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Abstract: Discriminant analysis is an effective tool for the classification of experi-

mental units into groups. When the number of variables is much larger than the

number of observations it is necessary to include a dimension reduction procedure

in the inferential process. Here we present a typical example from chemometrics

that deals with the classification of different types of food into species via near

infrared spectroscopy. We take a nonparametric approach by modeling the func-

tional predictors via wavelet transforms and then apply discriminant analysis in the

wavelet domain. We consider a Bayesian conjugate normal discriminant model, ei-

ther linear or quadratic, that avoids independence assumptions among the wavelet

coefficients. We introduce latent binary indicators for the selection of the discrimi-

natory wavelet coefficients and propose prior formulations that use Markov random

tree (MRT) priors to map scale-location connections among wavelets coefficients.

We conduct posterior inference via MCMC methods, we show performances on our

case study on food authenticity, and compare results to several other procedures.

Key words and phrases: Bayesian variable selection, classification and pattern

recognition, Markov chain Monte Carlo, Markov random tree prior, wavelet-based

modeling.

1. Introduction

Discriminant analysis, sometimes called supervised pattern recognition, is a

statistical technique used to classify observations into groups. For each case in a

given training set a p×1 vector of observations, xi, and a known assignment to one

of G possible groups are available. Let the group indicators be stored in a n× 1

vector y. On the basis of the X and y data we wish to derive a classification

rule that assigns future cases to their correct groups. When the distribution

of X, conditional on the group membership, is assumed to be a multivariate

normal then this statistical methodology is know as discriminant analysis. Here

we focus in particular on situations in which the number of observed variables

is considerably large, often larger than the number of samples. We present a

http://dx.doi.org/10.5705/ss.2010.141
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typical example from chemometrics that deals with the classification of different

types of food into species via near infrared spectral data, i.e., curve predictors.

Different approaches can cope with the high dimensionality of a data matrix.

One approach is to use a dimension reduction technique, for example principal

component analysis, and then use only the first k components to classify units

into groups via linear or quadratic discriminant analysis, see for example Jolliffe

(1986). Another approach is to first select a subset of the variables, essentially

removing noisy ones, and then perform discriminant analysis using only the se-

lected variables. This, for example, is the approach taken by Fearn, Brown, and

Besbeas (2002) who developed a Bayesian decision theory approach to linear

discriminant analysis that balances costs of variables against a loss due to classi-

fication errors. Also, more recently, Murphy, Dean, and Raftery (2010) proposed

a frequentist model-based approach to discriminant analysis in which variable

selection is achieved by imposing constraints on the form of the covariance ma-

trices. These authors use a specifically designed search algorithm that compares

models using BIC approximations of log Bayes factors.

In this paper we take a dimension reduction approach and model the func-

tional predictors in a nonparametric way by means of wavelet series representa-

tions. Wavelets can accurately describe local features of curves in a parsimonious

way via a small number of coefficients. Because of this compression ability, se-

lecting the important wavelet coefficients, rather than original variables, may be

expected to lead to improved classification performances. We therefore apply

wavelet transforms, reducing curves to wavelet coefficients, and then perform

discriminant analysis in the wavelet domain while simultaneously employing a

selection scheme of the relevant wavelet coefficients. We consider a Bayesian

conjugate normal discriminant model, either linear or quadratic, and introduce

latent binary indicators for the selection of the discriminatory coefficients. Unlike

current literature on wavelet-based modeling, where models are fit one wavelet

coefficient at a time, our model formulation avoids independence assumptions

among the wavelet coefficients. We go one step further and, additionally, pro-

pose a prior model formulation that includes Markov random tree (MRT) priors

to map scale-location connections among wavelet coefficients. We achieve di-

mension reduction by building a stochastic search variable selection procedure

for posterior inference. We investigate performances of the proposed method

on our case study on food authenticity, and compare results to several other

procedures.

Our approach to selection builds on the extensive literature on Bayesian

methods for variable selection. For example, we introduce a latent binary vector

γ for the identification of the discriminating variables (wavelet coefficients) and

use stochastic search MCMC techniques to explore the space of variable subsets.
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This is also the approach taken by George and McCulloch (1993, 1997), among

many others, for linear regression models, and by Brown, Fearn, and Vannucci

(2001) in a wavelet approach to curve regression. However unlike linear settings,

where γ is used to induce mixture priors on the regression coefficients of the

model, in mixture models, like the one we work with, the elements of the ma-

trix X are viewed as random variables and γ is used to index the contribution

of the different variables to the likelihood term of the model, Tadesse, Sha and

Vannucci (2005). The method for variable selection we adopt can be used either

for linear discriminant analysis, where all groups share the same covariance ma-

trix, or for quadratic discriminant analysis, where different groups are allowed

to have different covariance matrices. We illustrate the model for the quadratic

discriminant analysis case and report the modification needed to perform linear

discriminant analysis in the Appendix.

The rest of the paper is organized as follows: we complete this discussion with

a brief review of wavelet series representations and wavelet transforms. We also

introduce the concept of zero-tree wavelet structures that map wavelet coefficients

with the same spatial locations but at different resolution scales. In Section 2

we describe how to perform discriminant analysis under the Bayesian paradigm

and how to re-parameterize the model in the wavelet domain. We also discuss

likelihood and prior distributions that allow us to implement a variable selection

mechanism in the wavelet domain. We then describe how to incorporate into the

prior model information about the connections among wavelet coefficients at the

same spatial locations. We present the MCMC algorithm for posterior inference

in Section 3, where we also address the case of having samples with missing

labels. Finally, in Section 4, we apply our method to the NIR spectral data for

food classification and compare results to several other competing procedures.

