2005a, 2005b), has also been shown to be very use-

ful in high-dimensional settings.

Introducing the smoothing parameter b in the prior distrib-

ution for γ also increases the stickiness of the Markov chain,

and thus causes slower mixing rate. However, in both the simu-

lation and the real data example that we explored, the effect on

mixing rate was not significant even for very large values of the

smoothing parameter. Block-wise updating schemes, or modifi-

cations of the Swendsen–Wang algorithm proposed by Nott and
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Green (2004) for variable selection, can be applied and may be

useful when mixing rate becomes a concern.

L1 penalized regression methods such as the fused Lasso

(Tibshirani et al. 2005) and the group Lasso (Yuan and Lin

2006), as well as Markov random field models on the regression

parameters β (Wei and Li 2007; Wei and Pan 2009) have been

proposed for structured variable selection in high-dimensional

settings. However, the underlying model assumptions of these

methods are very different than those proposed in this paper:

Their methods assume smoothness in β while ours assumes

dependency in γ . Intuitively, these L1 penalty methods might

not work well in the simulation setting of Section 4.2, where

the true β’s are not smooth. This easily dismissed but not-too-

subtle distinction might be important in some applications. For

example, in the application to transcription factor binding site

prediction described in Section 5.3, there is no reason to expect

that the true values for β are piece-wise constant.

Ising priors do not enforce directionality on the underlying

graph. Prior information often comes in the form of constraints,

such as Xi must be selected if Xj is in the model, where one can

set P(γj = 1|γi = 0) = 0. These constraints can be easily mod-

eled via a directed acyclic graph (DAG). The class of priors

proposed in Chipman (1996) can be viewed as a special case of

general DAG priors. Another applicable situation is when there

is prior information for causal relationships among the covari-

ates. Computation under the DAG prior in high-dimensional re-

gression settings is a challenging but exciting area of future re-

search.

We focus on linear regression for continuous outcomes in

our discussion. The methods can be readily extended, with care

taken in computational efficiency, to nonlinear regression for

binary and categorical outcomes, and accelerated failure time

models for survival outcomes.

The R and Fortran code are available at by request from the

authors.

APPENDIX

A.1 Fast Updating of A−1
i From A−1

(−i)

To simplify discussion, consider the case first where D = 0, so

Ai = X′
Ii

XIi
. The case where D �= 0 is analogous. Define A(−i) =

X′
I(−i)

XI(−i)
, �I(−i),i = X′

I(−i)
Xi, σii = X′

iXi. The matrix Ai can be ex-

pressed in the following partitioned forms:

Ai =

(
A(−i) �I(−i),i

�′
I(−i),i

σii

)
.

Then, the matrix A−1
i can be computed as:

A−1
i =

(
A11 A12

A21 A22

)
, (A.1)

where

A11 =
(
A(−i) − �I(−i),iσ

−1
ii �′

I(−i),i

)−1 def
= (A11·2)−1,

A12 = −(A11·2)−1�I(−i),iσ
−1
ii ,

A21 = −σ−1
ii �′

I(−i),i
(A11·2)−1,

A22 = σ−1
ii + σ−1

ii �′
I(−i),i

(A11·2)−1�I(−i),iσ
−1
ii .

Of the four quantities above, the computation of A12,A21,A22 are

O(p2
(−i)

). The explicit form of A11 is

A11 = A−1
(−i)

+
1

σii(1 − �′
I(−i),i

A−1
(−i)

�I(−i),i/σii)

× A−1
(−i)

�I(−i),i

(
A−1

(−i)
�I(−i),i

)′
. (A.2)

Thus the computation of A11 can be done via a low-rank update of

A−1
(−i)

, available from the previous iteration, and thus would also be

O(p2
(−i)

).

