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Abstract

In this paper, we address the problem of synthesizing
novel views from a set of input images. State of the art
methods, such as the Unstructured Lumigraph [4], have
been using heuristics to combine information from the orig-
inal views, often using an explicit or implicit approxima-
tion of the scene geometry. While the proposed heuristics
have been largely explored and proven to work effectively,
a Bayesian formulation was recently introduced [28], for-
malizing some of the previously proposed heuristics, point-
ing out which physical phenomena could lie behind each.
However, some important heuristics were still not taken into
account and lack proper formalization.

We contribute a new physics-based generative model and
the corresponding Maximum a Posteriori estimate, provid-
ing the desired unification between heuristics-based meth-
ods and a Bayesian formulation. The key point is to system-
atically consider the error induced by the uncertainty in the
geometric proxy. We provide an extensive discussion, an-
alyzing how the obtained equations explain the heuristics
developed in previous methods. Furthermore, we show that
our novel Bayesian model significantly improves the quality
of novel views, in particular if the scene geometry estimate
is inaccurate.

1. Introduction
We address the problem of novel view synthesis in the

domain of Image-Based Rendering (IBR) [19], where the
aim is to synthesize views from different viewpoints using
a set of input views in arbitrary configuration. Most of the
methods from the state of the art use heuristics to define
energies or target functions to minimize, achieving excel-
lent results. A major breakthrough in IBR was the inspir-
ing work of Buehler et al. [4]. They define the “desirable
properties” which any IBR algorithm should have. Those
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Figure 1. A depth distribution along an optical ray of camera vi
will propagate differently depending on the viewing angle of the
rendered camera u or u′. The bigger the angle, the bigger the
projected uncertainty will be.

directives still prevail throughout the current state of the art.
Recently, however, the use of the Bayesian formalism

has been introduced in IBR techniques, with the work pro-
posed by Wanner and Goldluecke [28]. They provide the
first Bayesian framework for novel view synthesis, de-
scribing the image formation process with a physics-based
generative model and deriving its Maximum a Posteriori
(MAP) estimate. Moreover, their variational method does
not only address the problem of novel view synthesis. It
directly addresses the synthesis of new super-resolved im-
ages, and provides a solid framework for other related prob-
lems, namely image denoising or image deblurring.

Interestingly, although [4] and [28] have addressed the
same problem, their theoretical results do not converge into
a unified framework. On the one hand, the guidelines dic-
tated by Buehler et al. in [4] have proven to be very effec-
tive, but lack a formal reasoning supporting them. More-
over, it is unclear how the balance between some of the de-
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Figure 2. View D is generated from cameras Ci using [28]. Left:
camera C2 will be favored over camera C1 because of the fore-
shortening effect. However, the angular distance of the viewing
rays between D and C1 is much smaller than D and C2. Right:
configuration with a flat scene. All cameras will have the same
contribution, despite the different viewing angles.

sirable properties should be handled. An illustrative exam-
ple is the tradeoff between epipole consistency and resolu-
tion sensitivity. The former notes that “when a desired ray
passes through the center of projection of a source cam-
era it can be trivially reconstructed”, while the latter ob-
serves that “in reality, image pixels are not really measures
of a single ray, but instead an integral over a set of rays
subtending a small solid angle. This angular extent should
ideally be accounted for by the rendering algorithm.” The
epipole consistency is enforced with an angular deviation
term, while the resolution sensitivity is driven by the Ja-
cobian of the planar homography relating the views. Both
heuristics seem reasonable, but which one should domi-
nate? The choice of the weights between the properties is
user-tuned, and in their experiments, parameters have to be
adjusted differently depending on the scene.

On the other hand, the existing Bayesian model [28] is
able to explain some of the heuristics, but still violates oth-
ers which seem evident and have proven to work effectively.
For example, we do find an analytic deduction of the influ-
ence of the foreshortening effects due to the scene geometry
in the energy. The findings confirm the heuristic proposed
by Buehler et al. in [4]: it is driven by the Jacobian of the
transformation relating the views. However, when carefully
analyzing the final equations in [28], an important desirable
property proposed in [4] is still missing: the minimal angu-
lar deviation of the viewing rays is not enforced and even
violated in some cases, as illustrated in Fig. 2.

