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Econometrica, Vol. 65, No. 1 (January, 1997), 59-73 

BAYESIAN VECTOR AUTOREGRESSIONS WITH 
STOCHASTIC VOLATILITY 

BY HARALD UHLIG1 

This paper proposes a Bayesian approach to a vector autoregression with stochastic 
volatility, where the multiplicative evolution of the precision matrix is driven by a 
multivariate beta variate. Exact updating formulas are given to the nonlinear filtering of 
the precision matrix. Estimation of the autoregressive parameters requires numerical 
methods: an importance-sampling based approach is explained here. 

KEYWORDS: Stochastic volatility, Bayesian vector autoregression, conjugacy, multivari- 
ate beta distribution, vector autoregression. 

1. INTRODUCTION 

THIS PAPER INTRODUCES Bayesian vector autoregressions with stochastic volatil- 
ity. In contrast to multivariate autoregressive conditional heteroskedasticity 
(ARCH), the stochastic volatility setup here models the error precision matrix as 
an unobserved component with shocks drawn from a multivariate beta distribu- 
tion. This allows the interpretation of a sudden large movement in the data as 
the result of a draw from a distribution with a randomly increased but unob- 
served variance. Exploiting a conjugacy between Wishart distributions and 
multivariate singular beta distributions, the integration over the unobserved 
shock to the precision matrix can be performed in closed form, leading to a 
generalization of the standard Kalman-Filter formulas to the nonlinear filtering 
problem at hand. Estimating the autoregressive parameters requires numerical 
methods, however. The paper focusses on an importance-sampling based ap- 
proach. 

Bayesian vector autoregressions have been studied and popularized by, e.g., 
Litterman (1979), Doan, Litterman, and Sims (1984), and Doan's RATS Manual 
(1990). ARCH models have been introduced by Engle (1982); see the review in 
Bollerslev, Chou, and Kroner (1992). Stochastic volatility models provide an 
alternative approach to model time variation in the size of fluctuations. The 
stochastic volatility model used here is similar to Shephard (1994), whose model 
is a univariate, non-Bayesian and non-autoregressive special case of the model 

1I am deeply indebted to Niel Shephard, who found a mistake-now fixed-in Theorem 2 in an 
early version of this paper, as well as to Chris Sims. I am grateful to Gregory Chow, Robert Engle, 
Jum-Keung Kwan, Robin Lumsdaine, Dan Nelson, Jecek Osiewalski, Pierre Perron, Peter Rossi, 
Peter Schotman, Mark Steel, Mark Watson, and Arnold Zellner as well as seminar participants at 
various universities for comments on earlier versions of the paper. I am grateful to Peter Rossi for 
allowing me to use his computer. I am grateful to three careful referees and the co-editor for helpful 
comments. I am grateful to Princeton University, to Werner Hildenbrand and the SFB 303 at the 
University of Bonn as well as the University of Chicago for their hospitality and the opportunity to 
complete this research. This paper is dedicated to my daughter Anjuli, who was born when I wrote 
the first draft. 
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60 HARALD UHLIG 

proposed here. In contrast to other Bayesian approaches to stochastic volatility 
(see Jacquier, Polson, and Rossi (1994)), the method here results in exact 
updating formulas for the posterior in the sense that the integration over the 
unobserved shocks to the precision matrices is done in closed form. The 
conjugacy result needed for this step is established in Uhlig (1994b). 

For simplicity, the main ideas are explained in Section 2 for the univariate 
case with the general case presented in Section 3. Section 4 discusses how to 
analyze the posterior numerically. Section 5 concludes. Appendix A lists some of 
the distributions used and fixes notation. Appendix B contains the proofs and 
one additional theorem. Appendix C proposes a prior. 

2. A SIMPLE CASE 

Consider the following simple version of the model studied in this paper: 

(1) yt=yt-1+ht 1"2et, with -.4A(o,1), 

(2) ht+1=hht9t/A, with Otg-?1((v+ 1)72,1/2), 

where all Ett's and oE's are drawn independently, where t = 1, ..., T denotes time 
Yt E R, t = 0,..., T, are data and observable, A > 0, v > 0 are parameters, and 
1Wi(p, q) denotes the (one-dimensional) beta distribution on the interval [0,1]. 

