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We describe updates and improvements to the BayesWave gravitational wave transient analysis
pipeline, and provide examples of how the algorithm is used to analyze data from ground-based grav-
itational wave detectors. BayesWave models gravitational wave signals in a morphology-independent
manner through a sum of frame functions, such as Morlet-Gabor wavelets or chirplets. BayesWave

models the instrument noise using a combination of a parametrized Gaussian noise component and
non-stationary and non-Gaussian noise transients. Both the signal model and noise model employ
trans-dimensional sampling, with the complexity of the model adapting to the requirements of the
data. The flexibility of the algorithm makes it suitable for a variety of analyses, including recon-
structing generic unmodeled signals; cross checks against modeled analyses for compact binaries;
as well as separating coherent signals from incoherent instrumental noise transients (glitches). The
BayesWave model has been extended to account for gravitational wave signals with generic polariza-
tion content and the simultaneous presence of signals and glitches in the data. We describe updates
in the BayesWave prior distributions, sampling proposals, and burn-in stage that provide signifi-
cantly improved sampling efficiency. We present standard review checks indicating the robustness
and convergence of the BayesWave trans-dimensional sampler.

I. INTRODUCTION

The era of gravitational wave observations began in
earnest in September 2015 with the first detection of
gravitational waves from a binary black hole merger [1].
In anticipation of the detections, a new approach to grav-
itational wave data analysis was proposed [2, 3] that uses
trans-dimensional Bayesian inference to model the in-
strument noise and short duration gravitational wave sig-
nals of arbitrary morphology. The foundational principle
behind this approach is to allow the complexity of the
model to automatically adapt according to the complex-
ity of the data, following the motto “model everything
and let the data sort it out”. This approach was im-
plemented in the BayesWave algorithm [2], which models
gravitational wave transients and noise transients as a
collection of continuous wavelets, and the BayesLine al-
gorithm [3], which models the power spectral density of
the instrument noise using a smooth spline model and a
collection of Lorentzian lines. Since the BayesLine al-
gorithm is a key component and fully integrated in the
BayesWave algorithm, we will collectively refer to them
as BayesWave going forward.

The BayesWave algorithm has been used extensively
in the analysis of data from the LIGO and Virgo gravi-
tational wave detectors. Applications include template-
free reconstructions of gravitational wave signals, resid-
ual based tests of general relativity, noise transient re-
moval and power spectral density estimation for param-
eter estimation studies. In the intervening years, the
BayesWave algorithm has undergone changes, with the
addition of new functionality and improvements in the

sampling efficiency, and computational cost. This paper
serves as an update to BayesWave, consistent with the
publicly available software at https://git.ligo.org/
lscsoft/bayeswave. Sec. II serves as an overview of
the BayesWave algorithm and use cases. Updates are or-
ganized by changes to the underlying data model used by
BayesWave in Sec. III, and changes to the stochastic sam-
pling engine which improve convergence are described in
Sec. IV. Sec. V describes the inherent post-processing
steps, while Sec. VI discusses standard review tests for
samplers. Sec. VII concludes by outlining future devel-
opment and use-cases. Appendices A, B, C go into details
about the deployment, performance, and optimizations,
respectively.

II. OVERVIEW OF BAYESWAVE

The foundation of the BayesWave algorithm is a model
for the data from detector I: dI = hI +gI +nI , where hI
is the detector’s response to a gravitational wave signal,
gI are non-Gaussian noise transients, or “glitches” in the
data, and nI is the random detector noise. The transients
h and g are modeled using coherent parameterized fits
to the waveforms hMI (θh) and g

M
I (θg,I), with superscript

M indicating that it is a model of the true signal, while
nI is modeled statistically with a parameterized noise
covariance matrix CI(θn). The model parameters are
optimized using a Markov Chain Monte Carlo (MCMC)
sampler of the posterior distribution function

p(θ|d) = p(d|θ)p(θ)
p(d)