The differences between state of the art generative mod-
els and the energies proposed by generally accepted heuris-
tics is what has motivated the present work. Our goal is to
retain the advantage of the intrinsically parameter-free en-
ergies arising from the Bayesian formalism, while pushing
the image formation model boundaries of [28] and provide
a new model which is capable of explaining most of the cur-
rently accepted intuitions of the state of the art in IBR.

Contributions. The key theoretical contribution of the
proposed method is the systematic modeling of the error in-
troduced in the lambertian image formation process via the
inaccuracy in the estimates of the geometric proxy. We call
this inaccuracy depth uncertainty, referring to the depth es-
timates from the input images. In addition to this error, we
also consider the image sensor noise, commonly modeled
as Gaussian. We extensively analyze the theoretical impli-
cations of the obtained energy, discussing the formal deduc-
tion of the state of the art heuristics from our model. This
work provides the first Bayesian formulation explicitly de-
riving the heuristics of [4].

From a practical point of view, we numerically evaluate
the performance of our method comparing it to the best ex-
isting method within the Bayesian framework. Experimen-
tal results show that we achieve state of the art results with
regard to objective measures on public datasets. Moreover,
we are also capable of addressing super-resolution, capital-
izing on the general framework established in [28]. The
new model is not without a price, since its optimization is
less straightforward. However, existing methods allow us to
overcome this difficulty. Source code is publicly available
at http://sf.net/projects/cocolib/.

2. Related work
Since the early work on plenoptic modeling [14] pro-

posed by McMillan and Bishop, many IBR techniques have
been developed for several purposes, e.g. free-viewpoint
rendering [24], image morphing [30] or image view interpo-
lation [21] among others. The taxonomy done by Shum et
al. [19] shows that most IBR methods use a geometric
proxy, and they classify them in an “IBR Continuum” de-
pending on how much geometry they use. On one end of
this continuum we have methods which do not use any but
rely on a large collection of input images, like light field
rendering [13], and concentric mosaics [20]. On the oppo-
site end, we have rendering techniques relying on explicit
geometry, using accurate geometric models but few images,
such as layered depth images [17, 6] and view-dependent
texture mapping [9]. In between, we find methods using an
implicit representation of the geometry, such as view inter-
polation techniques [7, 27] relying generally on optical flow,
transfer methods [12] establishing correspondences along
the viewing rays using epipolar geometry, and the Lumi-
graph [11], which uses an approximate explicit geometry
and a relatively dense set of images.

When Buehler et al. introduced Unstructured Lumigraph
Rendering [4], they established the seven “desirable prop-
erties” that all IBR methods should fulfill: use of geometric
proxies, unstructured input, epipole consistency, minimal
angular deviation, continuity, resolution sensitivity, equiv-
alent ray consistency, and real-time. This work has been of
major importance in the community, and most IBR methods
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follow these guidelines.
Although Bayesian formalisms are a common way to

deal with spatial super-resolution in the multi-view and light
field setting [3, 10], they have only recently been introduced
to IBR with the work by Wanner and Goldluecke [28].
While their work provides a physical explanation for the
resolution sensitivity property, the minimal angular devia-
tion can be violated in their final equations. Most interest-
ingly, Vangorp et al. [26] empirically verify which proper-
ties in IBR methods are prone to create visual artifacts, and
one of their main results identifies angular deviation as a key
property to be taken into account to avoid visual artifacts.

Even if the performance achieved by state of the art 3D
reconstruction methods in estimating geometric proxies is
phenomenal, considering them as perfect seems too strong
of an assumption: even the best ones have an uncertainty
in their final estimates. Naturally, novel view synthesis is
prone to producing visual artifacts in regions with a poor
(implicit or explicit) reconstruction. One way to address
this problem is to improve the acquisition setting, as done
by Zitnick et al. [31]. They achieve a good enough recon-
struction, leading to impressive novel view synthesis. How-
ever, their setting is heavily constrained.

In [22], Takahashi studies the theoretical impact of errors
in the geometric proxy when rendering a new view from
2 images. We improve [22] by addressing more general
camera configurations and providing an efficient method
to find the solution, both explicitly left as future work. In
[23] Takahashi and Naemura use the depth uncertainty in-
formation to leverage the regularizer term (prior). But this
consideration does still not take into account the minimal
angular deviation, because distinct contributions for each
camera are not allowed. We solve this issue in this work.