Equation (2) specifies the unobserved precision ht of the innovation h-1/26t 
to be stochastic. The model thus belongs to the family of stochastic volatility 
models; see, e.g., Jacquier, Polson, and Rossi (1994). The model captures 
autocorrelated heteroskedasticity, a feature often found especially in financial 
data series. Another popular specification which does so is the ARCH-family of 
models. A GARCH(1, 1) model, for example, replaces h -1/2 in (1) with o-, and 
replaces (2) with 

(3) rt2+,1 = c + Aut2 t _u;s2 

where t, A, and ,u are parameters. It thus ties the innovation in the variance to 
the size of the current innovation aotet. Given Et-1 and ht-, or 0t-1, an 
unusually large innovation in (2) can result from a randomly decreased ht as 
well as a large Es, whereas the GARCH-model (3) only allows for an unusually 
large draw et. 

To analyze the system (1) to (2) in a Bayesian fashion, one needs to choose a 
prior density i0( 3,9 hl) for p3 and hl, given yo. The goal is to find the posterior 
density lrT( /3, hT+ 1) given data YO, ... , YT. We restrict the choice of priors to be 
of the following form. Fix A > 0 and v > 0 (for a more general treatment, see 
Section 3). Choose bo E R, no > 0, S2 > 0, and a function go( 1,) > 0 to describe a 
prior density 

7TO( , hl) a9go( 1)fNG( 8, h I bo, Ano, so ,v), 
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BAYESIAN VECTOR AUTOREGRESSIONS 61 

where fNG denotes the Normal-gamma density; see Appendix A. The form of 
the prior allows for a flexible treatment of a root near or above unity via the 
function go( ,3); see Uhlig (1994a). 

Adapting the Bayesian updating formulas (12), (13), (14), and (15) derived 
below in Section 3 to the simple model above results in 

(4) nt Ant-, +Yt-1, 

(5) bt =( Abt- lnt- 1 + YtYt- 1 )Int 

A 
(6) st= Ast-1 + -et2( -yt2 1/nt), 

where 

et =Yt -bt- Yt- 
and 

(7) gt( /3) =g ( 3)(( /3I nt + jst) 

for t = 1, ... , T. These deliver the posterior density 

TT(O3hT+?) agT()fNG( 3,hT+l IbT' AnT,ST, V). 

Equations (4) and (5) are the recursion formulas or Kalman Filter formulas for 
geometrically weighted least squares. Different observations receive different 
weights according to the size of st via equation (7). Equation (6) prescribes to 
find the "estimate" st of ht+ essentially via a geometric lag on past squared 
residuals. Notice the formal similarity to GARCH: ignoring the term (1 - 
Yt - I/nt), equation (6) resembles equation (3) rewritten in terms of observables, 
using t = O and ,u= A/ v. 

The key for proving the validity of these updating formulas here or in the next 
section is Theorem 2 and its proof (see Appendix B): as the unobserved shock 'At 
occurs, one needs to do a "change of variable" from d/3dhtdUt to di3dht+ldzt 
for some suitably defined Zt. Thanks to the conjugacy between the beta and the 
gamma distribution, integration over dzt can be performed in closed form, 
resulting in an integration constant depending on /3 and the data. This constant 
is captured by the function gt( /3). 

Shephard (1994) finds similar formulas with a classical interpretation for (1) to 
(2) without the autoregressive term /3Yt -. To include avutoregressive terms, 
Shephard (1994) suggests approximate filtering formulas. In contrast, the 
Bayesian formulas here are exact. They do, however, require numerical tech- 
niques such as importance-sampling for the estimation of /3. There is no 
treatment of the multivariate case in Shephard (1994). 

For A = v/( v + 1) we have A/ v = 1- A in equation (6). For A = (v + 1)/( v + 
2) the precision ht is a martingale E[h t+ I h] = ht on the positive part of the 
real axis. Shephard (1994) suggests setting A =er, where r = E[logat ]. This 
avoids the problem that otherwise ht -* oc a.s. or ht -* 0 a.s. (see Nelson (1990)) 
and makes log ht a random walk. 
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62 HARALD UHLIG 

For v -* oo one obtains a model where h1 is known a priori, h1 = so1, and 
where ht+1 = ht(v + 1)/(A(v + 2)). In other words the model allows for the 
greater time variation in the precision, the smaller the parameter v. 