1.1. Wavelet representations of curves

The basic idea behind wavelets is to represent a general function in terms

of simpler functions (building blocks), defined as scaled and translated versions

of an oscillatory function, describing local features in a parsimonious way. The

existence of fast and efficient transformations to calculate coefficients of wavelet

expansions have made wavelets a simple tool that can be used for a great variety

of applications. Indeed, wavelets have been extremely successful in, for example,

the compression or denoising of signals and images, see for example Antoniadis,

Bigot, and Sapatinas (2001) and Gonzalez and Woods (2002), and references

therein.

In L2(IR), for example, an orthonormal wavelet basis is obtained as transla-

tions and dilations of a “mother” wavelet ψ as ψj,k(x) = 2j/2ψ(2jx− k) with j, k
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integers. A function f is then represented by a wavelet series as

f(x) =
∑

j,k∈ZZ

dj,kψj,k(x), (1.1)

with wavelet coefficients dj,k =
∫
f(x)ψj,k(x)dx describing features of the func-

tion f at spatial locations indexed by k and scales indexed by j. Because of

their localization properties, i.e., fast decay in both the time and the frequency

domains, wavelets have the ability to represent many classes of functions in a

sparse form by describing important features with a relatively small number of

coefficients.

Wavelets have been extremely successful as a tool for the analysis and syn-

thesis of discrete data. Let x = (x1, . . . , xp)
T be a sample of the function f(·) at

equally spaced points and let p be a power of 2, p = 2J . This vector of observa-

tions can be viewed as an approximation of f at scale J . A fast algorithm exists,

the Discrete Wavelet Transform (DWT), that permits decomposition of x into a

set of wavelet coefficients, Mallat (1989). This algorithm operates in practice by

means of linear recursive filters; for illustrative purposes, it is useful to write the

DWT in matrix form as

z = Wx, (1.2)

with W an orthogonal matrix corresponding to the discrete wavelet transform,

and z a vector of wavelet coefficients describing features of the function at scales

from the fine J − 1 to a coarser one, say J − r. Figure 1 illustrates the wavelet

decomposition of one of the near infrared curves analyzed in Section 4: the

NIR curve is shown at the top of the figure and the wavelet coefficients at the

individual scales are depicted below, from coarsest to finest. An algorithm for

the inverse construction, the Inverse Wavelet Transform (IWT), also exists.

In this paper we use Daubechies wavelets; they have compact support and a

maximum number of vanishing moments for any given smoothness. They are used

extensively in statistical applications. A detailed description of the construction

of these wavelets, together with a general exposition of the wavelet theory, can

be found in Daubechies (1992). Some of the early applications of wavelets in

statistics are described in Vidakovic (1999).

1.2 The zero-tree wavelet structure

Because of the recursive nature of the DWT, the resulting wavelet coefficients

tend to share certain properties. This is true, in particular, for coefficients that

map to the same spatial locations but at different scales. When a decimation

is performed at every iterative step of the DWT, the transform naturally leads
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Figure 1. Discrete wavelet transform of one of the NIR curves analyzed
in Section 4. The NIR curve is shown at the top of the figure and the
wavelet coefficients at the individual scales are depicted below, from finest
to coarsest.

Figure 2. Schematic representation of the wavelet tree structure, where each
coefficient serves as “parent” for up to two “children” nodes.

to a tree structure in which each coefficient at a given scale serves as “parent”

for up to two “children” nodes at the finer scale. The wavelet coefficients of

the coarsest scale compose the “root node” and those at the finest scale the

“leaf nodes”. Figure 2 provides a schematic representation of the wavelet tree

structure.
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In general, for most signals and images, if a coefficient at a particular scale is

negligible (or large) then its children will likely tend to be negligible (or large) as

well. This simple intuition has led to the construction of “zero-tree” structures

for signal and image compression, where coefficients belonging to sub-trees are all

considered negligible, see Shapiro (1993). Many commercial software packages for

image coding and compression routinely incorporate zero-tree structures in their

algorithms, like for example JPEG2000. In statistical modeling, He and Carin

(2009) have used zero-tree structures in a Bayesian approach to compressive

sensing for signals and images that are sparse in the wavelet domain.

2. Wavelet-based Bayesian Discriminant Analysis

We start by describing the model for discriminant analysis. We assume that

each observation comes from one of the G possible groups, each with distribution

N(µg,Σg). We represent the data from each group by the ng × p matrix

Xg − 1ngµ
T
g ∼ N (I,Σg) (2.1)

with g = 1, . . . , G, and where µg and Σg are the mean and the covariance matrix

of the g-th group, respectively. Here the notation V −M ∼ N (A,B) indicates

a matrix normal variate V with matrix mean M and with variance matrices

biiA for its generic i-th column and ajjB for its generic j-th row. This notation

was proposed by Dawid (1981) and has the advantage of preserving the matrix

structure instead of reshaping V as a vector. It also makes for much easier formal

Bayesian manipulation and has become quite standard in the Bayesian literature.

Model (2.1) is completed by imposing a conjugate multivariate normal dis-

tribution on µg and an Inverse-Wishart prior on the covariance matrix Σg,

µg ∼ N(mg, hgΣg),

Σg ∼ IW (δg,Ωg),
(2.2)

where Ωg is a scale matrix and δg a shape parameter.