3. Novel view synthesis generative model
Our goal is to synthesize a (possibly super-resolved)

view u : Γ → R from a novel viewpoint c using a set of
images vi : Ωi → R captured from general positions ci. We
assume we have an estimate of a geometric proxy which
is sufficient to establish correspondence between the views.
More formally, the geometric proxy induces a backwards
warp map τi : Ωi → Γ from each input image to the novel
view, as well as a binary occlusion mask mi : Ωi → {0, 1},
which takes the value one if and only if a point in Ωi is visi-
ble in Γ. If we restrict τi to the set of visible points Vi ⊂ Ωi,
it is injective and its left inverse βi : τi(Vi) → Ωi is well
defined, see Fig. 3.

Ideal image formation model. In order to consider the
loss of resolution from super-resolved novel view to input
view, we model the subsampling process by applying a blur
kernel b in the image formation process of vi. It corresponds
to the point spread function (PSF) of camera i. Each pixel of
vi stores the integrated intensities from a collection of rays
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Figure 3. Transfer map τi from image plane Ωi into target image
plane Γ. The depth uncertainty σzi may be different among pixels.

from the scene, and the novel view u will always be consid-
ered as having a higher resolution than the input views.

Let us discard the effects of visibility for a moment, sup-
posing all points are visible. Also suppose we have a perfect
backward warp map τ∗i from Ωi to Γ, and perfect input im-
ages v∗i . Assuming the lambertian image formation model,
the idealized exact relationship between novel view and in-
put views is

v∗i = b ∗ (u ◦ τ∗i ), (1)

being ◦ the function composition operator. However, the
observed images vi and geometry τi are not perfect, and we
need to consider these factors in the image formation model.

Sensor error and image error. First, we consider Gaus-
sian sensor noise on all cameras with variance σ2

s . While
the sensor noise variance σ2

s and the subsampling kernel b
could be different among views, for the sake of simplicity
of notation, we will assume them to be identical.

Second, we consider the error in the geometry estimate,
which implies that the corresponding backwards warp τi is
different from the ideal map τ∗i . This induces an intensity
error εgi in the image formation process,

εgi = b ∗ (u ◦ τ∗i )− b ∗ (u ◦ τi). (2)

The uncertainty related to the intensity error εgi is denoted
by σgi : Ωi → R. Note that both have intensity units.

Taking into account the above errors, the image forma-
tion model becomes:

vi = b ∗ (u ◦ τi) + εgi + εs. (3)

While we make the common assumption that εs follows a
Gaussian distribution, the distribution of εgi is yet unknown
to us. What we know is that εgi is strongly related to the ge-
ometric error. In the next section, we study the relationship
between their distributions.

Dependency of image error on geometric error. The
geometric proxy yields for each pixel x in Ωi a depth mea-
sure zi which is associated with an uncertainty σzi , giving



us a distribution of depth along the viewing ray, as illus-
trated in Fig. 3. We now consider the error εzi in the es-
timation of the geometric proxy, expressed in world units.
The previous image error εgi is dependent on the underly-
ing geometric error. Note that the image error has intensity
units and must not be confused with εzi having geometric
units. In contrast to the blur kernel and the sensor noise, we
allow these errors to be different for each view and for each
pixel in each view, as made explicit in the notation.

We assume that the error distribution for the depth es-
timates is normal, εzi ∼ N (0, σ2

zi). The goal is now to
derive how this distribution generates a color error distribu-
tion in the image formation process. Propagating a distribu-
tion with an arbitrary function is not straightforward, even
if in our case, this depth error distribution is assumed to be
Gaussian, and will only be propagated along the epipolar
geometry between the views. Instead of computing the full
color distribution along the viewing ray, we linearize and
consider the first order Taylor expansion of vi with respect
to zi. This implies that the resulting color distribution is
also Gaussian, with mean u ◦ τi and standard deviation

σgi = σzi

∣∣∣∣∂vi∂zi

∣∣∣∣ . (4)

Using Eq. (1) and the chain rule, we find that

σgi = σzi

∣∣∣∣b ∗ ∂(u ◦ τi)
∂zi

∣∣∣∣ = σzi

∣∣∣∣b ∗((∇u ◦ τi)· ∂τi∂zi

)∣∣∣∣. (5)

MAP estimate and energy. In the Bayesian formula-
tion, the MAP estimate of the novel view can be found as
the image u minimizing the energy

E(u) = Edata(u) + λEprior(u), (6)

where the data term Edata(u) is deduced from the gener-
ative model, and Eprior(u) is a smoothing term which is
detailed afterwards. λ > 0 is the only parameter of our
method, and it controls the smoothness of the solution.