Figure 1 shows parts of the densities for A/,9t, which are the multiplicative 
disturbances of the variance oU2 h- 1. It shows that (2) typically leads to a slight 
decrease in the innovation variance except for occasional and potentially large 
increases. 

3. THE GENERAL MODEL 

Consider the VAR(k)-model with time-varying error precision matrices 

(8) Yt B(OCt + B(t-1 +B(2)Y-2 + + +B(k)yt + /(Ht[) 1et 

with Et /(O, Im,,), 

(9) Ht+1=91(Ht)'O9tW(Ht)/A, with 0t- ',m((v+c+km)/2,1/2), 

where t = 1,. ..,Tdenotes time, Y, t = 1 - k,..., T, size m x 1, contains observ- 
able data, and Ct, size c x 1, denotes deterministic regressors such as a constant 
and a time trend. The coefficient matrix B(o) is of size m x c, the coefficient 
matrices B(i), i = 1,...,k, are of size m x m, v > m - 1 and A > O are parame- 
ters, and all et, t= 1,...,T, size m x 1, and at, t = 1, ...,T, size m x m, are 
independently distributed. 91(H) denotes the upper Cholesky factor of a positive 
definite matrix H and Wm(p, q) denotes the multivariate beta-distribution. This 
distribution has been chosen for et to exploit a conjugacy between that 
distribution and the Wishart distribution. The distribution sm(p, q) is tradition- 
ally only defined for p > (m - 1)/2 and q > (m - 1)/2; see Muirhead (1982). 
This definition has been extended along with the conjugacy results by Uhlig 

6- v-=10 

'N V=2 

2- 

,V=1 
0 
0.5 1 1.5 ,/O 2 

FIGURE 1.-Distribution for A/0 where A = v/(v + 1). A/0 is the multiplicative, 
unobserved shock to the variance o-t2 in the univariate model; see equation (2). 
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BAYESIAN VECTOR AUTOREGRESSIONS 63 

(1994b) to allow for values q = n/2 for any integer n ? 1; see Appendix A for 
the details pertinent to this paper. Equation (9) is one of two rather natural 
generalizations of the multiplication of two real numbers in equation (2) in 
order to guarantee the symmetry of the resulting matrix H,+ 1. The other natural 
generalization switches H, and et in (9): it turns out that only (9) works for the 
proof of the updating formulas. 

Let Xt = [Ctyt' lytY-2 ... Yt-k]' and B =[B(o)B(l)B(2) ... B(k)]. Rewrite the first 
equation (8) more concisely as 

Yt=BXt+W(Ht-71)'et with et -X(O,nIm). 

Let 1 = c + km. Consider the following algorithm, which generalizes the Kalman 
Filter to the nonlinear filtering problem at hand by including an exact updating 
formula for the mean precision matrix. This algorithm finds the posterior2 

VT(V, A, B, HT+1) 

a Kw(ANT,ST, 
V 

)gt(B)fNw(BgHT+l IBT, ANT,ST, V) 

in v, A, B, and HT+ 1 for a prior io(v, A, B, H1) of the form 

7T0(v, A, B, Hj) 

a w ( v mg0(B)fNw(B9Hj IA) B 0 ANso,So v), 

given the initial observations Yt', t = 1 -k,...,0. If v and A are treated as 
known, prior and posterior are 

(10) ITO(B,Hl) ago(B)fNw(B,Hl IB0 ,ANO,So0 v), 

(11) ITT(Bg HT+j) agT(B)fNw(Bg HT+j IBT, ANT,ST9V). 

The General Method 

1. To fix the prior, choose an m x i-matrix BO, a positive definite 1 x i-matrix No 
and a positive definite m x mr-matrix SO. Choose a measurable function go(B) ? 0. 
Fix v and A or choose a measurable function qft( v, A) ? 0, v > m - 1, A > 0. 