(1)
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where the joint parameter set is θ =
[θh, θg,I , ..., θg,K , θn,I , ..., θn,K ] for detectors I, ...,K,
and the joint data are d = [dI , ...dK ] and similarly for
the signal hM and glitch gM models. The likelihood for
the Fourier domain residual r̃ = d̃− h̃M− g̃M, assuming
that the remaining noise is Gaussian distributed, is

p(d|θ) = 1

det(πC)
e−r̃

∗
C

−1
r̃ (2)

and p(θ) and p(d) are the prior and marginalized likeli-
hood, respectively.
When data from multiple detectors are considered the

noise is assumed to be independent between detectors so
the full noise covariance matrix C is block diagonal. Fur-
thermore, the variance of the noise is assumed to be con-
stant over the observation period (stationary) of duration
T , and thus each block of C is itself diagonal with the
only non-zero elements being proportional to the variance
〈n[i,j]n∗

[k,l]〉 = T
2 Sn,[i,j]δi,kδj,l, where Sn,[i,j] is the noise

power spectral density Sn of detector i in data sample j.
Under these assumptions, the likelihood in Eq. 2 reduces
to

p(d|θ) =
∏

i

∏

j

2

πTSn,[i,j]
e
−

2|r̃[i,j]|
2

TSn,[i,j] (3)

again with indices i spanning the data streams and j the
data samples. See Ref. [4] for details on the likelihood
derivation for discretely sampled data in the Fourier do-
main.
As originally described in Ref. [2], both the signal and

the glitch models are constructed from a linear combina-
tion of sine-Gaussian wavelets

Ψ(t;~λ) = Ae(t−t0)
2/τ2

cos(2πf0(t− t0) + φ0)

Ψ̃(f ;~λ) =

√
πAτ

2
e−π2τ2(f−f0)

2
(

ei(2π(f−f0)t0+φ0)

+e−i(2π(f+f0)t0+φ0)e
−Q2f/f0

)

(4)

with ~λ → (t0, f0, Q,A, φ0), where t0 is the central time
of the wavelet, f0 is frequency at t = t0, Q is the
wavelet quality factor (i.e. the number of cycles of the
wavelet over one e-folding of the Gaussian envelope),
τ = Q/2πf0, A is the wavelet amplitude, and φ0 is the
wavelet phase at t = t0. The wavelets form a frame,
not a basis, since they are not linearly independent. The
glitch model wavelet parameters are independent in each
detector, while the signal model wavelets are coherently
projected on to each detector using a set of extrinsic pa-
rameters (see Sec. III A). In the standard configuration,
BayesWave assumes that the gravitational wave signal is
elliptically polarized, as is the case for quasicircular, non-
precessing compact binary coalescences (CBCs). In that
case there are four extrinsic parameters: sky location an-
gles specifying the right ascension α and declination δ,
the polarization angle ψ, and the ellipticity parameter ǫ
which maps the + polarization to the × polarization via

h× = ǫh+e
iπ/2. The total number of wavelets used in the

glitch and signal model is marginalized over with a trans-
dimensional MCMC, making the number of wavelets in
each model a free parameter of the model.

BayesWave was designed with a generic application
programming interface for the wavelet functions. In prin-
ciple, the sine-Gaussian wavelets are easily replaced by
any other set of frame functions. There is currently one
alternative wavelet model available in BayesWave. Refer-
ence [5] describes the inclusion of a chirplet frame which
are similar to the sine-Gaussian wavelets but modified
with a constant frequency derivative ḟ0. The added flex-
ibility of the chirplet model to track rapidly changing
frequency content of a signal allows for better fits to cer-
tain waveform morphologies.

The Gaussian noise model is handled by an indepen-
dently developed MCMC algorithm, BayesLine [3], al-
though the name BayesWave has become synonymous
for both algorithms. In BayesLine, the Gaussian noise
model is decomposed into two components evident in
LIGO and Virgo data–broad spectrum and gradually
varying noise due to e.g., ground motion, thermal fluctua-
tions in the optics, and shot noise from the interferomet-
ric sensing; and narrow band, high amplitude, spectral
lines due to mechanical resonances in the detectors, the
power supply at detector, and calibration lines intention-
ally added to the data. The broadband noise is modeled
as a cubic splines interpolation between control points pa-
rameterized by their frequency and noise level, the num-
ber and location of which are adjustable by the sampler.
The narrow band noise is modeled with a linear combi-
nation of Lorentzian-like functions parameterized by the
central frequency, width, and line height. Again, a trans-
dimensional MCMC algorithm is used to marginalize over
the number of Lorentzians used in the fit. BayesLine
has been shown to outperform periodogram-based ap-
proaches for spectral estimation in LIGO-Virgo data be-
cause it only assumes the noise to be stationary over the
interval of data being analyzed, as opposed to the interval
of data needed for the periodogram [6].