Let us consider the two error sources as independent, ad-
ditive and Gaussian. Then their sum is also a normal distri-
bution with zero mean and variance σ2

s +σ2
gi . The data term

computed from the generative model of Eq. (3) is given by:

Edata(u)=

n∑
i=1

1

2

∫
Ωi

ωi(u)mi(b ∗ (u ◦ τi)− vi)2 dx, (7)

with ωi(u) =
(
σ2
s + σ2

gi

)−1
. (8)

This data term is similar to the one found in the previous
model from [28], except for the factor ωi(u), which can be
seen as a weight that depends both on the depth uncertainty
and on the latent image u being computed. If there were
no depth uncertainty, this term would reduce to σ2

s , which
gives exactly the energy found in [28].

From Eq. (5), we can observe that the term σ2
gi in ωi(u)

becomes smaller if the length of the vector ∂τi/∂zi de-
creases. The derivative ∂τi/∂zi denotes how much the re-
projection of a point xi from the original view vi onto the
novel view u varies when its depth zi(xi) changes. This
vector points towards the direction of the epipolar line on u
issued from the point xi of vi, and its magnitude decreases
with the angle between the optical ray issued from the orig-
inal view vi and the optical ray from the novel view u. As
illustrated in Fig. 1, the term σ2

gi thus accounts for the mini-
mal angular deviation “desirable property” from [4], which
was not accounted for in [28].

Let us analyze more precisely under which circum-
stances the weight ωi(u) reaches its maximal value 1/σ2

s ,
which is the value found in the previous model. There are
three situations in which this occurs. The first one is if
∂τi/∂zi = 0, i.e. the depth of a point in vi has no influ-
ence on its reprojection onto u. This can only happen if
the two optical rays are identical, which corresponds to the
epipole consistency property from [4]. The second one is
if ∇u = 0, i.e. the rendered image has no gradient or tex-
ture at the considered point: in this case, an error on the
depth estimate has no effect on the rendered view. The last
situation is if ∇u at the rendered point is orthogonal to the
direction of the epipolar line from camera i passing through
the rendered point: a small error on the depth estimate in
camera i does not have an effect on the rendered view be-
cause the direction of influence of this error is tangent to a
contour.

Choosing the prior. The prior is introduced in the
Bayesian formulation to restrain the possible configura-
tions of the target image. Usually, it is used to overcome
the ill-posedness of the problem: in the analysis of super-
resolution by Baker and Kanade [1], they show that the di-
mension of the null-space of the matrix system increases
with an increase of the super-resolution factor. Further-
more, in novel view synthesis, some parts of the image
may not be seen by any contributing view, thus a regulariza-
tion prior allows to fill the gaps with plausible information.
Thus, the choice of the prior will have significant influence
on the final result.

Very interesting priors have been developed in order to
overcome specific issues in super-resolution [18]. There are
also techniques allowing to learn generic image priors from
a collection of images [16]. However, in this work we focus
on the generative model, and we use basic total variation as
a regularizer,

Eprior(u) =

∫
Γ

|Du| , (9)

which is convex and has been extensively studied in the con-
text of image analysis problems [5]. The search for optimal
priors will be a topic of future work.

