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Bayesian Wavelet-Based Image Deconvolution:
A GEM Algorithm Exploiting a

Class of Heavy-Tailed Priors
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Abstract—Image deconvolution is formulated in the wavelet
domain under the Bayesian framework. The well-known spar-
sity of the wavelet coefficients of real-world images is modeled
by heavy-tailed priors belonging to the Gaussian scale mixture
(GSM) class; i.e., priors given by a linear (finite of infinite) com-
bination of Gaussian densities. This class includes, among others,
the generalized Gaussian, the Jeffreys, and the Gaussian mixture
priors. Necessary and sufficient conditions are stated under which
the prior induced by a thresholding/shrinking denoising rule is
a GSM. This result is then used to show that the prior induced
by the “nonnegative garrote” thresholding/shrinking rule, herein
termed the garrote prior, is a GSM. To compute the maximum
a posteriori estimate, we propose a new generalized expectation
maximization (GEM) algorithm, where the missing variables are
the scale factors of the GSM densities. The maximization step
of the underlying expectation maximization algorithm is replaced
with a linear stationary second-order iterative method. The result is
a GEM algorithm of ( log ) computational complexity. In
a series of benchmark tests, the proposed approach outperforms
or performs similarly to state-of-the art methods, demanding
comparable (in some cases, much less) computational complexity.

Index Terms—Bayesian, deconvolution, expectation maxi-
mization (EM), generalized expectation maximization (GEM),
Gaussian scale mixtures (GSM), heavy-tailed priors, wavelet.

I. INTRODUCTION

IMAGE deconvolution is a longstanding linear inverse

problem with applications in remote sensing, medical

imaging, astronomy, seismology, and, more generally, in image

restoration [3].

The challenge in many linear inverse problems is that they are

ill posed, i.e., either the linear operator does not admit inverse or

it is nearly singular yielding highly noise sensitive solutions. To

cope with the ill-posed nature of these problems, a large number

of techniques has been developed, most of them under the reg-

ularization or the Bayesian frameworks [4]–[8].

The heart of the regularization and Bayesian approaches is the

a priori knowledge expressed by the prior/regularization term,

which attaches higher scores to images or structures believed
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to be more likely. However, tailoring a prior for real-world im-

ages is a nontrivial and subjective matter, to which many di-

rections have been proposed. Relevant classes of priors are, in

chronological order, the Gaussian (quadratic energy) implicit

in the Wiener filter [3], the compound Gauss Markov random

field [9] (weak membrane [10] in the regularization setup), the

Markov random field with nonquadratic potencials [11], [12],

and heavy-tailed densities on the wavelet domain [13]–[24].

The weak membrane [10], in the regularization setup, and

the compound Gauss Markov random field [9], in the Bayesian

setup, were conceived to model piecewise-smooth images. Al-

gorithms [10], [25]–[27], and [28] are but a few examples using

piecewise-smooth priors. By signaling boundaries between

smooth regions with discrete random variables, the so-called

line field, these priors improve the modeling accuracy near

the edges in comparison with the classical quadratic ones.

Piecewise-smooth priors were not, however, designed to model

texture, this being a major limitation, as many real-world

images are partially or totally textured.

Wavelets have been increasingly used in the last years in sta-

tistical and data analysis applications [29]–[31]. Underlying this

trend is the parsimonious representation provided by the wavelet

transform of a large class of real-world images: elements of

this class are essentially described by a few large wavelet co-

efficients. This fact has fostered Bayesian and regularization

approaches, where the prior favors a few large wavelet coef-

ficients and many nearly zero ones (the so-called heavy-tailed

density priors) [13]–[15], [17]–[21], [23], [24]. Some examples

of heavy-tailed densities adopted in image restoration are the

equivalent garrote [32], [33], the generalized Gaussian [34], the

Jeffreys noninformative prior [35], [36], and the Gaussian mix-

ture (GM) [20], [37].

Wavelet descriptors are among the best in representing

real-world images. However, very often, restoration criteria

resulting from using wavelets are very hard to implement, at

least from the computational point of view. The reasons are

usually two-fold: 1) heavy-tailed priors lead frequently to huge

nonconvex optimization problems and 2) in formulating linear

space-invariant inverse problems in the wavelet domain, one is

frequently faced with linear operations resulting from the com-

position of Toeplitz operators with wavelet transforms. This

composed operator is not diagonal and introduces unbearable

computational complexity in the wavelet-based deconvolution

schemes. Recent works [24], [38], [43] have circumvented this

difficulty by recognizing that each of these operations per se

can be computed efficiently with fast algorithms.

1057-7149/$20.00 © 2006 IEEE
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A. Proposed Approach

We formulate image deconvolution in the wavelet domain

following a Bayesian approach. The observed images are

assumed to be degraded by space-invariant blur and additive

Gaussian noise. The wavelet coefficients are assumed to be

independent with density given by a Gaussian scale mix-

ture (GSM) [39]–[41]. This set of densities contains many

heavy-tailed priors adopted in image restoration of real-world

images, namely the generalized Gaussian class [34], the Jeffreys

noninformative prior [36], and the GM [20], [37]. We show

that the prior induced by the garrote thresholding rule [32]

(see also [33]) is also a GSM. Furthermore, we state necessary

and sufficient conditions under which the prior induced by a

thresholding/shrinking denoising rule is a GSM.