The combined BayesWave algorithm uses a blocked
Gibbs sampler, alternating between updates to Gaussian
noise model, the intrinsic parameters which control the
number and shape of the wavelet model, and (for the
signal model) the extrinsic parameters which govern the
coherent projection of the model onto the network of de-
tectors.

To evaluate different hypothesis about the data,
BayesWave is run in a restricted setting only allowing cer-
tain models in the fit and then using thermodynamic in-
tegration [7] to compute the evidence for the model. The
standard workflow includes assessing a Gaussian noise-
only model, a model containing Gaussian noise and the
joint glitch model for all detectors, and the Gaussian
noise plus signal model which requires at least one wavelet
to be coherently projected onto the network. The Bayes
factor between Gaussian noise plus signal model and the
Gaussian noise plus glitch model is a robust detection
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statistic [8].

A. Existing Proposals & Priors

Priors: The BayesWave default behavior is to use flat
priors on all intrinsic parameters except the wavelet am-
plitude A, and for all extrinsic parameters. For intrinsic
parameters, the prior ranges cover: t0 ∈ U [tmin, tmax]
where by default tmin and tmax enclose a 1 s interval cen-
tered on the candidate GW event time, though the inter-
val and location in the full data segment are adjustable
by the user; f0 ∈ U [fmin, fmax] where fmin is specified by
the user and fmax is the Nyquist frequency determined
from the user-requested sampling rate for the input data;
Q ∈ U [0.1, 40] by default but is adjustable by the user;
φ0 ∈ U [0, 2π]. For signal-model extrinsic parameters, the
ranges α ∈ U [0, 2π]; sin δ ∈ U [−1, 1] which, combined
with the prior on α make the joint prior uniform on the
sky; ψ ∈ U [0, π]; ǫ ∈ U [−1, 1]; and an overall phase
applied to all wavelets in the signal model ϕ ∈ U [0, 2π].
This overall phase shift is degenerate with a simultaneous
shift of all wavelet phases φ0 by the same amount, but
the explicit inclusion of ϕ aids the sampler convergence.
The amplitude prior is based on the ρ of each wavelet

and is designed to suppress low amplitude wavelets which
will not contribute to the likelihood while also not bias-
ing the amplitude recovery of high ρ signals. The priors
take slightly different functional form for the glitch and
signal model to account for the fact that high amplitude
glitches (ρ > 100) are not uncommon in the data whereas
GW signals do not reach such levels at the current de-
tector sensitivities. More detail on the amplitude prior
is provided in Sec III C 1.
By default BayesWave also uses flat priors on the

number of wavelets D ∈ [Dmin, 100] though the max-
imum number of wavelets is adjustable by the user,
with Dmin = 1(0) for the signal (glitch) model. Note
that nested within the glitch model is the Gaussian
noise model, however it is sometimes worth evaluating
the Gaussian-noise only model by itself as the posterior
weight of the glitch model in the zero wavelet case may be
impractically small given the number of posterior sam-
ples in the chain.
Proposals: BayesWave uses a mixture of different pro-

posal distributions for generating trial parameters. These
include fair draws from the prior to ensure efficient sam-
pling of the full parameter space for the high temperature
chains. Draws from the prior are used for within-model
and transdimensional proposed moves. BayesWave also
relies on custom-made proposals that leverage what is
known, or can easily be inferred, from the data or model.
In addition new developments described in Sec. IV, the
BayesWave sampler particularly benefits from propos-
als along eigenvectors, scaled by the eigenvalues, of the
Fisher Information Matrix approximation to the inverse
covariance matrix C−1

ij ∼ Γij ≡ ( ∂Ψ
∂λi

| ∂Ψ∂λj
). The elements

of the Fisher matrix for the wavelets are known analyti-

cally, while matrix elements for the extrinsic parameters
of the signal model are computed numerically.