In discriminant analysis the predictive distribution of a new observation xf

(1× p) is used to classify the new sample into one of the G possible groups. This

distribution is a multivariate T-student, see Brown (1993) among others,

xf − µ̃g ∼ T (δ∗g , ag,Ω
∗
g), (2.3)

where µ̃g = πgmg + (1 − πg)x̄g, δ
∗
g = δg + ng, ag = 1 + (1/hg + ng)

−1, and

Ω∗
g = Ωg +Sg + (hg +1/ng)

−1(x̄g −mg)
T (x̄g −mg) with πg = (1+ hgng)

−1 and

Sg = (Xg − 1ng x̄
T
g )

T (Xg − 1ng x̄
T
g ). The probability that a future observation,

given the observed data, belongs to the group g is then

πg(y
f |X) = p(yf = g|xf ,X),
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where yf is the group indicator of the new observation. By estimating the prob-

ability that one observation comes from group g as π̂g = ng/n the previous

distribution can be written in closed form as

πg(y
f |X) =

pg(x
f )π̂g∑G

i=1 pi(x
f )π̂i

, (2.4)

where pg(x
f ) indicates the predictive distribution defined at (2.3). The under-

ling assumption of exchangeability of the training data with the future data is

required, we assume that observations from training and validation sets arise

in the same proportions from the groups, see also Fearn, Brown, and Besbeas

(2002) A new observation is then assigned to the group with the highest posterior

probability.

2.1. Model in the wavelet domain

We approach dimension reduction by transforming curves into wavelet co-

efficients. Because of the compression ability of wavelets, selecting the impor-

tant wavelet coefficients, rather than original variables, is expected to lead to

improved classification performances. Our wavelet-based approach incorporates

both selection and synthesis of the data.

We show how to apply wavelet transforms to the data. We have n curves and

want to apply the same wavelet transform to them all. In matrix form, a DWT

can be applied to multiple curves as Zg = XgW
T , with W the orthogonal matrix

representing the discrete wavelet transform, see Brown, Fearn, and Vannucci

(2001). We therefore rewrite model (2.1) as

Zg − 1ng µ̃
T
g ∼ N (I, Σ̃g),

where Σ̃g = WΣgW
T and µ̃T

g = µT
g W

T . The prior model on Σ̃g transforms

into

Σ̃g ∼ IW (δg, Ω̃g)

with Ω̃g = WΩgW
T . Vannucci and Corradi (1999) have derived an algorithm

to compute variance and covariance matrices like Σ̃g and Ω̃g that makes use of

the recursive filters of the DWT and avoids multiplications by the matrix W . In

the sequel we drop the tilde notation and simply refer to Σg, Ωg, and µg.

It is worth noticing that our model formulation avoids any independence

assumption among the wavelet coefficients of a given curve. Such assumptions

are often made in the current literature on wavelet-based Bayesian modeling as

a convenient working model that allows to fit models one wavelet coefficient at

a time, and are heuristically justified by the whitening properties of the wavelet
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transforms, see for example Morris and Carroll (2006) and Ray and Mallick

(2006).

2.2. A prior model for variable selection

In the wavelet domain we achieve dimension reduction by selecting the dis-

criminating wavelet coefficients. We do this by extending to the discriminant

analysis framework an approach to variable selection proposed by Tadesse, Sha

and Vannucci (2005) for model-based clustering. As they do, we introduce a

(p× 1) latent binary vector γ to index the selected variables, with γj = 1 if the

jth wavelet coefficient contributes to the classification of the n units into the

corresponding groups, and γj = 0 otherwise. We then use the latent vector γ to

index the contribution of the different wavelet coefficients to the likelihood term

of the model. Unlike Tadesse, Sha and Vannucci (2005) we avoid independence

assumptions among the variables by defining a likelihood that allows separation

of the discriminating coefficients from the noisy ones as follows:

L(Z,y; ·) =
n∏

i=1

p(zi(γc)|zi(γ))
G∏

g=1

w
ng
g

ng∏

i=1

pg(zi(γ)), (2.5)

where wg is the prior probability that unit i belongs to group g, zi(γc) is the

|γc| × 1 vector of the non-selected wavelet coefficients, and zi(γc) is the |γ| × 1

vector of the selected ones, for the i-th subject. The first factor of the likelihood

refers to the non-important variables, while the second is formed by variables

able to classify observations into the correct groups. Under the assumption of

normality of the data the likelihood becomes

n∏

i=1

N|γc|(zi(γc) −Bzi(γ);µ0(γc),Σ0(γc))
G∏

g=1

w
ng
g

ng∏

i=1

N|γ|(zi(γ);µg(γ),Σg(γ)), (2.6)

where B is a matrix of regression coefficients resulting from the linearity as-

sumption on the expected value of the conditional distribution p(zi(γc)|zi(γ)),

and where µ0(γc) and Σ0(γc) are the mean and covariance matrix, respectively,

of zi(γc) − Bzi(γ). Note that all parameters of the distribution of the non-

discriminatory variables are assumed independent of the cluster indicators and

that the (conditional) distribution of the non-discriminatory variables zi(γc) is

therefore not a mixture-type. This assumption also implies that the covariance

between zi(γ) and zi(γc) is not group dependent. These choices reflect our inten-

tion of having a likelihood that factorizes into two parts, the first with group

specific parameters and the second with parameters that are common to all the

non-discriminatory variables. Murphy, Dean, and Raftery (2010) use a similar
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likelihood formulation in a frequentist approach to variable selection in discrim-

inant analysis.

For the parameters corresponding to the non-selected wavelet coefficients we

again choose conjugate priors:

µ0(γc)|Σ0(γc) ∼N(m0(γc), h0Σ0(γc)),

B−B0|Σ0(γc) ∼N (Hγ ,Σ0(γc)), (2.7)

Σ0(γc) ∼ IW (δc,Ω0(γc)).

This parametrization allows us to create a computationally efficient variable se-

lection algorithm, see Section 3. We also assume Ω0(γc) = k0I|γc|, a specifica-

tion implying shrinkage toward the case of no correlation between non-selected

variables, also adopted by Tadesse, Sha and Vannucci (2005) in model-based

clustering, and Dobra et al. (2004) for graphical model settings.