To compute the MAP estimate, we propose an expectation

maximization (EM) algorithm, where the missing variables are

the scale factors of the prior GMs. The maximization step of the

EM algorithm includes a huge nondiagonal linear system with

unbearable computational complexity. To avoid this difficulty,

we approximate the linear system solution by a few iterations of

a linear stationary second-order iterative method. The resulting

scheme is a generalized expectation maximization (GEM) [42]

algorithm, achieving convergence in a few tens of iterations. The

fast Fourier transform (FFT) and the discrete wavelet transform

(DWT) are the heaviest computations of each GEM step. Thus,

the overall algorithm complexity is . In a set of ex-

periments, the proposed algorithm either equals or outperforms

state-of-the-art methods [14], [19], [23], [24], [43].

This paper is organized as follows. Section II formulates the

restoration problem in the wavelet domain under the Bayesian

framework. Section III studies the GSM class of heavy-tailed

priors, focusing on the generalized Gaussian densities, the

Jeffreys noninformative prior, the GM, and the equivalent gar-

rote prior. Necessary and sufficient conditions are stated under

which the prior induced by a thresholding/shrinking denoising

rule is a GSM. Section IV presents an EM algorithm to compute

the maximum a posteriori (MAP) image estimate and a GEM

version aimed at the fast computation of the MAP image esti-

mate. Section VI addresses convergence and numerical aspects

of the proposed GEM algorithm. Finally, Section VII presents

a series of experimental results illustrating the effectiveness of

the proposed methodology.

II. PROBLEM FORMULATION

Let and be the vectors containing the original and the

observed degraded image gray levels, respectively, arranged in

column lexicographic ordering. We assume, without loss of gen-

erality, that images are square of size (number of pixels).

The observation model herein considered is

(1)

where is a square block-Toeplitz matrix accounting for space-

invariant blur and is a sample of zero-mean white Gaussian

noise vector with density [

denotes a Gaussian multivariate density of mean and covari-

ance evaluated at , and is the identity matrix.

Let a given wavelet forward and inverse transforms be repre-

sented by the and matrices and

, respectively, and the wavelet coefficients of . We

assume that the system has the perfect reconstruction property

(i.e., ) and that . Rivaz in [16] termed couples

and exhibiting the latter property balanced wavelet trans-

forms. Herein, we adopt this definition. Balanced transforms

use the conjugate time-reverse of the analysis filter for the re-

construction filters. The orthogonal discrete wavelet transform

(DWT) is an example of a balanced transform. The Q-shift dual

tree complex wavelets (DT-CWT) [44] are nearly balanced in

the sense that is negligible (see

[16, Ch. 2.5]).

Introducing in (1), we have

(2)

The density of the observed vector given is then

. Given a prior , the MAP estimate of

is

(3)

where

(4)

As in many recent works, we assume that the wavelet coeffi-

cients are mutually independent and identically distributed, i.e.,

The independence assumption is motivated by the high degree

of decorrelation exhibited by wavelet coefficients of real-world

images. Although decorrelation does not imply independence,

the latter has led to very good results.

If , i.e., there is no blur, the image restoration at hand

falls into a denoising problem (see, e.g., [32]–[34], [36], [45],

and [46]). In this case, and by using the DWT, maximization (3)

reduces to decoupled coefficient-wise maximizations, which

can be efficiently solved exploiting the orthogonality of and

using fast implementations of the DWT (see, e.g., [33], [34]).

If , i.e., there exists blur, the maximization (3) cannot

be decoupled, leading to a hard computational problem, mainly

due to the matrix . In fact, even in the cases where

the prior term is of the form , i.e., quadratic on

, the solution for the linear system

one is led to is not an easy task, often involving itera-

tive procedures.

To compute the MAP estimate (3), we adopt an EM approach.

The first step in designing an EM algorithm is the choice of the

so-called missing data [42]. In the present approach, the missing

data is a set of random variables playing the role of scale coeffi-

cients in the GSM decomposition of the wavelet prior. The next

section addresses aspects of this decomposition for commonly

used heavy-tailed priors.
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III. GSM: A UNIFYING FRAMEWORK FOR COMMONLY

USED HEAVY-TAILED PRIORS

A random variable is said to be a GSM if its density can

be decomposed into a linear combination (finite or infinite) of

zero-mean Gaussian densities; i.e.,

(5)

where . According to (5), the random

variable is interpretable as

(6)

where and are random variables with densities

and , respectively. For a given , the term plays the

rule of a scale factor multiplying the Gaussian random variable

. Thus, the designation GSM.

A symmetric density satisfying the condition

is a GSM if and only if is completely monotone1

[41]. Many heavy-tailed priors used in wavelet-based image de-

noising/restoration admit the GSM decomposition (5). Some ex-

amples are listed in Table I. The GM is itself a GSM; the garrote

density is addressed below; details about the other densities can

be found in [47] (generalized Gaussian), [41] [Laplace (i.e., gen-

eralized Gaussian with ) and Hardy], and [35] (Jeffreys).

A. GSM and Thresholding/Shrinking Functions

Consider the following question: in a denoising problem (i.e.,

) using the DWT, given an antisymmetric nondecreasing

thresholding/shrinking function , is there any prior

such that the solution of the MAP estimate (3) is given

by , where and are homonymous components of

the DWTs of and of , respectively?

To address this question, let us compute the MAP estimate (3)

when . Using the fact that and denoting the th

component of by , we may write the log-posterior

[see (4)] as

(7)

Therefore, the MAP estimate is obtained by maximizing

, for . Assume that is differ-

entiable in except, perhaps, at . Then, the maxima of the

log-posterior is either or a solution of

(8)

If exists for , then is symmetric and given by

(9)

1A C (0;1) function f is said to be completely monotonic on (0;1) pro-
vided that (�1) f (x) � 0, for all x 2 (0;1) and for all natural number l.

TABLE I
GAUSSIAN SCALED MIXTURE (GSM) DENSITIES

where is any positive constant. We term

the prior induced by .