BayesWave also uses proposals that encourage placing
new wavelets near in time-frequency to existing groups
of wavelets. The proposal is built by summing Gaussians
at existing wavelet locations in such a way that regions
in the time-frequency plane near to, but not overlapping,
with existing wavelets are preferentially tried by the sam-
pler. All of the aforementioned proposals are explained
in Ref. [2].

One final proposal worth noting here takes advantage
of a near degeneracy between the reference time and ref-
erence phase of a wavelet, particularly for wavelets with
a high Q parameter. The degeneracy arrises because the
wavelets can be time-shifted by a cycle and still match a
high-Q feature in the data by compensating by adjusting
the wavelet phase. This proposal is described in detail in
Ref. [9].

B. Use cases:

The flexibility of the BayesWave signal, glitch, and
noise models to adapt to features in the data, coupled
with the restraint on the models applied by compar-
ing evidences, have made the algorithm well-suited to
a broad range of LIGO-Virgo analyses as a tool to study
both the signals and the noise in the data. On the
search side, BayesWave is part of a hierarchical detection
pipeline for generic short-duration gravitational wave
transients (i.e. “bursts”) [10–12]. Regarding glitches
in data that contain a candidate signal, BayesWave was
adapted as a data cleaning tool to subtract the noise
transient that overlapped with GW170817 [13], while pre-
serving the fidelity of the underlying signal analysis [14].
Extensive glitch-subtraction was subsequently part of the
GWTC-2 catalog [15]. On the noise side, BayesWave is
used as a spectral estimation tool that provides the noise
model to the template-based parameter estimation follow
up of compact binary signals [6, 16].

Regarding analysis of gravitational wave signals,
BayesWave has been used to study unmodeled or poorly-
modeled sources, such as the post-merger emission from
neutron star binaries [17–19], eccentric black hole bi-
naries [20], post-merger echoes from black hole bina-
ries [21, 22], and supernova [23]. Additionally, it has
contributed waveform reconstructions and inferences of
candidate GW transients without the use of templates.
BayesWave’s generic reconstructions are compared to the
template-based reconstructions as part of event valida-
tion studies [1, 16, 24, 25]. Related to this, BayesWave
has been used to search for excess power in residual data
obtained after the subtraction of a template-based point
estimate to signals, thus testing how well the physically
motivated waveform models match the data; this analysis
has been interpreted as a model-agnostic test of General
Relativity [26–28].
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III. MODEL EXTENSIONS

In this section we describe the new BayesWave model
capabilities, including changes in the signal and glitch
models, as well as new supported priors.

A. Signal polarization

In General Relativity, GWs contain two polariza-
tion modes, colloquially referred to as plus and cross.
GW detectors respond differently to each of these
modes, encoded in the detector antenna pattern func-

tions F×(Ω, ψ), F+(Ω, ψ), where ~Ω → (α, δ) describes the
sky location of the source and ψ is the polarization an-
gle. The response of a detector to an impinging signal
can then be expressed as

hI(f) = (F×(Ω, ψ)h×(f) + F+(Ω, ψ)h+(f))e
2πif∆t(Ω),

(5)
where hI(f) is the interferometric response, ∆t(Ω) is
the light travel time from a fiducial reference location
to the detector, and h×(f), h+(f) are the cross and plus
signal respectively expressed at the reference location.
BayesWave uses an arbitrarily chosen detector as the ref-
erence location.
The projection from the reference location to each in-

dividual detector in the network, Eq. (5), contains not
only the two GW polarization modes, but also the sky
location and orientation. This means that with two or
three detectors available, the problem of extracting GW
polarizations from the observed detector response might
be under-constrained. For this reason, the original signal
model in BayesWave restricted the polarization content
of the signal to the case of elliptical polarization

h+ =
∑

n

Ψ(tn0 , f
n
0 , Q

i,An, φn0 ),

h× = iǫh+, (6)

where ǫ is the ellipticity parameter encoding the degree
of elliptical polarization. For ǫ = 0, h× = 0 and the sig-
nal is linearly polarized; if ǫ = 1 the signal is circularly
polarized. This assumption of elliptical polarization does
not hold for complicated CBC signals whose polarization
content changes with time, such as spin-precessing sig-
nals or signals with a strong higher-order modes content.
Additionally, generic bursts of GWs are not expected to
possess any special polarization content. Previous stud-
ies have shown that restricting the signal model to ellipti-
cal polarization is sub-optimal for detecting unpolarized
signals such as white noise bursts [9].