2. For each t = 1, ..., T, calculate et =Yt-BtXt and 

(12) Nt=ANt-1+XtXt, 

(13) Bt = (AB_t1Nt-, + YtXt)Nt 9 

2See Appendix A, equations (21), (22) for the definition of the Normal-Wishart density fNw and 
the integrating constant KNW. 
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64 HARALD UHLIG 

(14) St = ASt-1 + -et(1 -XtN7tX)e, 

(15) gt(B) =gt-1(B)I(B-B-t)Nt(B-H)' + A S 1"2, 

17Fm(Ov+ 1 + )72) A(?/2qJ1( V, A). 
(16) qi(v,) = - (V I + 1)/2) k(' + v)/2 ( 

In equation (16), Fm( ) is the multivariate gamma function, defined in Muirhead 
(1982, Definition 2.1.10). In practice, one has to recalculate step 2 for each v, A, 
and B in the domain of the functions qi0( v, A) and go(B). Note that Nt-l can be 
computed numerically cheaply via 

Nt-' = (Nt- -Nt- XtXtNt-jI?/(XtNt-i \Xt + k))/Ak 
as can be verified directly or with rule (T8), p. 324 in Leamer (1978). The proof 
that the formulas above calculate the posterior follows directly from the two 
theorems below. 

THEOREM 1: Let a prior for v > m - 1, A > 0, the m x 1 coefficient matrix B, 
and the m(m + 1)/2 distinct elements of the precision matrix H be given by a 
density proportional to 

q(v, A) 

KNw(N, S, ,, m) g(B)fNw(B, HI B, N, S, v), 

where N and S are positive definite and qf(v, A)> 0, g(B) ?0 are measurable 
fuinctions. Suppose additionally, that there is one observation of data X and Y 
(whereXisl x 1 and Yismx 1), obeyingY=BX+4(H 1)', with EV4(O,Im). 
Then the posterior for v, A, B, and H is given by a density proportional to 

qfr(v, A) -gg 

N(N, Sg 1 ) (B)fNw (B, H I B, , v + 1), 

where N and S are positive definite and where N = N + XX' and B =(BN + 
YX')N'- 1 as well as 

v 1 
S = S + e(l -X'N-X)e', 

v+ 1 v+ 1 
where e = (Y-BX). 

The proof is in Appendix B. 

THEOREM 2: Let a prior for v > m - 1, A > 0, the m x 1 coefficient matrix B and 
the m(m + 1)/2 distinct elements of the precision matrix H be given by a density 
proportional to 

q (v, A) 
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BAYESIAN VECTOR AUTOREGRESSIONS 65 

Suppose additionally, that there is one unobserved shock to the precision matrix 
obeying H = W(R)'0 W(H)/A, and -m((v + 1)/2,1/2), where Wm(p, q) is 
the multivariate beta-distribution; see AppendixA. Then the posterior density in v, A, 
B, and H is proportional to 

(N, S, ) g(B)fNw(B, H I B, N,S , v), 

whereN= AN, and S = A(v + 1)/vS, as well as 

g(B) =g(B)I(B -B)N(B -B)' + -Sl -'2, 9 ~~~~~~~A 

and 

qf(v,k): 
m(( v + 1)/2)kk) 

The proof is in Appendix B. The updating formulas also show that the 
ordering of the variables does not matter in equation (9) despite the use of the 
Cholesky factorization. For suppose that one instead considers the transformed 
data Yt =AY, where A is an orthogonal matrix. Define 

A [IC, c Oc, kml A 
?km , c -[k O A. 

The coefficient matrix for the transformed system is B=ABA' and the list of 
regressors is X2 =AX,. Thus, modify the prior accordingly as well, using Bo= 

_v - v v - - 

ABOA, No =ANOA', So =ASOA', and gO(B) =go(A'BA'). It is then easy to 
check that the updating formulas (12),.. .,(16) applied to the transformed 
system simply result in the transformation of the updated parameters of the 
original system. In particular St =AStA', implying that reordering the system 
does not matter for the method proposed above. This is somewhat surprising, 
since in general, ZI(AHA') +A ((H)A' for arbitrary positive semidefinite matri- 
ces H. 

4. NUMERICAL ANALYSIS 

To use the method, one first needs to select a prior. For the analysis of 
macroeconomic time series, we suggest using a modification of the Minnesota 
random walk prior; see Doan, Litterman, and Sims (1984). That is, we suggest 
setting the prior mean Bo to correspond to a random walk specification and to 
choose, say, v = 20 for quarterly data and A = v/(v + 1). More details are in 
Appendix C. Having selected a prior, the method above delivers the posterior, 
which needs to be analyzed numerically. We focus entirely on the case where A 
and v are treated as known and where go(B) 1, i.e., where the prior is given 
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66 HARALD UHLIG 

by equation (10). Numerical methods are needed, since the posterior (11) is 
proportional to a Normal-Wishart distribution scaled with the function gT(B). 
We use importance-based sampling to analyze the posterior; see Geweke (1989). 
First, integrate over HT? 1 to find the marginal posterior 

1 T 
, 

(17) log(j"T,marg (B)) =const+ - 
E logl(B-B )AN1(B-Bt)' + A-Si 

- logl(B- BT)NT(B -BT) + j STI. 