We complete the prior model by specifying an improper non-informative prior

on the vector w = (w1, . . . , wG) using a Dirichlet distribution, w ∼ Dirichlet

(0, . . . , 0). With this prior, marginalizing over w in the predictive distribu-

tion πg(y
f |Z), with the integration done over the posterior distribution w ∼

Dirichlet(n1, . . . , nG), is equivalent to estimating π̂g = ng/n, as we have done

in (2.4). Note that, with the inclusion of the variable selection mechanism, the

predictive distribution does not change because it depends only on the selected

variables. We discuss prior models for γ in the next Section.

2.3. Markov random tree priors for zero-tree structures

Although our model allows for dependencies among variables through the

choice of the priors (2.2) and (2.7), it is not straightforward to specify dependence

structures known a priori on the prior covariance matrices. We take a different

approach and show how available information can be incorporated into the model

via the prior distribution on γ.

In defining our prior construction we follow the original idea of Shapiro

(1993) and use a zero-tree structure to specify a dependence network among

wavelet coefficients. In this network, given the wavelet decomposition of a signal,

an individual wavelet coefficient at a given scale is directly “linked” to the two

coefficients at the next finer scale that correspond to the same spatial location.

We encode this network structure into our model via a Markov random tree

(MRT) prior on γ. This is a type of Markov random field (MRF), in which

the distribution of a set of random variables follows Markov properties that can

be described by an undirected graph. In a MRF, variables are represented by

nodes and relations between them by edges; in our context, the nodes are the

wavelet coefficients and the edges represent the relations encoded in the zero-tree

structure.
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We adopt the parametrization suggested by Li and Zhang (2010) for the

global MRF distribution for γ,

p(γ|d,E) ∝ exp(dTγ + γTEγ), (2.8)

where d = d1p, with 1p the unit vector of dimension p, and where E is a matrix

with elements {eij} usually set to a constant e for the connected nodes and to 0

for the non connected ones. Note that the connections among wavelet coefficients

on the MRT prior are a characteristic of the data by definition of the wavelet

transform. This feature implies that there is no uncertainty on the links of the

MRT.

The parameter d in (2.8) represents the expected prior number of significant

wavelet coefficients and controls the sparsity of the model, while e affects the

probability of selecting a variable according to its neighbor values. This is more

evident by noting that the conditional probability

P (γj |d, e, γk, k ∈ Nj) =
exp(γj(d+ e

∑
k∈Nj

γk))

1 + exp(d+ e
∑

k∈Nj
γk)

, (2.9)

with Nj the set of direct neighbors of variable j in the MRF, increases as a

function of the number of selected neighbors. Note that if a variable does not

have any neighbor, then its prior distribution reduces to an independent Bernoulli

with parameter p = exp(d)/[1 + exp(d)], which is a logistic transformation of d.

Although the parametrization above is somewhat arbitrary, some care is

needed in deciding whether to put a prior distribution on e. First, allowing e to

vary can lead to a phase transition in which the expected number of variables

equal to 1 increases massively for small increments of e. This can happen because

(2.9) can only increase as a function of the number of zj ’s equal to 1. A clear

description of the phase transition is given by Li and Zhang (2010). In brief,

Ising models undergo transitions between an ordered and a disordered underlying

state, from a model with most of the variables equal to 1 to a model with most of

the variables equal to 0, at or near the phase transition boundary, that depends

on the parameter specifications. Phase transition has consequences such as the

loss of model sparsity, and consequently a critical slow down of the MCMC. In

Bayesian variable selection with large p, phase transition leads to a drastic change

in the proportion of included variables, for example, from < 5% to > 90%, near

the phase transition boundary.

The most effective way to obtain an empirical estimate of the phase transi-

tion value is to sample from (2.8), using the algorithm proposed by Propp and

Wilson (1996) to obtain an estimate of the expected model size for different val-

ues of d over a range of values for e. The value of e for which the expected
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model size shows a dramatic increase can be considered a good estimate of the

phase transition point. However, even if an estimate is obtained, inference on the

parameters d and e requires special techniques in order to handle non-tractable

priors of type (2.8), which are known only up to normalizing constant, and sub-

stantially increases the computational complexity of our model. In this paper we

have therefore opted for fixing the parameters d and e. Similar choices have been

made by Li and Zhang (2010). We provide some guidelines for choosing these

parameters, when we perform a sensitivity analysis.

Figure 3 provides a graphical representation of our proposed model, illustrat-

ing the probabilistic dependencies among the observed variables and the model

parameters. The different layers of the proposed hierarchical model are also

summarized.

3. MCMC for Posterior Inference

We concentrate on the posterior distribution on γ, which allows us to achieve

variable selection. This distribution cannot be obtained in closed form and an

MCMC is required. We illustrate the procedure for the quadratic discriminant

analysis case, and report the modification needed to perform linear discriminant

analysis in the Appendix.