Optimization. The energy from Eq. (6) is hard to opti-



mize because the weights ωi(u) in Eq. (7) are a nonlinear
function of the latent image u. Similarly to [8], we propose
a re-weighted iterative method. We use an estimate ũ of u,
set at ũ = 1

n

∑
vi ◦ βi in the first iteration. We consider

then ωi(ũ) constant during each iteration, making the sim-
plified energy convex. Furthermore, with arguments similar
to [28], we can show that the functional derivative of the
simplified data term is

dEidata(u) = ωi(ũ) |detDβi|
(
mib̄ ∗ (b∗(u ◦ τi)−vi)

)
◦βi,
(10)

where b̄(x) = b(−x) is the adjoint kernel. This functional
derivative is Lipschitz-continuous, which allows to mini-
mize the energy via the fast iterative shrinkage and thresh-
olding algorithm (FISTA) [2]. With the solution of this sim-
plified problem, we update ũ, thus obtaining new weights,
and a new energy. We solve it again with FISTA, and iter-
ate. Although the minimization problem to be solved within
each iteration is convex, in general we cannot hope to find
the global minimum of Eq. (6).

4. Relation to the principles of IBR
As we see in Eq. (10), the weighting factor for each view

is composed of two terms. The term |detDβi| is the same
as in [28] and corresponds to a measure of image deforma-
tion: it is the surface of a pixel from u projected to vi. We
can formulate the intuition behind it as how much does the
observed scene change when the viewpoint changes?

The term ωi(u) corresponds to the depth uncertainty, as
was explained in the previous section. The intuition behind
this is: how much does the observed scene change if the
measured depth changes?

Let us now carefully establish the links of the proposed
energy with the “desirable properties” of IBR stated in [4].

Use of geometric proxy & unstructured input. The ge-
ometric proxy is incorporated via the backward warp maps
τi, and the input can be unstructured (i.e. a random set of
views in generic position).

Epipole Consistency. As explained previously, the
weighting factor ωi(u) is maximal as soon as the optical
rays from xi and x are identical, so that if a camera has its
epipole at x, then the contribution of this camera at x via the
ωi(u) term is higher. Epipole Consistency is thus satisfied.

Minimal angular deviation. This heuristic is provided
by σgi from Eq. (5): if all other dimensions are kept con-
stant (resolution, distance to the scene, etc.), then the mag-
nitude of the vector ∂τi/∂zi in Eq. (5) is exactly propor-
tional to the sine of angle between the optical rays from
both cameras to the same scene point.

Resolution sensitivity. This heuristic is followed by the
term |detDβi|, which measures the surface of a pixel from
u projected to vi. The larger the resolution of camera i, the
bigger this surface, so that resolution sensitivity is properly

handled.
Equivalent ray consistency. “Through any empty re-

gion of space, the ray along a given line-of-sight should be
reconstructed consistently, regardless of the viewpoint posi-
tion (unless dictated by other goals ...)” [4]. This is trivially
satisfied by our framework, since the weights are varying
continuously with the camera parameters (through the con-
tinuous variation of the backward warp maps τi). Moving
the novel view camera along an optical ray (which is the sit-
uation used to describe this property in [4]) is just a special
case.

Continuity. The continuity principle in IBR demands
that the final rendered image is varying continuously with
the camera parameters of the original views. This implies
that there are no seams at visibility boundaries between
cameras, which may happen near the borders of the inter-
section of the field of view of each camera with the scene,
or at depth discontinuities seen from each camera. The typ-
ical heuristic to enforce this form of continuity is to lower
the contribution of a camera near a visibility boundary or
the boundary of its field-of-view [15, 4]. Our equations do
not satisfy this property and the obtained weights do not fall
to zero when approaching a visibility boundary. This could
easily be enforced by smoothing the visibility mapsmi near
the depth and visibility discontinuities, without changing
the zero set of these functions. However, since we claim
to have a completely physics-based Bayesian formulation,
any operation on the visibility map should be sustained by
a physical explanation, which we are still missing, and this
is part of our future work.

Note that the prior term in the energy reduces the prob-
lems, most notably visual artifacts, which are due to not
handling the continuity properly. However, a prior on the
novel views cannot completely solve the continuity prob-
lem, which depends on the scene and camera geometry.

Real-Time. The final “desirable property” is for the
method to be real-time. Our method is not yet real-time,
mainly because of the computational complexity of the
MAP estimate: 2 to 3 seconds are necessary to render a
768×768 image from 8 source images. However, both the
resolution algorithms and the hardware architectures are
evolving quickly, and much better performance can be ex-
pected in the next few years.

If super-resolution is not important, instead of solving
the full MAP problem, it seems reasonable to use real-time
regularization in the form of inpainting methods to obtain
an acceptable result.