Conditional on the coefficient matrix B, the precision matrix HT+1 has a 
Wishart distribution ?m(l + v, l}), where 

(18) l21 = A(B -BT)NT(B -BT)' + VST 

Note that the marginal posterior is a product of generalized multivariate 
t-distributions and hence similar to the kind of distributions occurring in the 
study of common parameters; see Box and Tiao (1973, Chapter 9). While it can 
have multiple peaks in principle, we proceed under the assumption that there is 
a single peak: multiple peaks or a very flat single peak should be interpreted as 
indicators of misspecification (e.g., for a break in the sample). 

Find the maximum of (17) with the following modified Newton-Raphson 
method. Let 

l+ v v -1 1T v 1 

J =- 2NT 2 -ST - ENt- t A St, 2 NT A 2 t=i \A 

be the sum of all second derivatives of the individual pieces of (17) evaluated at 
their individual maximum. Set B(?) - BT and iterate on 

vec(B()) = vec(B(n 1)) dvec(B) log(IrT marg(B( ))) 

until convergence, where the gradient can be computed with Theorem 3 in 
Appendix B. 

Let B* denote the maximum of the posterior and let J* be the Hessian of 
(17) at vec(B*) (see Theorem 3 in Appendix B). Use as importance sampling 
density a t-distribution centered at B* with Hessian J*, whose degrees of 
freedom are chosen to ensure fatter tails than those of the marginal posterior 

rT,marg(B): choose v* with 0< v* <T +1+ v-ml, preferably close to the 
upper bound. Choose the simulation sample size n. Generate i.i.d. draws 
Bj,i = 1, .. ., n, from the multivariate-t importance sampling density 

I(B)a (1+vec(B]B* * )-(v*+ml)/2 
I(B) a 1 + vec(B -B*)' V* +m Ivec(B -B*)| 
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BAYESIAN VECrOR AUTOREGRESSIONS 67 

Given Bi, draw Hi from a Wishart distribution according to (18). Calculate the 
weight function, whose logarithm is given by 

log(w(Bi, Hi)) const + log(IrT marg(Bi)) - log(I(Bi)) 

and where the constant should be chosen so that w(B*, ST1) 1 for numerical 
reasons. Now one can proceed as in Geweke (1989) and approximately calculate 
4 = E1r[4 (B, HT+ 1)] for a given measurable function of interest O(B, HT+ 1) 
(provided that var,,T[ O(B, HT+ 1)] < oo) via the weighted simulation sample 
average 

Yn14(Bi9,HT+j,i)w(BiHT+ 1,i) 
(n = E1 =j1W(Bi9SHT+j,i?) 

The method has been successfully applied in Uhlig (1996). For the pur- 
poses here, it may be interesting to highlight a numerical issue that arose 
in an application of the method to a four-variable system with k=5 lags. 
With a constant and a time trend, B now contains 88 entries. We chose a 
prior as specified in Appendix C. To analyze the posterior, we proceeded as de- 
scribed above, using v* = 72 and n = 4000 random draws. When looking at one- 
dimensional slices, there is almost no difference between the logarithm of the 
importance sampling density and the density of the posterior. Nonetheless, the 
small remaining differences pile up quickly due to the high dimensionality of the 
problem. Figure 2 shows a scatter plot of the logarithm of the weights for the 
4000 random draws. The weights can differ by orders of magnitude: examining 

-20 

? -1X F +++ +t~~~~~~~~+ 

C) -140 + 
o -140 I . . 