As an application example of expression (9), consider the

so-called “nonnegative garrote” [32] thresholding function

given by

(10)

where stands for “the positive part of”, i.e., , if

, and , if . The inverse of is

(11)

Introducing (11) into (9), we obtain the prior induced by the non-

negative garrote thresholding function, herein termed garrote

prior. Its expression is shown in the last line of Table I. It should

be noted that this density is an empirical Bayesian prior, in the

sense that it depends on the noise variance and, therefore,

on the observed data. We have considered this pior since, with

, it leads to very good results in denoising applica-

tions, as shown in [33] following an empirical Bayes approach.

A straightforward way to confirm whether a given density

is a GSM, is to check if , for all
2 and for all natural . However, if the prior is induced by a

thresholding/shrinking function, the following lemma provides

an easier way to test the GSM nature of the prior.

Lemma 1: Let be an antisymmetric nonde-

creasing thresholding/shrinking function such that exists

and is for . Define for

. Then the induced density , with

given by (9), is a GSM iff for and for

Proof: See Appendix.

We now use Lemma 1 to show that the induced garrote prior

is a GSM.

Proposition 1: The garrote prior induced by the thresholding

function (10) is a GSM.

Proof: The function introduced in Lemma 1 is for

the garrote thresholding function [see (10) and (11)] given by

for . A straightforward

calculus based on the derivatives of leads to the conclusion

that for and for

2The notation f (
p
�) is to be understood as (d q(�))=(d� ), with q(�) �

f(
p
�).
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Many heavy-tailed priors satisfy , implying the

existence of a threshold on below which . Therefore,

this type of nonsmooth prior leads to sparse representations of

the estimated images. Sparseness is a desired property in many

applications such as sparse regression, variable selection, and

feature selection. This is not the case in image deconvolution as

we will see in Section VII.

The Hardy density is obtained from the Laplace density

by replacing with [41]. Both are heavy-tailed;

however, the latter is sparse, implying the existence of a

threshold, whereas the former does not, no matter how small

is . With respect to optimization, the Hardy prior

is preferable, as it is , widening the range of applicable

optimization algorithms.

In the context of GSM densities, the considerations made

in the paragraph above about Hardy and Laplace priors

bring to mind the following question: Given a sparse GSM

prior , is also a GSM?

The answer is yes, since, for , the derivatives of

, with .

This fact can be exploited, for example, to eliminate difficulties

in dealing with the Jeffreys prior at the origin.

IV. EM ALGORITHM

In this section, we develop an EM algorithm that converts the

maximization (3) into a sequence of quadratic problems, each

one solved iteratively and efficiently by using fast algorithms

to compute (forward wavelet transform), ,

(inverse wavelet transform), and (image convolution),

thus avoiding the direct manipulation of matrix .

Let be a random vector of independent

components, where plays the role of scale in the Gaussian

decomposition of , as referred to in (6). Let random vec-

tors and play the role of missing data and complete data,

respectively, in our EM formulation. The density of the com-

plete data, denoted by , is then given by

(12)

where the independence of on was used in the

second line of (12), , and

.

The EM algorithm yields a nondecreasing log-posterior se-

quence [42] , where is

generated by the two-step iteration presented in Algorithm 1.

Algorithm 1 Wavelet GSM-Based EM Algorithm for Image Deconvolution.

Initialization:

for to StopRule do

Expectation Step (E-Step)

Maximization Step (M-step)

end for

The mean value in the E-step is computed with respect to

. From (12), we conclude that

Since does not

depend on the missing data vector , and that

, and, thus, , ( and

do not depend on ), then

(13)

where stands for terms not depending on and

( stands for diagonal ma-

trix). Given that is conditionally independent, then

it follows that , where and

is the th component of .

The M-step consists in maximizing (13) with respect to , i.e.,

(14)

In (14), it is assumed that the matrix

is positive definite, i.e., . Since , i.e., it

is nonnegative definite, then a sufficient condition for

is that . This inequality is always satisfied, since the

diagonal elements of are mean values of positive quantities.

Recalling that , the mean value

can be expanded as

(15)

(16)

(17)

(18)

where we have used in (17) and

exchanged the integral with the derivative in (18). Equation (18)

is very useful, since it allows to compute directly from

without the explicit knowledge of the density . Moreover, if
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the prior is induced by a thresholding/shrinking function such

that exists for , then and

(19)

(20)

(21)

where [see (8)] was used in (21).

This expression allows to compute directly from a given

thresholding/shrinking function without the knowledge of the

induced density or the density .

Table II presents for the listed priors. The expression

correspondent to the induced garrote prior was obtained using

the formula (21); the remaining expressions were obtained using

the formula (18). The last line of Table II means that the mean

value associated to the prior is

simply the mean value associated to computed at

. This is a simple and useful result, providing a tool

to build nonsparse priors from sparse ones.

Expressions (18) and (21) allow the direct specification of the

mean value from a given thresholding/shrinking law or from

a given density , respectively, without computing the under-

lying GSM. We can push further this link and apply the itera-

tion (14), even if the underlying prior is not a GSM. Of course,

in this case, it is not guaranteed that we obtain a nondecreasing

log-posterior sequence.

V. GENERALIZED EXPECTATION MAXIMIZATION

(GEM) ALGORITHM

M-step (14) is impracticable from the computational point of

view, as it amounts to solving the linear system of size

, where . We tackle this difficulty

by replacing the maximization of (14) with a few steps of an

iterative procedure that increments , with respect to .

The resulting scheme is, thus, a GEM algorithm.