Balance between properties. One of the advantage of
our method with respect to [4] is that the balance between
the different properties is not handled by user-defined pa-
rameters, but implied from a formal deduction. Imagine a
configuration with two cameras: one with low minimal an-
gular distance but high resolution sensitivity change, and



another with high minimal angular distance but low res-
olution sensitivity change. Which one should contribute
more to the final image? In [4], the angular distance is pre-
ferred to the resolution sensitivity by a ratio of 1/0.05 = 20
(Hallway dataset). In our equations, these variations are
completely physics-based. An angular deviation of ∆α be-
tween views is penalized proportionally to 1

sin2 ∆α
, due to

the change in σ2
gi . A foreshortening effect or resolution dif-

ference causing an image scale factor s is penalized propor-
tionally to 1

s2 , due to the change in |detDβi|. The balance
between these factors is properly handled by taking into ac-
count the sensor noise σ2

s .
An exception is the weight λ, used in the prior term.

Note that this is common in all work on image analysis
based on Bayesian principles: since there is currently no
meaningful way to obtain a prior distribution on the space
of images , one needs to work with regularization by objec-
tive priors. Of course one could also use existing methods
[16] allowing to estimate this prior directly from the input
images, thus obtaining a completely parameter-free model.

5. Experiments
Simplified camera configuration. Although we are ad-

dressing a generic case of novel view synthesis, in order
to simplify the implementation of the optimization proce-
dure, in the experiments we suppose that our cameras have
a simplified configuration. Specifically, all viewpoints are
in a common plane, which is parallel to all image planes,
i.e. we are dealing with a 4D light field in the Lumigraph
parametrization [11]. The novel view is also synthesized in
the same image plane, which means that τi is simply given
by a translation proportional to the normalized disparity di,

τi(x) = x+ di(x)(c− ci). (11)

Normalized disparity is expressed in pixels per world
units, and is together with its associated uncertainty related
to depth via:

di(x) =
fi

zi(x)
and σdi(x) = σzi(x)

fi
zi(x)2

, (12)

where fi is the camera focal length expressed in pixels.
Plugging (12) and (11) into (5), we derive the link be-

tween the geometric error and its associated image error as:

σgi = σdi |(b ∗ ((∇u ◦ τi) · (c− ci)))| , (13)

where σdi models the disparity noise. Finally, the deforma-
tion term in Eq. (10) is:

|detDβi| = |detDτi|−1
= |1 +∇di · (c− ci)|−1

. (14)

Datasets. To validate the theoretical contribution, we
compare results on two light field datasets: The HCI

Light Field Database [29], and the Stanford Light Field
Archive [25]. These datasets provide a wide collection of
challenging synthetic and real-world scenes.

In a first set of experiments, we render an existing view
from the dataset at the same resolution, without using the
respective view as an input to the algorithm. We consider
two different qualities of geometric proxy: an approximate
one from estimated disparity maps, and an extremely poor
one represented by an infinite flat fronto-parallel plane in
the estimated center of the scene. We adapt σdi accordingly,
i.e. when using the estimated disparity, we use a value cor-
responding to the expected accuracy of the reconstruction
method: σdi = dmax−dmin

nbLayers , where nbLayers is the num-
ber of disparities considered by the method. When a bare
plane in the middle of the scene is used, we instead use
σdi = dmax−dmin

4 . In all cases, σs = 1/255.
A second set of experiments is performed by rendering

a 3×3 super-resolved image from a set of 5×5 input views.
Although super-resolution is not the main purpose of the
paper, we also provide a comparison with the state of the art.
As super-resolution relies on sub-pixel disparity values, we
only show the results obtained with the estimated disparity
maps.

In Tab. 1, we show the numerical results obtained by
our method, and compare it to the ones achieved with [28].
We measure the PSNR and DSSIM between the actual and
generated images. Although our method visibly performs
better, numerical values should be interpreted carefully. In
Fig. 4, we show detailed closeups illustrating the benefits
or our method. As high resolution images are not available
for most of the datasets, PSNR and DSSIM values for the
super-resolved images are computed by subsampling the in-
put images, generating the novel super-resolved view and
comparing it with the original one.