.j~ -60 

+~~~~~~~~~~~ 
+ + 

+ 

-120 + + 

" -140 
-35 -30 -25 -20 -15 -10 -5 0 

log(weight) 
FIGURE 2.-Scatterplot for the 4000 generated draws from the importance sampling density. 
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68 HARALD -UHLIG 

the raw numbers shows that the draw with the largest weight received 5.3% of 
the sum of all weights, the 109 most heavily weighted draws constitute 50% of 
the mass and the 741 draws with the highest weights make up 90%. While these 
numbers indicate a substantial unevenness in the weight distribution, they also 
indicate that inference based on these draws is nonetheless likely to be sensible 
since several hundred draws rather than just a few will "matter" for final results. 
In 88 dimensions as here, it is, in general, easily possible that importance 
sampling assigns practically the entire weight to a single point: thus, Figure 2 
looks actually rather good and indicates that the procedure described above 
should work in practice. 

5. CONCLUSION 

This paper introduced Bayesian vector autoregressions with stochastic volatil- 
ity, deriving in closed form the Bayesian posterior, when the error precision 
matrix is stochastically time-varying. The key to the proof was a recent result 
concerning the conjugacy between singular multivariate beta distributions and 
Wishart distributions (see Uhlig (1994b)), making it possible to integrate out the 
disturbance to the precision matrix. Posterior-based inference requires numeri- 
cal methods: the paper examines an importance-sampling based approach. 

Center for Economic Research, Tilburg University, Postbus 90153, 5000 LE 
Tilburg, The Netherlands. 

Manuscript received August, 1992; final revision received January, 1996 

APPENDIX A: 

SOME DISTRIBUTIONS AND THEIR PROPERTIES 

This appendix has the purpose to fix the notation and to review some useful facts. Additional 
information can be found in Zellner (1971), Leamer (1978), Muirhead (1982), and Uhlig (1994b). 

In the proof of Theorem 2 below, we need the density of the rank-1 singular Wishart distribution. 
Uhlig (1994b) has shown this density to be 

,,(-m + 
1)/21I; 1-m /2 / 1 

2m/2F(_)l /2 2 j 

with respect to the volume element (see Uhlig (1994b)) on the space of rank-1 positive semidefinite 
m x m-matrices, where ; is the unique nonzero eigenvalue of Z. 

The singular multivariate beta distribution Wm(P, 1/2) needed in equation (9) is defined and its 
density calculated in Uhlig (1994b). Let 9 = Im - 9. The density for 9 with respect to the volume 
element (see Uhlig (1994b)) on the subspace of positive semidefinite rank-1 matrices, where Im - 
is positive semidefinite as well, is given by 

(20) fB,m,p,l/2(e) = T(m+l)/2 F(1/2 ) a-m/2II_ - 
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BAYESIAN VECTOR AUTOREGRESSIONS 69 

where e is the unique nonzero eigenvalue of (. One can show that E[ 9] = p/(p + q)I using the 
conjugacy with the Wishart distribution established in Uhlig (1994b). 

To describe priors and posteriors, Normal-gamma distributions and Normal-Wishart distributions 
are needed. The Normal-gamma density for a coefficient 3 e R and a precision h is given by 

fNG( B, hlb, n, s, v)= KNG(n, s, v)h(v- 1/2exp - (,B + b) nh- vsh) 

where 

KNG(fl,s, v = 
n1/2( 

vs)2)Fv/2 

(2X) (2) 

is the appropriate integrating constant. The Normal-gamma distribution specifies that the precision 
h follows a gamma distribution F(s, v), and that, conditional on h, the coefficient J3 follows a 
Normal distribution 'b, (nh) 1). 

Let N be 1 x I and positive definite, let S be m x m and positive definite, let B be a 
m x i-dimensional matrix, and let v 2 m. The Normal-Wishart distribution for a m x I dimensional 
coefficient matrix B and m x m precision matrix H is given by the density 

(21) fNw(B, HI B, N, S, v) = KNW(N, S, v, m)IHI(l+ v-m - 1)/2 

exp(- -tr((B - B)N(B - B)' - vS)H) 

where 

(22) KNw(N, S, v, m) = Nl(2 ) I )21 /2 

is the appropriate integrating constant and vec(-) denotes columnwise vectorization. The Normal- 
Wishart distribution specifies that the precision matrix H follows a Wishart distribution 
1m(v, (vS)-) with (E[H])-1 =S, and that, conditional on H, the coefficient matrix B in its 

vectorized form vec(B') follows a Normal Distribution A'(vec(B'), H-' ? N- '). This definition is a 
slight generalization of Leamer (1978). The Normal-Wishart distribution is popular in traditional 
Bayesian multivariate regression analysis; see Zellner (1971). 