The inferential procedure can be greatly simplified by integrating out the

parameters wg,B,Σ0,µ0,µg, and Σg. In the MCMC procedure we describe, a

single variable is added and/or removed at every iteration. Therefore, without

loss of generality, one can simplify the prior parametrization by assuming that

the set of non-selected variables is formed by only one variable, so that the matrix

Σ0(γc) reduces to a scalar σ2 and the |γc|×|γ| matrix B to a |γ|×1 vector β, that

is to the row ofB corresponding to the regression coefficients between the selected

variables and the variable prosed to be added or removed. Our priors therefore

reduce to σ2 ∼ Inv-Gamma(δc/2, k0/2) and β ∼ N(β0, σ
2Hγ). Integrating out

the parameters wg,β, σ
2,µ0,µg and Σg leads to the marginal likelihood

p(Z|y,γ) ∝ (k0 + (z(γc) − 1pγm0(γc) − Z(γ)β0)
T

×(In + h01n1
T
n + Z(γ)HγZ

T
(γ))

−1

×(z(γc) − 1pγm0(γc) − Z(γ)β0))
−(n+δ)/2

×
G∏

g=1

Kg(γ)|Ωg(γ)|
(δ+pγ−1)/2|Ωg(γ) + Sg(γ)|

−(ng+δ+pγ−1)/2, (3.1)
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Likelihood:

L(Z,y; ·)=
n∏

i=1

N|γc|(Zi(γc)−BZi(γ);µ0(γc),Σ0(γc))
G∏

g=1

ng∏

i=1

wng

g N|γ|(Zi(γ);µg(γ),Σg(γ))

Model parameters:

Non-selected variables Selected variables

Σ0(γc) ∼ IW (δc, k0I|γc|) Σg(γ) ∼ IW (δg,Ωg(γ))
µ0(γc)|Σ0(γc) ∼ N(m0(γc), h0Σ0(γc)) µg(γ)|Σg(γ) ∼ N(mg, hgΣg(γ))
B−B0|Σ0(γc) ∼ N (Hγ ,Σ0(γc)) w ∼ Dirichlet(0, . . . , 0)

Variable selection parameters:

p(γ|d,E) ∝ exp(dTγ + γTEγ)

Figure 3. Graphical model representation and hierarchical formulation of
the proposed probabilistic model.

where

Kg(γ) = (h1ng + 1)−pγ/2

pγ∏

j=1

Γ((ng + δ + pγ − j)/2)

Γ((δ + pγ − j)/2)
,

Sg(γ) =
∑

i|γi=1

(zi(γ) − z̄g(γ))(zi(γ) − z̄g(γ))
T

+
ng

h0ng + 1
(m0(γ) − z̄g(γ))(m0(γ) − z̄g(γ))

T ,

and pγ is the number of selected variables. We implement a Stochastic Search
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Variable Selection (SSVS) algorithm that has been used successfully in variable

selection, see Madigan and York (1995) for graphical models, Sha et al. (2004)

for classification settings, and Tadesse, Sha and Vannucci (2005) for clustering,

among others. This is a Metropolis-type algorithm:

• with probability φ, add or delete one variable by choosing at random one

component in the current γ and changing its value;

• with probability 1 − φ, swap two variables by choosing independently at

random a 0 and a 1 in the current γ and changing their values.

The proposed γnew is then accepted with a probability that is the ratio of the

relative posterior probabilities of the new versus the current model:

min

[
p(Z|y,γnew)π(γnew)

p(Z|y,γold)π(γold)
, 1

]
. (3.2)

Because these moves are symmetric, the proposal distribution does not appear in

the previous ratio. Here we also simplify the computation of the acceptance prob-

ability using a factorization of the marginal likelihood adopted by Murphy, Dean,

and Raftery (2010) in their calculation of the ratio between the BIC statistics of

two nested models,

p(Z(γc)|y,Z(γ),Z(prop))p(Z(γ),Z(prop)|y),

where Z(prop) represents the variable in an add/delete move, or the two variables

in a swap move, whose indicator element(s) have been proposed to change. The

first factor of this marginal likelihood simplifies when calculating the ratio in

(3.2), while the second one can assume either the form of the joint marginal

distribution of the selected variable(s) or it can be written as (3.1) where the

set γc is formed by only the proposed variable(s). In details, the acceptance

probability of the Metropolis step is

• min
[
pm(Z|γp−)pm(Z|y,γnew)π(γnew)

pm(Z|y,γold)π(γold)
, 1
]
, for a remove move,

• min
[

pm(Z|y,γnew)π(γnew)
pm(Z|γp+)pm(Z|y,γold)π(γold)

, 1
]
, for an add move,

• min
[
pm(Z|γp−)pm(Z|y,γnew)π(γnew)
pm(Z|γp+)pm(Z|y,γold)π(γnew)

, 1
]
, for a swap move.

Here pm(Z|γp−) is the marginal likelihood of the variable selected to be removed

from the set of significant variables, while pm(Z|γp+) is the marginal likelihood

of the variable selected to be added to the set of significant variables. Note that,

in all of the possible moves, the part of the marginal likelihood that involves the

non-significant variables is one-dimensional.
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The MCMC procedure results in a list of visited models, γ(0), . . . ,γ(T ),
and their corresponding posterior probabilities. Variable selection can then be
achieved either by looking at the γ vectors with largest joint posterior proba-
bilities among the visited models or, marginally, by calculating frequencies of
inclusion for each γj and then choosing those γj ’s with frequencies exceeding a
given cut-off value. Finally, new observations are assigned to one of the G groups
according to (2.4).

3.1. Handling missing labels

Murphy, Dean, and Raftery (2010) show how to handle unlabeled data, sit-
uations where the group information for some of the samples is missing, using
an EM algorithm within their frequentist approach to discriminant analysis. Al-
though we do not have unlabeled samples in our case study data, for completeness
we show how to adapt our Bayesian method to handle such situations.

In Section 2 we implicity defined the distribution of y as P (yi = g) = wg, and
then performed all inference conditioning upon the observed group indicators.
Within this framework, missing labels can be handled by considering latent vari-
ables that we can sample via an additional MCMC step. Let {yk, k ∈ S} indicate
the set of unlabeled observations. To simplify the sampling of the yk’s, we do not
integrate the mixture weights wg’s but sample them from their full conditional
distribution that can be derived in closed form as w|y ∼ Dirichlet(n1, . . . , nG).
Note that the ng’s now depend on the sampled values of the missing yi’s. As a
consequence of not having integrated out w, (3.1) also changes. In particular,
P (Z|y,γ,w) is obtained as in (3.1) by replacing Kg(γ) with

K′
g(γ) = w

ng
g (h1ng + 1)−pγ/2

pγ∏

j=1

Γ((ng + δ + pγ − j)/2)

Γ((δ + pγ − j)/2)
.