Let be a splitting [48] of , where

and . Given that ,

then the second-order stationary iterative method consisting of

the following equations (see, e.g., [48]):

(22)

converges to the solution of , if and only if

(23)

where are the eigenvalues of

(see Theorem 5.9 of [48, Ch. 5]). The optimal conver-

gence factor is

TABLE II
MEAN VALUES d(�) = E[z j �]

and is achieved for

(24)

Some algebra applied to the third line of (22) leads to

(25)

The expression for shown in the second line of (22) is an

instance of (25) with and . Note that if

in (22), we obtain a first-order stationary iterative method

converging for , with an optimal convergence

factor of achieved, as in

the second-order case, for [48, Ch. 5]. For

ill-conditioned systems (i.e., ), the asymptotic rate

of convergence of the first-order method is,

approximately, , whereas that of the second-order

method is, approximately, . This makes a huge

diference in the number of iterations necessary to reduce the

error by an order of magnitude. For example, for and

, usual values in deconvolution problems, the first-order

method takes 50 iterations to reduce the error by an order of

magnitude, whereas the the second-order method takes only five

iterations!

Given that is diagonal, the product

, necessary to determine the residual , is the

heaviest computation in each iteration (25). We note, however,

that can be computed efficiently, since there ex-

ists fast implementations for computing the the inverse

wavelet transforms [30], and the product of a Toeplitz matrix

by a vector can also be computed efficiently, by embedding

into a larger block-circulant matrix. Block-circulant matrices

are diagonalized by the two-dimensional (2-D) discrete Fourier

transform. Therefore, by using the 2-D fast Fourier transform,

the complexity of the product of a Toeplitz matrix by a vector

is [3].

A pertinent question is the choice of the number of itera-

tions, say . Whatever might be, if parameters and

satisfy (23), then as [ is

given by the (14)], i.e., the norm of the error tends to zero. This

does not imply, however, that as required
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in the optimization step3 (O-step). A very simple solution to

this problem consists in checking if . If

this inequality is not satisfied, iterate (25) until

. Note that this procedure adds only a small computa-

tional complexity to the GEM algorithm, since the heaviest step

in determining the quadratic function given by (13) is

the computation of , also needed to compute in (25).

Algorithm 2 (WaveGSM) Wavelet GSM-Based GEM Algorithm for Image Deconvolution.

Initialization:

is the Wiener estimate

1: for to StopRule

2: E-Step

3:

4: O-step (Increases )

5:

6: repeat

7: for to do

8:

9:

10: { and , for }

11: end for

12:

13: until

14:

15: end for

Algorithm 2, named WaveGSM, shows the pseudo-code for

the proposed GEM iterative procedure. It is initialized with

, where is the Wiener estimate assuming that is zero-

mean Gaussian with covariance matrix , i.e.,

Variance is estimated based on the sample variance of

divided by the energy of the blur filter. If the condition

is not satisfied, another set of

iterations of expression (25) is computed. In practice, as seen

in next section, a few iterations are enough to increase . This

and other aspects concerning convergence and parametrization

of the proposed algorithm are addressed in the next section.

A. Unknown Noise Variance and Prior Parameters

Until now, we have assumed that the noise variance is

known. If this is not the case, is estimated by computing

(26)

after step 14 of Algorithm 2. If the prior does not depend on

, this step does not modify the nondecreasing nature of ,

since it is applied before the GEM steps and only to the log-

likelihood term.

An alternative to (26) is computing beforehand and keep

it constant. In the next section, we use the MAD (i.e., median

3From now on, we refer to O-step instead of M-step, because Q(���; ��� ) is not
maximized with respect to ���, but only increased.

absolute deviation of the finest level wavelet coefficients divided

by 0.6745) [49] estimate, for this purpose.

If the prior density has unknown parameters, the EM setup

supplies a tool to infer these parameters. The idea is to maximize

not only with respect to , but also with respect to the un-

known parameters. Of course, if the term discarded

in the definition of [see expression (13)] depends on any un-

known prior parameter, it should be included in . Since the

joint maximization of with respect to and to the prior pa-

rameters may be a hard problem, we can maximize first with

respect to and then with respect to the prior parameters. This

is a cyclic maximizer with just one iteration that preserves the

nondecreasing nature of . In Section VII, we use this tech-

nique to infer parameters of a GM prior.

B. Translation-Invariant Restoration

Translation invariant (TI) wavelet-based methods outperform

orthogonal DWT based ones, as the former significantly reduce

the blocky artifacts associated to the dyadic shifts inherent to the

orthogonal DWT basis functions [45]. Herein, we compare two

ways of implementing TI, both based on WaveGSM algorithm

1) WaveGSM-TI Run WaveGSM a given number of times

, each time applying , a shifted version of

the DWT. The final estimate is obtained by averaging

all estimates. Algorithm 3 shows the pseudo-code for

WaveGSM-TI. The notation

stands for the output of WaveGSM initialized with

and applying the DWT .

2) WaveGSM-TIR Run exactly WaveGSM with the

TI-DWT. In the present setup, replacing the orthogonal

DWT with the TI-DWT does not alter the GEM nature

of the developed algorithm, as the optimization step still

increments the objective function .

Algorithm 3 (WaveGSM-TI) Translation invariant version of WaveGSM by averaging

estimates.

Initialization: { is the Wiener estimate}

1: for to do

2:

3:

4: end for

VI. CONVERGENCE AND NUMERICAL ANALYSIS

OF THE GEM ALGORITHM

Assuming that exists for

any couple , the proposed GEM algorithm generates a

nondecreasing sequence of the log-posterior . In this sec-

tion, we address the following convergence aspects: 1) Does the

sequence converge to stationary points of

? If so, what type are they (saddle points, local maxima, global

maxima); 2) Does the sequence converge? In

addressing these questions, we follow closely [50].