APPENDIX B: PROOFS 

PROOF OF THEOREM: The proof proceeds by directly calculating the densities. Note first, that N 
and S are indeed positive definite. With equation (21), the posterior density, obtained by multiplying 
the prior with the likelihood, is proportional to 

IT(v, A, B, H) a q1(v, A)g(B)IHI(t+ V-m)/2 

exp( - -tr((Y- BX)(Y- BX)' + (B - B)N(B - B)' - vS)H) 

a 4f(v, A)g(B)IHI(l+ v-m)/2 

exp(-{tr((B -B)N(B -B)' + (v+ 1)S + p(B))H) 

where 

+(B) = (B -B)N(B -B)' + (Y-BX)(Y-BX)' - (B -B)N(B -B)' 

-(Y-BX)(1 -X'N-1X)(Y-BX)'. 

It remains to show that +(B) 0 or, equivalently, that (i) +P(B) = 0 and that (ii) d(k/dBij 0 for i, j. 
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The first part follows with 

(B -B)N 2N(B -B)' = (Y- BX)X'N- 1X(Y- RX)'. 

The second part is easy to see. Q.E.D. 

PROOF OF THEOREM 2: For notation see Appendix A, Muirhead (1982), and Uhlig (1994b). We 
first give the proof for m 2 2. The idea is to follow the proof of Theorem 7 in Uhlig's (1994b) "in 
reverse" and additionally keep track of terms coming from the Normal density in the Normal-Wishart 
distribution. Recall the density for 6 = I,- on the space of rank-1 positive semidefinite matrices, 
given in equation (20). The posterior in B, H, 0, v, and A is 

Tr(v,A,kB, H, 6) 

a 4/(v, A)g(B)jHj(1+ v-m)/2 

exp(--tr((B -B)N(B -B)' + (v + 1)S)H) 

Fm((V + 1)/2) -m/2j0j(v+1-m-1)/2dvAdA A (dB) A (dH) A (dM) 

where 6 is the unique nonzero eigenvalue of 6. Let H = W(H)'e W(H) and Z = W(HY6 W(H). 
Note that H + Z = H and that Z is positive semidefinite and of rank 1. Let ; denote the unique 
nonzero eigenvalue of Z. It follows from Theorem 4 in Uhlig (1994b), that 

(dH) A (dZ) = (dH) I (dZ) = (;/') It(H)I(dH) A (dW ). 

Note that H = H/A and (dH) = A-m(m + )/ 2(dH). Exploiting I (H)I = IHI'/2, it follows that 

Ir(v, A, B, H, Z) 

a qi(v, A)g(B) m / 2 I(I+ v-m - 1)/2 

exp(--tr(((B -B)N(B -B)' + vS)H+R-'Z))dv A dA A (dB) A (dH) A (dZ) 

where 

if(v,Ak) =17m((v +I1+ 1)72) Am (l+ v)/ 24,( V, A) 
rm((v + )/2) 

and R' =(B - B)N(B - )' + (v/A)S. Using the density given in equation (19) for n = 1 and 
integrating over (dZ), one obtains the marginal posterior 

IT(v,kA, B, H) a +(v, A)g(B)IRl1/21il(l+ v-m-l)/2 

exp( - 'tr((B - B)N(B - B)' + vS)H)(dB) A (dH) A dv A dA. 

For m = 1, the same calculations go through verbatim. In that case, the formulas for the densities of 
singular multivariate Wishart and beta distributions collapse to the usual densities of univariate 
gamma and beta distributions with e = 6 = 1 - 6?, = Z, and 91(H) = HI/2, H E R+. Q.E.D. 

THEOREM 3: Let B be m x 1, and N be 1 x 1 and positive semidefinite, and Z be m x m and positive 
definite. For B E Rm x 1, define 

f(B) log(I(B - B)N(B - )' + ZI). 

For 1 < i, T < m, 1 <j, ? < 1, define Eij to be the m x l matrix with a 1 as its (i, j)-enty and zeros 
everywhere else, and 

A = (B-B-)N(B-B-)'+ Z)-g 

Cij =EjN(B -T)' + (B -R)NEij, 

'j ,J= Eij NE 'J+ E[i NElj. 
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Then, 

df 
= (vec(A))'vec(Ci.) 

dB11 

and 

d 2f 
B = (vec(A))'vec(Dij, :-) - (vec(AC[-A))'vec(Cij). 