In order to relax the elliptical polarization constraint,
we generalize the signal model in BayesWave to

h+ =
∑

n

Ψ(tn0 , f
n
0 , Q

n,An,+, φn,+0 ),

h× =
∑

n

Ψ(tn0 , f
n
0 , Q

n,An,×, φn,×0 ), (7)

while setting ψ = 0 in Eq. (5). This generic polarization
model assumes that each polarization state can be ex-
pressed as a sum of the same number n of wavelets that
have the same quality factor Qn, central time tn0 , and
central frequency fn0 , but differ in amplitude and phase.
We argue that we can restrict the plus and cross wavelets
to the same (Q, t0, f0) without loss of generality. From
Eq. (5) it is clear that the time-frequency content of the
GW signal is independent of the detector network, and
only its amplitude and phase are modified by the pro-
cess of projecting it from the reference location onto a
detector network. This has the added benefit of avoiding
pathological solutions where all of h+ is in one detector
and all of h×, making it degenerate with the glitch model.

We showcase the generic polarization model by ana-
lyzing simulated CBC signals observed by a network of
3 GW detectors HLV at design sensitivity with signal to
noise ratio ρ = 100. To simulate the observed data we use
the waveform model IMRPhenomPv2 [29] and assume a
zero noise realization. The component masses are set to
m1 = 20M⊙,m2 = 5M⊙, as unequal masses are known
to maximize the effect of precession, and hence devia-
tion from elliptical polarization [30, 31]. Besides the sys-
tem’s mass ratio, the binary inclination and the amount
of in-plane spin also affect the degree to which a signal is
precession-modulated. We employ two values of the in-
clination angle between the line of sight and the orbital
angular momentum ι = {45◦, 90◦}, defined at f = 16Hz.
The inclination angle evolves under spin-precession, so
an originally edge-on system (ι = 90◦) will not remain in
this configuration. The in-place spin is commonly char-
acterized through the χp parameter [32] and we inject
signals with χp = {0, 0.52, 0.98}, again defined at 16Hz.
The first case corresponds to a spin-aligned system, stud-
ied for reference. The value of χp also evolves under spin-
precession, and it is not directly related to how prominent
precessional modulations are in the observed signal [30].

We show reconstructions of the observed data in the
Livingston detector in Fig. 1 for different values of χp.
Shaded regions show the 90% credible interval for the
reconstruction when assuming an elliptical polarization
(purple) and a generic polarization (green). The top
panel contains a signal with χp = 0, which exhibits no
precessional modulations. Both analyses reconstruct the
signal similarly well. The middle and bottom panels show
the results for χp = 0.52 and χp = 0.98 respectively. In
both cases we find that the BayesWave analysis that al-
lows for a generic signal polarization does a better job
of reconstructing the injected signal. Despite this im-
provement, the elliptical polarization analysis is still able
to reproduce the spin-induced amplitude modulation to
some extent, suggesting that signals of extreme ρ and
precession are needed before the elliptical polarization
approximation results in considerably deteriorated infer-
ence. Interestingly, we also find that the elliptical polar-
ization analysis performs better for the χp = 0.98 signal
than the χp = 0.52 one, again suggesting that χp might
not be a suitable parameter to quantify the amount of
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FIG. 1: Whitened time-domain reconstructions of
injected GW signals. We plot the injected data in grey
dashed lines, where no additional noise realization has
been added. Purple (green) shaded regions show the
90% credible interval for the reconstruction when

assuming an elliptical (generic) polarization content for
the signal. From top to bottom we have signals with

ρ = 100 and with (χp = 0, ι = 45◦), (χp = 0.52, ι = 45◦),
(χp = 0.98, ι = 90◦).

spin-precession present [30].
Besides more faithful signal reconstruction, the generic

polarization analysis also allows us to infer the polariza-
tion content of the observe signal. We employ the usual
Stokes parameters [4], defined as

U = h̃+h̃
∗

× + h̃×h̃
∗

+, (8)

V = i(h̃+h̃
∗

× − h̃×h̃
∗

+), (9)

I = |h̃+|2 + |h̃×|2, (10)