A. Convergency of to Stationary Points

Let us assume that the GSM density is

bounded above and that is . Then,

is continuous in since
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. Herein, we term densities with these proper-

ties nonsparse priors. Hardy prior, GM prior, and any prior

, with being a GSM and , are

nonsparse priors.

If a prior is nonsparse, then is continuous in

both and . Then, all limit points of any GEM sequence

generated by (25) are stationary points of

and converges monotonically to for

some stationary point . This result is a minor modification

of Theorem 2 of [50], where the condition

for any nonstationary point is assured by step 13 of the

WaveGSM Algorithm.

GMs and Hardy priors are nonsparse, leading to continuous

in both and . Therefore, the respective log-poste-

rior sequences converge to stationary points . Generalized

Gaussian, Laplace, Jeffreys, and Garrote priors are sparse and

then is not defined for . For these priors, it is not

possible, therefore, to assure convergence of .

Although convergence of to stationary points can not be

assured in the case of sparse priors, this can be reverted by in-

troducing a small modification in the log-posterior, consisting

in replacing the prior with , where is a

nonzero arbitrary small number. As seen before, this assures

continuity of at and, thus, convergence of

to stationary points. Furthermore, the heavy-tailed nature of the

prior is kept, giving credit to the modification. Of course, the

sparseness is lost in the sense that many estimated coefficients

that were exactly zero are now very small, but not zero. In terms

of deconvolution, usually this is not a problem.

B. Type of Stationary Points

Provided that the sequence converges to a stationary

point, the next natural question is what type of stationary point

is converging to? If all stationary points are local (global)

maxima, then converges to a local (global) maxima.

The problem is that, very often, has saddle points that may

trap the GEM sequence.

In the case of nonsparse priors and strictly convex log-poste-

rior , there is a unique maximum and converges

to it. Moreover, the sequence converges to , such that

. The latter result is a direct consequence of Corol-

lary 1 of [50], by noting that is a quadratic function of

and then is continuous with respect to and .

Hardy prior is strictly convex. The log-likelihood

is also convex although not necessarily strictly.

Therefore, the log posterior using the Hardy prior is strictly

convex and then the GEM sequence converges to the global

maximizer . Other priors are strictly convex provided that

. This condition may be satisfied, or not, depending

on the blur matrix and on the noise variance . In general

terms, decreases as the blur decreases and as noise

variance approaches to zero.

C. Numeric Analysis

After these considerations, one is certainly convinced that the

proposed GEM iterative scheme runs into numerical and con-

vergence troubles when using sparse priors. This happens, in

fact, in (14), since as . Notice, however, the

GEM iteration (22) depends on , thus, being numerically

stable.

Still, there is a question on the GEM convergence when

using sparse priors: If a wavelet coefficient is initialized to zero,

it remains zero, irrespective of the number of iterations and

the initialization of the remaining wavelet coefficients. This is

implied by when the referred wavelet coefficient is

zero and, thus, so is zero the correspondent diagonal entry of

. We have found out, however, in a series of experiments,

that the sequence generated by (25) leads systematically to

good results, providing that the wavelet coefficients are not

initialized to zero. Moreover, given a nonsparse prior obtained

from a sparse prior by replacing with , it was

also systematically observed that and

as , where

denotes the objective function obtained by replacing in the

prior with . That is to say that, in a heuristic sense,

and are continuous on , provided that

the wavelet coefficients are not initialized to zero. This is

illustrated in Section VII.

1) Eigenvalues and : The optimal iteration pa-

rameters , and depend on the extreme eigenvalues

and . Given that

, then

, for . Noting that

and that (we

are assuming that the blur is normalized to unit volume), we

have and ,

for .

We take the approximation and

for and , respectively. Given

that , the convergence of (22) is assured [see con-

dition (23)]. In fact, is a measure of the bandwidth of the

blur filter and exhibits a behavior similar to , as function of

the blur strength: When the blur decreases ( approaches ),

the eigenvalues of approaches 1 implying that also

approaches 1; when the blur increases, most eigenvalues of

approaches 0 implying that approaches 0.

Since the GEM iterations (25) shrink many wavelet coeffi-

cients to zero or nearly to zero, we could have chosen a smaller

value for , thus closer to . We note, however, that when a

wavelet coefficient gets close to zero, the linear system

can be solved by eliminating the correspondent line and the

column in the system matrix and the correspondent element

in the observed data . Therefore, we are interested in finding

an estimate of with respect to a reduced system ma-

trix, where lines and columns of correspondent to small

wavelet coefficients were eliminated. We have found out empir-

ically that leads systematically to good

results.

It should be stressed that, although the approximation for

and for might be rough, it assures that inequalities (23) are

satisfied and it is good enough to boost the converge rate by an

order of magnitude, when comparing with the first-order itera-

tive method obtained by setting in (22) (see [48, Ch. 5]).

This aspect is shown in Fig. 1, where a simulated image of size

64 64 composed by squares of different dimensions multi-
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Fig. 1. Impact of the iteration parameters (�; �) on the WaveGSM rate of convergence. Top left: original image. Top right: Degraded image (uniform blur 3� 9,

BSNR = 40 dB). Bottom left: WaveGSM restored image (DWT, Haar wavelets, Garrote prior, O-step iterations p = 10). Bottom right: Log-likelihood L(��� )
for (� = 1; � = � ) and for (�; �) given by (24), corresponding to first and second-order iterative methods, respectively.

Fig. 2. Evolution of L(��� ) as function of the total number of iterations p� t,

parameterized by p (number of iterations in the O-step). Note that ��� takes p�t

iterations to be computed.

plied by the plane , for , was restored by

the WaveGSM algorithm using Haar wavelets; the blur is 3 9

uniform and dB (BSNR is the SNR with respect

to the blurred image). The second-order iterative algorithm con-

verges in about 20 iterations, whereas the first-order one takes

about 200 iterations.