In particular, at B = B, 

d 
-- =NOZ-1 

dvec(B) dvec(B)' 

PROOF OF THEOREM 3: This follows from basic rules of calculus involving matrices. To provide 
some details define h: R -- Rl" by 

h(x) a vec((B -B +xEij)N(B -B +xEij)' + Z). 

Define the linear function mat: R1" --m Rlxm to be the inverse of vec(-) and let r: R - R, r(v) = 

log(Imat(v)I). Calculate 

df d d 
= 

=-rv=h(0)dh1x=h 
= (vec(A))'vec(Ci). 

To find the second derivative, use the rule 

dM-' dM 
= -M- -m- 

dt dt 

to show that 

aB ((B-B)N(B-B)' +Z) =-AC--A 

and thus the result with some additional algebra. Q.E.D. 

C. PRIOR SELECTION 

The selection of a prior in Bayesian time series analysis has recently been subject to much 
debate; see Phillips' (1991) critique of Sims and Uhlig (1991), his discussants, and the summary in 
Uhlig (1994a). For the analysis of macroeconomic time series we suggest the following modification 
of the "Minnesota prior" in Doan, Litterman, and Sims (1984) or Doan's RATS manual (1990). The 
main difference is that we choose values for v and A and we include a constant and a time trend in 
the regression. 

Use logarithms of the levels of the time series except for series expressed in per cent (like interest 
rates), which are used in their raw form. Include a constant and a time trend, Ct = [lt]' and c = 2. 

Treat v and A as fixed at v = 20 for quarterly data and v = 60 for monthly data: this allows for a 
reasonable amount of time variation. Set A = v/(v + 1). Sensitivity analysis with respect to v and A 
is advisable. Set go(B) 1. Let S0 be the diagonal matrix of the average squared residuals from 
AR(1) univariate regressions for each included data series. This, of course, amounts to a first pass 
through the data, which, strictly speaking, is not legitimate. However, this "loss of m degrees of 
freedom" should not be big for coming up with a reasonable starting point So in most practical 
applications. Include between one and two years of lags (e.g., 5 lags for quarterly data). Let Bo be 
the random walk specification 

Bo = [Om, 2 Im Om ... Om ] 

This content downloaded from 128.135.47.203 on Thu, 9 May 2013 15:27:02 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


72 HARALD UHLIG 

Choose No to be block diagonal. The first block is of size 2 x 2 with 

[No(1, 1) No(1,2)1 _ r 3 _-32/21 

LNo (2, 1) No (2, 2) L-32/2 33/3 ' 

The second block is of size (km) x (km) and diagonal with 

NO(2 + m(l - 1) + i, 2 + m(l - 1) + i) 

Y0o2ivll2 (i=l..;l=l. k). 

Here, gj 2 0, ;2 2 0, and 3 2 0 are hyperparameters and Y0 is the date-0 data vector, where we 
assume that all Y0,, * 0, i = 1 m.. . The motivation for this particular form of the prior can be seen 
from the updating equation (12) for N, at A = 1 and from the interpretation of N, as precision along 
rows of B; see equation (21) given in Appendix A: Vj and 6 correspond roughly to the number of 
presample dummy observations, starting from a flat prior: given N= 0 at time t =- 3, and ;3 

artificially created and added observations (dummy observations) for t = - t + 1, . 0, for which 
the linear relationships hold exactly at the prior mean Bo, the updating formulas will result in 
No(i, j), i = 1, 2, j = 1, 2 as defined above. A similar argument can be given for V1 2 determines how 
"fast" higher lags are excluded. We suggest using Vj = 5, ; = 2, and 6 = 8. Note that we have 
;2 = 2 > 0 here, seemingly in contrast to standard BVAR methodology as in Doan, Litterman, and 
Sims (1984). The reason is that the elements of N denote precision here, not variance as usual. Our 
choices for the hyperparameters are quite weak, since the prior imposed that way is swamped in the 
first few observations; see equation (12). Rescaling of a time series is automatically taken care of 
with this prior in practice: writing an interest rate of 3.1% as 0.031 or as 3.1, say, results in the same 
inference. 
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