When rendering with precise geometry, both methods
are roughly equivalent with respect to PSNR and DSSIM
values (first and last two rows of Tab. 1). When the qual-
ity of the proxy degrades (third and fourth rows of Tab. 1),
our method clearly outperforms previous work, taking ad-
vantage of the explicit modeling of depth uncertainty. As
shown in the closeups of Fig. 4, our method better recon-
structs color edges in all configurations. Full-resolution im-
ages are provided in the supplemental material.

Computation time when rendering at target resolution
768× 768 with 8 input images is on the order of 2 to 3 sec-
onds. Computation time for super-resolved view synthesis
with a factor of 3 × 3 and 24 input images is around 2 to
3 minutes. All experiments used an nVidia GTX Titan GPU.

6. Discussion and conclusion
The main contribution of this paper is to establish the

first formal link between the heuristics proposed in the re-
cent decades for novel view synthesis, and the energy de-



HCI light fields, raytraced HCI light fields, gantry Stanford light fields, gantry
still life buddha maria couple truck gum nuts tarot

Estimated disparity
Wanner et al. [28] 30.13 58 42.84 17 40.06 53 26.55 226 33.75 408 31.82 1439 28.71 60
Proposed 30.45 55 42.37 18 40.10 53 28.50 178 33.78 407 31.93 1437 28.88 58

Planar disparity
Wanner et al. [28] 21.28 430 34.28 74 31.65 144 20.07 725 32.48 419 30.55 1403 22.64 278
Proposed 22.24 380 37.51 44 34.38 99 22.88 457 33.79 386 31.30 1378 23.78 218

Super-resolution
Wanner et al. [28] 24.93 230 34.50 122 35.18 129 25.54 287 33.11 378 31.80 1475 26.66 113
Proposed 25.12 228 34.44 123 35.20 129 25.34 289 33.08 379 31.89 1471 26.54 117

Table 1. Numerical results for synthetic and real-world light fields from two different online archives. We compare our method to Wanner
and Goldluecke [28] with respect to same-resolution view synthesis for estimated disparity and a flat plane proxy, as well as super-resolved
view synthesis. For each light field, the first value is the PSNR (bigger is better), the second value is DSSIM in units of 10−4 (smaller is
better). The better value is highlighted in bold. See text for a detailed description of the experiments.
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Figure 4. Visual comparison of novel views obtained for different light fields. From top to bottom, the rows present closeups of the ground
truth images, the results obtained by [28], and our results. CD stands for computed disparity, PD for planar disparity and SR for super-
resolution, see text for details. Full resolution images can be found in the additional material. The results obtained by the proposed method
are visibly sharper, in particular along color edges.

ducted by a physics-based generative model.

This model can be used to solve the generic problem
which consists in generating a novel view from a hetero-
geneous set of input images, and a geometric description of
the scene (called a geometric proxy), which can be either
explicit (i.e. the estimated geometry of the 3D scene) or im-
plicit (i.e. a set of correspondence maps between original
views and the novel view).

Part of our contribution is the analysis of how the pro-
posed model fulfills almost all the guidelines established
by Buehler et al. [4]. The proposed generative model pro-

vides a formal description of the intuitive heuristics behind
these guidelines. The key element to this unification is to
take into account the error in the estimated geometric proxy
when rendering a new image. We have extensively dis-
cussed how our physics-based model explains the reasons
why some important heuristics were picked up in the first
place. The theoretical benefits of the model outperform
state of the art by overcoming its limitations. Moreover, the
experiments conducted on synthetic and real images show
that our method improves state of the art performance in
terms of rendered image quality.



Future work should better handle the visibility term in
the model. In this work, visibility is computed from depth,
but depth itself contains errors, which should propagate
onto the visibility maps. This could be a key solution to
incorporate the last missing Continuity heuristic into this
physics-based Bayesian framework. Also extending the
model to non-Lambertian scenes is crucial but quite hard.
One would need to include general BRDF and lighting in-
formation to correctly model the transformation between in-
put and novel views.

An important observation is that if the 3D reconstruc-
tion method or the 2D-2D image correspondence method
provides not only depth estimates, but also the associated
depth uncertainty, the image-based rendering method can
benefit from this information to create better novel views.
This should thus be a goal when developing new (implicit
or explicit) reconstruction methods aimed at IBR.
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