2) Number of Inner Iterations : The O-step of WaveGSM

algorithm runs, at least, times iteration (22). How to set is a

TABLE III
BLUR, NOISE STANDARD DEVIATION, AND BSNR

pertinent question. We have found out that the total number of

iterations the algorithm takes to converge is not very sensitive

to , as long as . This is illustrated in Fig. 2, where the

evolution of is plotted, parameterized by . The abscissa

axis represents the total number of iterations, , necessary

to compute .

The explanation for this behavior is that each time WaveGSM

runs the O-step it implements a first-order iteration and

second-order iterations. Therefore, given a fixed number of iter-

ations , higher values of means less first-order iterations

and, thus, higher rates of convergence of the O-step.

As stated in Section V, the rate of convergency of the O-step

depends on the extreme values of matrix . In the pre-

vious section, we give evidence that these extreme eigenvalues

are strongly related to the extreme eigenvalues of matrix .

If the image width and length are larger than the blur width and
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TABLE IV
SNR IMPROVEMENTS (ISNR) OBTAINED IN THE FIRST EXPERIMENT (CAMERAMAN, 9� 9 UNIFORM BLUR, BSNR = 40 dB, � = 0:56). COLUMNS �; � , AND

� CORRESPOND TO THE WAY NOISE VARIANCE IS DEALT WITH (RESPECTIVELY, TRUE VALUE, ITERATIVELY ESTIMATED, AND MAD ESTIMATE)

length, respectively, then the extreme eigenvalues of de-

pend little on the image size (see [51] for the unidimensional

case). Therefore, under the these circumstances, the O-step con-

vergency rate depends very little on .

VII. EXPERIMENTAL RESULTS

We now present a set of five experiments illustrating the

performance of the WaveGSM algorithm and its TI variants.

Daubechies wavelets are used in all experiments. Periodic

boundary is assumed. Original images are cameraman (exper-

iments 1–3) and lena (experiment 4) both of size 256 256.

Table III displays the blur, the noise, and the BSNR for each of

the four experiments. These scenarios replicate those used in

the evaluation of state-of-the-art methods [14], [19], [23], [24],

[43] with which we compare the proposed approach.

Five GSM priors are compared: garrote, Laplace, Hardy,

Jeffreys, and GM. Garrote prior is parameterized (see Tables

I and II) with leading to the denoising thresholding

rule (10) with threshold . This rule yields very good

results as shown in [33]. Laplace prior is parameterized with

corresponding to the soft-threshold denoising rule

with threshold . Hardy prior is also parameterized with

and . Owing to problems at the origin, the

Jeffreys prior is in fact a nonsparse version of the original one

(i.e., instead of ), with .

The GM contains three zero-mean modes (Gaussian densi-

ties). Model parameters (variances and weights) are updated,

as described in last paragraph of Section V-A, after step 14 of

Algorithm 2. The updating corresponds exactly to an iteration

of the EM algorithm for GMs [52], [53] with the mean of the

modes forced to zero. In practice, we obtained better results by

updating only the mode weights and, therefore, keeping con-

stant the mode variances. What is necessary is to have a mode

with small variance, accounting for most wavelet coefficients,

and another with larger variance, accounting, for a few large

wavelet coefficients. We set for

and 8-bit images. The mode with variance 100 increases the de-

grees of freedom of the model.

The soft-threshold denoising rule with threshold im-

plicit in the Laplace prior is formally identic to the universal

threshold proposed in [49]; however, since the

quantity is too large for most real word images

leading to oversmoothing [29], [34], we have chosen the value

of yielding the best estimate in terms of mean-squared error.

Of course, this procedure can not be followed with real data and

we adopt it only for comparison purposes: as illustrated below,

even fine tuning for each experiment, garrote and Jeffreys

priors (with fixed parameters) yield similar or better estimates

than Laplace and Hardy priors.

The stop criterion (i.e., StopRule in the WaveGSM algorithm)

is

(27)

with . The number of O-step iterations is set to .

The shifts in WaveGSM_TI algorithm take values in the set4

. The total number of

shifts is set to .

The estimation results presented in this section are based on

the mean squared error per pixel of the image estimate. The

squared error per pixel has very small variance, as it is based

on sample averages taken over images of size . For

this reason, we compute experimental results based on only one

run of the respective algorithm.

A. First Experiment

Table IV shows the obtained signal-to-noise improvements

using Harr wavelets

(Daubechies-2). Columns , and correspond to

the way noise variance is dealt with (respectively, true value,

iteratively estimated, and MAD estimate). We see from this

table that translation invariant methods outperform the non-

translation ones by, approximately, 2 dB. This conclusion is in

line with many recent findings on this matter. The best ISNR

is achieved by the WaveGSM_TI algorithm using the Jeffreys

prior, although WaveGSM_TIR with garrote, Jeffreys, or GMs

priors yields comparable performance. Laplace and Hardy

priors perform only a little worse than garrote and Jeffreys

ones. Notice that the WaveGSM_TIR algorithm yields exactly

the same ISNR when Laplace or Hardy priors are used. This

raises the question whether sparseness is a desirable feature of

priors in image restoration. In fact, as shown in Section IV, any

sparse prior can be converted into a nonsparse one, with a very

small modification of the provided MAP estimates.

4The couple (i; j) means a shift of i lines and of j columns.
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Fig. 3. First experiment. Top left: Original image. Top right: Blurred noisy image [blur (9� 9) uniform, BSNR = 40 dB]. Bottom left: Restored image with
WaveGSM TI algorithm and the Jeffreys prior (ISNR = 8:54 dB). Bottom right: Scan-line showing original, degraded, and estimated data.