Given the sampled wg’s, the full conditional distribution of yi|y−i,Z,γ is the
predictive distribution (2.4) with the only difference that we replace π̂g with the
sampled value for wg. This step is equivalent to sampling from a multinomial
distribution with probabilities that depend on the selected variables and the
group indicators, both observed and sampled.

4. An Application to NIR Spectral Data

Discriminant analysis is frequently used to classify units into groups based

on near infrared (NIR) spectra, see Fearn, Brown, and Besbeas (2002) and Dean,

Murphy, and Downey (2006) for approaches that incorporate variable selection.

Food authenticity studies are concerned with establishing whether foods are au-

thentic or not. NIR spectroscopy provides a quick and efficient method of col-

lecting the data, see Downey (1996). Correct identification of food via analysis of
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Figure 4. NIR spectral data from 231 food samples of five different species
of meat.

NIR spectroscopy data is important in order to avoid potential fraud. Food pro-

ducers, regulators, retailers, and consumers need to be assured of the authenticity

of food products.

We analyze a data set that consists of combined visible and near-infrared

spectroscopic measurements from 231 homogenized samples of five different species

of meat (Beef, Chicken, Lamb, Pork and Turkey). The NIR data were collected

in reflectance mode using a NIRSystems 6,500 instrument over the range 400-

2,498nm at intervals of 2nm. These are shown in Figure 4. These data have been

analyzed by Dean, Murphy, and Downey (2006) and recently by Murphy, Dean,

and Raftery (2010). A two-step approach was adopted by Dean, Murphy, and

Downey (2006), who first applied the standard wavelet thresholding of Donoho

and Johnstone (1994), and then performed discriminant analysis on selected sub-

sets of wavelet coefficients. Murphy, Dean, and Raftery (2010) also reported re-

sults on such other techniques as Transductive Support Vector Machine (SVM),

Random Forest, AdaBoost, Bayesian Multinomial Regression, Factorial Discrim-

inant Analysis (FDA), k-nearest neighbors, discriminant partial least squares

(PLS) regression, and soft independent modeling of class analogy (SIMCA).

We removed the first 27 wavelengths to obtain curves observed at 1,024

equispaced points (in nm). We transformed the curves into wavelet coefficients
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using DWT and Daubechies wavelets with three vanishing moments. This gave

us 8 scaling coefficients and 1,016 wavelet coefficients for each curve. Because

the scaling coefficients carry information on the global features of the data, we

decided to discard them and performed our selection only on the standardized

wavelet coefficients. Previous experience with wavelet-based modeling of NIR

spectra has confirmed the intuition that the important predictive information of

the data is represented by local features and therefore captured by the wavelet

coefficients, see Brown, Fearn, and Vannucci (2001).

We randomly split the data into a training set of 117 observations (16 samples

of Beef, 28 of Chicken, 17 of Lamb, 28 of Pork, and 28 of Turkey) and a validation

set of 114 observations (16 samples of Beef, 27 of Chicken, 17 of Lamb, 27 of

Pork, and 27 of Turkey). We assumed δ1 = . . . = δG = δc = δ and set δ = 3,

the minimum value such that the expectation of Σ exists. We set each element

of mg and m0 to the corresponding interval midpoint of the observed wavelet

coefficients. We let β0 = 0, a standard choice when no additional information

is available. As suggested by Tadesse, Sha and Vannucci (2005), we specified

h1 = 100, h0 =1,000, and Hγ = 100 · I|γ|. A good rule of thumb for these values

is to set them in the range 10 to 1, 000 to obtain fairly flat priors over the region

where the data are defined. A diagonal specification for Hγ still allows posterior

dependence among regressions coefficients, mostly depending on the covariance

structure of the selected wavelet coefficients. Alternative specifications are also

possible. For example, Brown, Fearn, and Vannucci (2001) adopted a first-order

autoregressive structure in the data domain and then transformed the variance-

covariance matrix via the wavelet transform, similarly to what done in Section

2.1 to define Σ̃g and Ω̃g. Because of the decorrelation properties of the wavelet

transform, the transformed matrix has a nearly block-diagonal form.

Some care is needed in the choice of Ωg and k0, since the posterior inference

is sensitive to the setting of these parameters. This was originally noted in

Kim, Tadesse, and Vannucci (2006) where guidelines for the specification of these

parameters are provided. In general, these parameters need to be specified in

the range of variability of the data. A data-based specification, in particular,

ensures that the prior distributions overlap with the likelihood, resulting in well-

behaved posterior densities. Other authors have reported that noninformative or

diffuse priors produce undesirable posterior behavior in finite mixture models, see

Richardson and Green (1997) and Wasserman (2000), among others, and Kass

and Wasserman (1996) for a nice discussion on prior specifications and their

effects on posterior inference. In our application we set Ωg = kI|γ| with k = 3−1,

a value close to the standard deviation of the means of the columns of Z. We

also specified k0 = 10−1, a value in the same scale of magnitude of Ωg.
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The hyperparameters of the MRT were set to d = −2.5 and e = 0.3. The

choice of d reflects our prior expectation about the number of significant variables,

in this case equal to 7.5%, while a moderate value was chosen for e to avoid the

phase transition problem. In general, any value of e below the phase transition

point can be considered a reasonable choice. However, a value close to the phase

transition point would result in a high prior probability of selection for those

nodes whose neighbors are already selected, particulary in a sparse network.