Calculating the determinant of a matrix is computationally equiva-

lent to obtaining its Cholesky factor. So now we describe the fast up-

dating of the Cholesky factor of A−1
i . Let A11 = L̃(−i)L̃

′
(−i)

, A−1
(−i)

=

L(−i)L
′
(−i)

, and A−1
i = LiL

′
i. Notice the right-hand side of Equation

(A.2) is also of the form A + vv′, the computation of L̃(−i) thus can be

done via a low rank update of the Cholesky factor of A−1
(−i)

, L(−i). The

lower triangular matrix Li has the following partitioned form

Li =

(
L̃(−i) 0

L(−i),i lii

)
,

where L(−i),i is 1 × p(−i), and 0 = (0, . . . ,0)′p(−i)
. This implies

A−1
i =

(
A11 L̃(−i)L

′
(−i),i

L(−i),ĩL
′
(−i)

L(−i),iL
′
(−i),i

+ l2ii

)
. (A.3)

Comparing expressions (A.1) and (A.3), we have A12 = L̃(−i)L
′
(−i),i

,

and A22 = L(−i),iL
′
(−i),i

+ l2ii. The vector L(−i),i thus can be obtained

from solving an upper triangular linear system, the computation of

which is O(p2
(−i)

).

A.2 Mean Field Approximation for Exchangeable Ising Models

For a general Ising model on γ , let E(γ ) be the energy function,

defined as E(γ ) = −(
∑

i aiγi +
∑

ij bijγiγj), and let

ψ(λ) = − log

[∑

γ

e−E0(γ )−λ(E(γ )−E0(γ ))

]
,

where E0 is a “simple” energy function which we will define later.

Then, ψ(a,b) = ψ(1). One can verify that ψ(λ) is concave in λ, which

gives us the inequality ψ = ψ(1) ≤ ψ(0) + ψ̇(0), and thus

ψ(1) ≤ − log

[∑

γ

e−E0(γ )

]
+ E0[E(γ ) − E0(γ )].

By E0, Var0, or P0, we mean expectation, variance, and probability

under the density p(γ ) = e−E0(γ )/
∑

γ e−E0(γ ). The above inequality

is true for every energy function E0, and hence it is still true when we

optimize over E0:

ψ(1) ≤ min
E0∈F

{
− log

[∑

γ

e−E0(γ )

]
+ E0[E(γ ) − E0(γ )]

}
. (A.4)

The idea in mean field approximations is to choose a class of energy

functions F simple enough so that the minimization in (A.4) is an-

alytically tractable. Often, the choice is the class of linearly additive

energy functions:

E0(γ ) = −
∑

i

hiγi, (A.5)

with hi being freely varying parameters. With this parameteriza-

tion, optimization over F is equivalent to optimization over h =

(h1, . . . ,hm).
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Let φ(h) be the function being minimized in (A.4) for F defined as

in (A.5):

φ(h) = − log

[∑

γ

e
∑

i hiγi

]
−

∑

i

(ai − hi)E0(γi) −
∑

ij

bi,jE0(γiγj).

Since E0(γi) = P0(γi = 1) = ehi

(1+ehi )
, and E0(γiγj) = e

hi+hj

(1+ehi )(1+e
hj )

,

we have

φ(h) = −
∑

i

log(1 + ehi ) −
∑

i

(ai − hi)
1

1 + e−hi

−
∑

ij

bi,j
1

(1 + e−hi )(1 + e−hj)
.

Since we assume that the vertices are exchangeable, the optimizing h

must have hi = h, and hence, we have a one-dimensional optimization

problem:

φ(h) = −n log(1 + eh) − n(a − h)(1 + e−h)−1 − Nb(1 + e−h)−2,

where N is the total number of edges. We let N = kn, where k =
∑

j bij

is the sum of weights for edges coming out of each vertex in the graph,

and to make things simpler we reparameterize t = (1 + e−h)−1. With

a slight abuse of notation, this gives us

φ(h)

n
= φ(t) = log(1 − t) −

(
a + log

1 − t

t

)
t − kbt2. (A.6)

For any given a, the phase transition points are the b∗’s that introduces

a change in the nature of the minimizer t of Equation (A.6), as dis-

cussed in Section 3.1.

[Received April 2008. Revised January 2010.]
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