Fig. 3 shows the original cameraman image (top left), the

blurred noisy image (top right), the WaveGSM_TI restored

image using Jeffreys prior, corresponding to dB

(bottom left), and a scan-line of the original, degraded, and

estimated data (bottom right). Notice that the restored image

exhibits almost no ringing and that sharp transitions, as those

in the camera neighborhood, are preserved. This is a result

of using heavy-tailed priors on the wavelet coefficients, since

sharp transitions are well described by a few large wavelet

coefficients.

We repeated Experiment 1 with Daubechies-4 and

Daubechies-6 wavelets. As with Daubechies-2, the best

results were obtained using WaveGSM_TI and WaveGSM_TIR

algorithms. However, the values of ISNR were between 0.3 and

0.8 dB below those obtained with Daubechies-2.

Based on the above results, in the remaining experiments

we only use Daubechies-2 (Harr) wavelets and compare

WaveGSM_TI and WaveGSM_TIR algorithms using Garrote,

Jeffreys, and GM priors. The noise is assumed known, since

the difference in performance among the three ways of dealing

with noise is very little.

B. Second Experiment

Table V shows the ISNR obtained in the second experiment.

The best results are obtained with Garrote and Jeffreys priors

and the WaveGSM_TIR algorithm. In comparison with these

priors, the GM performs a little better with the WaveGSM_TI

algorithm and a little worse with the WaveGSM_TIR algorithm.

TABLE V
ISNR OBTAINED IN THE SECOND EXPERIMENT (CAMERAMAN, POINT-SPREAD

FUNCTION OF THE BLUR h = (1 + i + j ), FOR i; j = �7; . . . ; 7;
� = 2 CORRESPONDING TO A BSNR = 31:85 dB)

Fig. 4 shows the blurred noisy image (top left), the

WaveGSM_TIR restored image using garrote prior, corre-

sponding to dB (top right), the WaveGSM_TI

restored image using garrote prior, corresponding to

dB (bottom left), and scan-lines of the original

and of the estimated data. Notice that the estimate determined

by the WaveGSM_TI algorithm is a little bit more smooth on

the textured areas.

Fig. 5 left shows the ISNR as function of the number of shifts

in the WaveGSM_TI algorithm. The larger increments in the

ISNR occurs in the first eight shifts. We have observed exper-

imentally that a number of shifts higher than 16 improve the

ISNR, but only by a small factor. Fig. 5 right shows the ISNR

relative first difference of as function of the GEM number

of iterations in the WaveGSM_TIR algorithm. The ISNR in-

creases up to its maximum and then decreases slowly. This is

not a surprise as we are not maximizing the ISNR but rather the

log-posterior. The evolution of and
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Fig. 4. Second experiment. Top left: Blurred noisy image [blur h = (1+ i +j ), for i; j = �7; . . . ; 7, and � = 2 corresponding to a BSNR = 31:85 dB].
Top right: Restored image with WaveGSM_TIR (garrote prior) algorithm (ISNR = 7:40 dB). Bottom left: Restored image with WaveGSM_TI (garrote prior)
algorithm (ISNR = 7:06 dB). Bottom right: Scan-line showing original data and estimated data with WaveGSM_TIR and WaveGSM_TIR algorithms.

Fig. 5. Second experiment. Left: ISNR as function of the number of shifts in the WaveGSM TI algorithm. Right: ISNR and relative first difference of L(��� ) as
function of the GEM number of iterations in the WaveGSM_TIR algorithm.

the coordinates at which it decreases below the threshold are

also plotted.

C. Third Experiment

Table VI shows the ISNR obtained in the third experiment.

As in the previous experiments, garrote and Jeffreys priors orig-

inate identical results. WaveGSM_TIR algorithm performs a

little better than WaveGSM_TI one.

D. Fourth Experiment

The blur used in this experiment is the weakest among the

four experiments and is not far from a denoising only problem.

For this reason, we initialize the deblurring algorithms with the

TABLE VI
ISNR OBTAINED AS IN THE SECOND EXPERIMENT, EXCEPT FOR THE

NOISE STANDARD DEVIATION WHICH IS SET TO � = 8,
CORRESPONDING TO A BSNR = 25:85 dB

degraded image , instead of the Wiener estimate, this leading

to fewer GEM iterations.
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Fig. 6. Fourth experiment. Top left: Original image. Top right: Blurred noisy image (blur [1; 4; 6; 4; 1] [1; 4; 6; 4; 1]=256 and � = 7, corresponding to a
BSNR = 17 dB). Bottom left: Restored image with WaveGSM_TIR (garrote prior) algorithm (ISNR = 2:85 dB). Bottom right: ISNR and relative first

difference of L(��� ) as function of the GEM number of iterations in the WaveGSM_TIR algorithm.

TABLE VII
ISNR OBTAINED IN THE FOURTH EXPERIMENT (LENA, BLUR

[1; 4; 6; 4; 1] [1; 4; 6; 4; 1]=256, AND � = 7,
CORRESPONDING TO A BSNR = 17 dB

Table VII shows the ISNR obtained in the fourth experiment.

The two algorithms display identical results with the garrote

prior.

Fig. 6 shows the original image (top left), the blurred image

(top right), the restored image with the WaveGSM_TIR algo-

rithm and garrote prior corresponding to a dB

(bottom left) and the relative first difference of as func-

tion of the GEM number of iterations in the WaveGSM_TIR

algorithm (bottom right).