Consequently the data would play a much less important role in the selection

of the wavelet coefficients. The approach we adopt considers also that the prior

probability of a wavelet coefficient should not vary enormously according to the

selection of its neighbors. Specifically we set e so that the prior probability of

inclusion of a wavelet coefficient with all its three neighbors already selected is

roughly twice the prior probability of a coefficient that does not have any of its

neighbors selected.

We assumed unequal covariance matrices across the groups. We ran MCMCs

by setting φ = 0.5, therefore giving equal probability to the add/delete and the

swap moves. We used two chains, one that started from a model with two

randomly-selected variables, the other one from a model with ten included vari-

ables. We ran the chains for 200,000 iterations, using the first 1,000 as burn-in.

We observed fast convergence, therefore selecting a relative short burn-in. The

stochastic searches mostly explored models with 16-18 wavelet coefficients and

then quickly settled down to models with similar numbers of variables. In our

Matlab implementation, the MCMC algorithm needs only a few minutes to run.

The results we report here were obtained by pooling together the output

of the two chains. Figure 5 shows the marginal probability of inclusion of the

individual wavelet coefficients. A threshold of 0.4 on these probabilities selected

a subset of 14 wavelet coefficients. This threshold corresponds to an expected

false discovery rate (Bayesian FDR) of 36.7%, which we calculated according

to the formulation suggested by Newton et al. (2004). As we expected, the

selected wavelet coefficients belonged to the intermediate scales, with 12 out of

14 belonging to scales 5-6-7 (in our decompositions wavelet coefficients ranged

from scale 3, the coarsest, to scale 9, the finest). Additionally, we found that 4 of

these 12 coefficients were directly connected in the prior tree structure. Increasing

the threshold to 0.5 selected 7 wavelet coefficients, corresponding to a Bayesian

FDR of 17.9%.

Figure 6 shows the posterior probabilities of class memberships for the 114

observations of the validation set, calculated based on the selected 14 wavelet

coefficients, and Table 1 summarizes the classification results according to these

probabilities and a threshold of 0.4. Overall, the model is able to classify 110 of

the 114 food samples of the validation set. Predictions worsen to 102 out of 114
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Figure 5. Marginal posterior probabilities of inclusion for single wavelet
coefficients.

Table 1. Validation set: Classification results for the five different species of
meat using a threshold of 0.4 for the posterior of inclusion. The number of
misclassified units is reported in parentheses.

Predicted

Truth Beef Lamb Pork Turkey Chicken
Beef 100.0 0.0 0.0 0.0 0.0
Lamb 5.9 (1) 94.1 0.0 0.0 0.0
Pork 0.0 0.0 100.0 0.0 0.0
Turkey 0.0 0.0 0.0 92.6 7.4 (2)
Chicken 0.0 0.0 0.0 3.7 (1) 96.3

by using the 7 wavelet coefficients selected with the 0.5 threshold on the marginal

probabilities of inclusion.

We also looked into comparisons of our results with alternative procedures.

A standard approach in Chemometrics is to apply linear or quadratic discrim-

inant analysis on selected principal components. We therefore calculated the

principal components of our NIR curves, in the original domain of the data, and

computed classical LDA and QDA by selecting different numbers of principal

components. We found best results in terms of misclassification rate by using

13-14 principal components with LDA, achieving a total misclassification rate

of 5.3%, and 11-13 components with QDA, achieving a total misclassification

rate of 6.1%. With a total misclassification rate of 3.4% our method compares
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Figure 6. Posterior probabilities of group memberships for the 114 observa-
tions in the validation set.

favorably with these more standard techniques. Our method also outperforms

the results reported by Murphy, Dean, and Raftery (2010), obtained with their

proposed method, and those obtained with competing alternatives as reported by

these authors. It needs to be pointed out, however, that these authors performed

variable selection by fitting their model to all 231 samples and eliminating at

random half of the labels, which they predicted; this procedure was repeated 50

times and an average misclassification rate was then reported. With respect to

their results, our method, in particular, obtains a consistently better separation

between Turkey and Chicken samples.

We conclude this section by briefly commenting on additional analyses we

performed to understand the sensitivity of the model to the specification of the
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parameters d and e. In particular, we re-analyzed the NIR data using values of

d in the range −3 to −2 (implying a proportion of expected significant wavelet

coefficients from 5% to 12%) and values of e in the range 0.6 to 1. A value

e = 0.6 implies that the prior probability of selecting a wavelet coefficient with

all its three neighbors already selected is roughly 4 times the prior probability

of a wavelet coefficient that does not have any of its neighbors selected, while

with e = 1 this ratio is almost 10 when d = −3, and between 6 and 7 when

d = −2. Our method performed well in all four settings. With a threshold of

0.4 for the posterior probabilities our method correctly classified on average 110

of the 114 samples in the validation set. The best predictive power was achieved

with e = 1 and d = −2, with 112 correctly classified samples. The number of

selected wavelet coefficients was stable among the different scenarios, with 14

to 17 selected coefficients that mostly overlapped, except for some coefficients

that represented the same feature of the data at close locations. As a general

behavior, we noticed that, while different settings of the parameters slightly

affect the magnitude of the posterior probabilities of inclusion of the wavelet

coefficients, their ordering tends to remain largely unaffected.