From the four experiments presented, we see that the two

algorithms yield comparable estimates. Concerning priors, al-

though there is not a single winner, the garrote prior exhibits

higher consistency than Jeffreys and GM priors.

E. Fifth Experiment

This experiment compares the performance of the

WaveGSM_TIR algorithm and the garrote prior under dif-

ferent initializations: original image, degraded image , and

Wiener filter. The setup is as in Experiment 4.

The obtained ISNR, shown in Table VII, depends a little

bit on the initialization. This was to be expected, as the

the garrote prior is not convex. Note, however, that sim-

ilar results are obtained initializing the WaveGSM_TIR

algorithm with the degraded image or the Wiener image

. As expected, the best figure

is obtained initializing the algorithm with the original data.

F. Computational Complexity

The WaveGSM algorithm and its translaction invariant vari-

ants were implemented in MATLAB. Table VIII shows, per ex-

periment, the time each algorithm took and the number of GEM

iterations in the case of the WaveGSM_TIR version. The time

dynamic range of the TIR version is larger than the TI one. The

number of GEM iterations increases with the blur strength.

G. Comparison With State-of-the-Art Methods

Table IX shows the ISNR of the proposed WaveGSM_TIR

algorithm using the garrote prior and of the methods [14], [23],

[24], [43], [19], for the experiments 1–4. The proposed method

yields the best ISNR in experiments 1–3. In experiment 4, the
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TABLE VIII
TIME IN SECONDS AND GEM ITERATIONS

TABLE IX
ISNR OF THE PROPOSED WAVEGSM TIR ALGORITHM USING

THE GARROTE PRIOR AND OF THE METHODS [14], [19],
[23], [24], [43] FOR THE FOUR EXPERIMENTS

ISNR is only 0.09 dB below the value obtained with the best

competitor, which is the algorithm published in [24].

The algorithm in [24] belongs also to the EM class and

was designed with the objective of exploiting previous MAP

denoising wavelet-based approaches, which, typically, leads to

wavelet thresholding/shrinking rules depending on the prior.

This objective was achieved by rewriting the observation (1)

as three additive terms, one of then being interpretable as

missing data and the remaining ones interpretable as noise

terms. This decomposition led to E and M steps implementing

one Landweber iteration and a denoising step, respectively.

Our EM approach adopts a perspective rather different from

that of [24]: The missing variables were designed in connection

with the prior to obtain a quadratic problem in each M step. The

E step consists in recomputing a diagonal matrix playing the role

of weights in a reweighted least squares type iterative scheme.

From Table IX, we see that the gain in ISNR of the proposed

method over the method [24] increases with the blur strength.

The gain in time that the algorithm takes increases also with

the blur strength. For example, in Experiment 1, the proposed

algorithm reaches (note that this is not the final

ISNR) in ten GEM iterations and 60 s, whereas the algorithm

[24] takes 600 EM iterations and 3000 s to achieve the same

ISNR.

VIII. CONCLUDING REMARKS

We developed a new wavelet-based algorithm to image de-

convolution. The problem was formulated in the wavelet do-

main following a Bayesian approach. The observed images were

assumed to be degraded by space-invariant blur and additive

Gaussian noise. The wavelet coefficients were assumed to be

independent with density given by a GSM. This set of densities

contains many heavy-tailed priors adopted in image restoration

of real-world images, namely the generalized Gaussian class,

the Jeffreys noninformative prior, and the GM. We have shown

that the prior induced by the garrote thresholding rule is also

a GSM. Furthermore, we stated necessary and sufficient condi-

tions under which the prior induced by a thresholding/shrinking

denoising rule is a GSM.

To compute the MAP estimate, we developed an EM algo-

rithm, termed WaveGSM, where the missing variables are the

scale factors of the prior GMs. We have shown that the E-step

can be directly obtained from the prior without the explicit

knowledge of the GSM decomposition. The maximization

step of the EM algorithm includes a huge nondiagonal linear

system with unbearable computational complexity. To avoid

this difficulty, we approximated the linear system solution by

a few iterations of a linear stationary second-order iterative

method. The resulting scheme was a GEM algorithm, achieving

convergence in a few tens of iterations. The FFT and the DWT

are the heaviest computations on each GEM step. Thus, the

overall algorithm complexity is .

To reduce the blocky artifacts associated to the dyadic shifts

inherent to the orthogonal DWT basis functions, we have

introduced two algorithms, both based on WaveGSM, that

implement translation invariance: the WaveGSM_TI averages

a few WaveGSM estimates computed from shifted versions

of the original degraded image; the WaveGSM_TIR replaces

DWT coefficients with DWT_TI ones (nondecimated wavelet

coefficient). In a series of experiments, the proposed approach

outperformed or performed similarly to with state-of-the art

methods, demanding comparable (in some cases much less)

computational complexity. The gains in ISNR and computation

time, with respect to the best competitor, increase with the blur

strength.

APPENDIX

The proof of Lemma 1, basically, exploits the rela-

tion and the fact that the

product of completely monotonic functions on

is also completely monotonic. The see this, note that

, where , and are non-

negative integers and . Therefore, ,

since .

Proof: (Sufficient condition) To prove that

is a GSM, it is necessary to show that 1)

exists, with given by (9), and that 2) ,

for and all natural .

1) Since is nondecreasing and exists in , then

is bounded and , with

given by (9), is also bounded.
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2) From (8), we have for

and, therefore,5 . Since

and are completely monotones in , then

is also completely monotone in the same interval,

meaning that , for and

On the other hand, given a func-

tion , and after some algebra, we have

, where ,

and are nonnegative integers and .

Therefore, , for ,

since

and

.

(Necessary condition) Admit that for some

. Then, we have

. Therefore, would not be

a GSM.
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