5. Conclusion

We have put forward a wavelet-based approach to discriminant analysis for

curve classification. We have employed wavelet transforms as an effective tool for

dimension reduction that reduces curves into wavelet coefficients. We have illus-

trated how to perform variable selection in the wavelet domain within a Bayesian

paradigm for discriminant analysis. We have considered linear and quadratic dis-

criminant analysis and have constructed Markov random field priors that map

scale-location connections among wavelet coefficients. Unlike current literature

on Bayesian wavelet-based modeling, our model formulation avoids any indepen-

dence assumption among wavelet coefficients. For posterior inference we have

achieved dimension reduction using a stochastic search variable selection proce-

dure that selects the discriminatory wavelet coefficients. We have presented a

typical example from chemometrics that deals with the classification of differ-

ent types of food into species via near infrared spectroscopy. Our method has

performed well in comparison with several alternative procedures. As already no-

ticed by Tadesse, Sha and Vannucci (2005), in applications a careful setting of Ωg

and k0 is needed, due to the sensitivity of the model to these hyperparameters.

A possible extension of our model is to allow for a third group of variables in

the likelihood factorization (2.5) formed by variables that are marginally indepen-

dent of the significant ones. The factor of the marginal likelihood corresponding

to this third group of variables simplifies in the Metropolis-Hasting steps pro-

posed in Section 3, while new moves that allow variables to be assigned to or



WAVELET-BASED DISCRIMINANT ANALYSIS WITH MRT PRIORS 485

removed from this third set are needed. We have implemented this approach but

did not see any significant difference in the selection of the wavelet coefficients

and in the corresponding predictions.

The Gaussian assumption is commonly made in applications with the type

of spectral datasets we have considered in this paper, see Dean, Murphy, and

Downey (2006) and Oliveri et al. (2011), among many others. However, readers

may wonder whether the performances of our method depend on this. To inves-

tigate this aspect we designed a small simulation study with non-Gaussian data.

First we selected one curve xB at random among the observed data analyzed in

Section 4 and generated a set of n observations belonging to two groups using

the following steps. (1) For each data point xij we added some uniform noise as

xij = xBj + u, with u ∼ Uniform(−c, c), i = 1, . . . , n, j = 1, . . . , p. This implies

that the distribution at each data point xij is uniform in the original data do-

main. (2) We applied the DTW, using Daubechies wavelets with three vanishing

moments, to the generated curves. (3) We randomly selected three wavelet co-

efficients belonging to intermediate scales. For samples belonging to group 1 we

added a constant cw to these coefficients, while we subtracted the same constant

cw for samples belonging to group 2. (4) For samples belonging to group 1 we

added a constant cn to all neighbors of the three wavelet coefficients selected

at (3). We subtracted the same constant cn for samples belonging to group 2.

Since each of the wavelet coefficients selected at (3) had three neighbors in the

MRT, there were 12 wavelet coefficients that had discriminatory power among

the two groups. We considered three different scenarios. In the first scenario we

set (c, cw, cn) = (0.02, 0.06, 0.03), in the second (c, cw, cn) = (0.015, 0.02, 0.04),

and in the third (c, cw, cn) = (0.05, 0.08, 0.04). The small values for (c, cw, cn)

we considered did not alter the original shape of the observed curve xB. Note

that the first two scenarios result in cn < 2c < cw, while the third one is more

challenging, with cn < cw < 2c. With the same hyperparameter settings adopted

in Section 4 for the analysis of the NIR spectral data, in the first scenario a

threshold of 0.5 on the marginal posterior probabilities resulted in the selection

of all the 12 significant wavelet coefficients without any false positives. In the

second scenario the same threshold led to the selection of 11 significant wavelet

coefficients without any false positives. In the third scenario 8 coefficient were

correctly selected without any false positives.
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Appendix. Linear Discriminant Analysis

If all G groups share the same covariance matrix Σ, then the most appro-

priate technique is linear discriminant analysis (LDA). Using an Inverse-Wishart

prior on this matrix, Σ ∼ IW (δ,Ω), and leaving all the other settings unchanged,

the marginal likelihood used in the MCMC algorithm, corresponding to (3.1) for

the quadratic case, is

p(Z|y,γ) ∝ (k0 + (Z(γc) − 1pγm0(γc) − Z(γ)β)
T (In + h01n1

T
n + Z(γ)HγZ

T
(γ))

−1

(Z(γc) − 1pγm0(γc) − Z(γ)β))
−(n+δ)/2

K(γ)|Ω(γ)|
(δ+pγ−1)/2|Ω(γ) +

G∑

g=1

Sg(γ)|
−(n+δ+pγ−1)/2,

with

K(γ) =
[ G∏

g=1

(h1ng + 1)−pγ/2
] pγ∏

j=1

Γ((ng + δ + pγ − j)/2)

Γ((δ + pγ − j)/2)

and Sg(γ) defined as in Section 3. The predictive distribution for the LDA case

is a multivariate T-student, see Brown (1993),

zf − µ̃g ∼ T (δ∗, ag,Ω
∗),

where µ̃g = πgmg + (1 − πg)z̄g, δ
∗ = δ + n, ag = 1 + (1/hg + ng)

−1, and

Ω∗ = Ω + S + (hg + 1/ng)
−1(Z̄ − M)T (Z̄ − M) with πg = (1 + hgng)

−1 and

S = (Z−JZ̄)T (Z−JZ̄); J consists of G dummy vectors identifying the group of

origin of the observation, Z̄ is the G× p matrix of the sample group means and

M = (m1, . . . ,mG)
T . Note that the part relative to the non-selected variables

does not change compared to (3.1). When handling units with missing label,

K(γ) can be written as:

K(γ) =
[ G∏

g=1

w
ng
g (h1ng + 1)−pγ/2

] pγ∏

j=1

Γ((ng + δ + pγ − j)/2)

Γ((δ + pγ − j)/2)
,

while the predictive distribution remains unchanged after having assigned unla-

beled units to groups.
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