Q = |h̃+|2 − |h̃×|2, (11)

which here are to be understood as being a function of the
GW frequency. For an elliptically polarized signal with
ellipticity ǫ these reduce to U ∼ 0, (I − Q)/(I + Q) ∼
ǫ2, V/(I + Q) ∼ ǫ, (I − Q)/V ∼ ǫ. Figure 2 shows these
combinations as a function of frequency for the three val-
ues of χp studied and ι = 45◦. The dashed black lines
show the injected values computed directly from the sim-
ulated signal, while shaded regions show the 90% cred-
ible interval for the reconstruction when employing the
generic polarization analysis. In all cases the generic po-
larization model is able to reconstruct the stokes param-
eters and their frequency evolution, suggesting that the
generic analysis can be used to reconstruct the polariza-
tion content of a detected signal in a morphology-agnostic
way.

B. Signal plus Glitch Model

In the original version of BayesWave the signal and
glitch models were disjoint hypotheses to be tested, where
the former assumed that all wavelets in the model were
coherent across the detector network, and the latter as-
sumed that all wavelets were independent in each detec-
tor. We have now added a joint hypothesis where the
data can contain both a coherent signal and additional
glitches in any detector’s data (S+G). The new model
is made possible by the improved mixing of the Markov
chain from the changes described in Section IV.
The joint model is of particular value when trying to

identify and mitigate glitches that occur near a candidate
GW signal, in which case the glitch model can be used to
remove the excess noise from the data. Using BayesWave
to remove glitches from data near GW candidates was
first used in the analysis of GW170817 [13, 14], when
the part of the GW signal detectable by BayesWave was
sufficiently far from the glitch time that there was no
concern of the wavelet model also removing some signal
power. Using the S+G model improves the “safety” of
the glitch subtraction as any coherent features in the data
will be bit by the signal model and only the excess power
independent in either detector will be fit and removed by
the glitch model.
Figure 3 demonstrates the S+G model on data from

the first observing run (O1) containing a common glitch
type in one detector. In this example the glitch was in
the Hanford detector, but the glitch type is common in
both Hanford and Livingston [33]. A simulated BBH sig-
nal with parameters similar to those of GW150914 was
added to the data with merger time just before, coinci-
dent, and just after the glitch time. BayesWave was used
to process the data with the BBH signal added using the
S+G model, and we compare the signal reconstructions
(top panel) and the glitch reconstructions (bottom panel)
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FIG. 2: Stokes parameter combinations as a function of frequency for the three injections at ρ = 100 and ι = 45◦.
Dashed lines show the injected values and shaded regions show the 90% credible interval obtained under the generic

polarization analysis. The parenthesis on the y axis label indicates the constant value each Stokes combination
assumes under elliptical polarization.

for each injection. In each case the signal and glitch re-
covery is self consistent, regardless of how much the glitch
and signal overlap in time. The glitch reconstructions are
further compared to a glitch-only analysis of the original
data with no signal added (dark gray) again showing that
the glitch recovery, and therefore the subsequent glitch
subtraction, is robust.

C. Updated Priors

1. Wavelet amplitude prior

In both the signal and the glitch model, the prior on
the amplitudes of the individual wavelets is actually given
by a prior on the signal to noise ratio of an individual
wavelet. For Morlet-Gabor wavelets the signal to noise
ratio is estimated as

ρ2 ≃ A2Q

2
√
2πf0Sn(f0)

, (12)

where A, Q, f0 are the time, quality factor, and central
frequency of the wavelet respectively, and Sn(f0) is the

one-sided noise power spectral density at f0.
Because for both astrophysical signals and instrumen-

tal glitches we expect to get many more low ρ events than
loud events, we formulate priors that peak at a given ρ∗,
and drop off at large and small ρ. Having the prior go
to zero at low ρ helps with convergence: low amplitude
wavelets have little effect on the likelihood and are dis-
favored by the natural parsimony of Bayesian inference.
They eventually get discarded from the model, but it can
take many iterations to shake them off. By shaping the
prior to additionally disfavor low amplitude wavelets the
convergence is accelerated.
For the glitch model the prior is

p(ρ|glitch) = ρ

2ρ2∗

(

1 + ρ
2ρ∗

)3 . (13)

For the signal model, the prior is

p(ρ|signal) = 3ρ

4ρ2∗

(

1 + ρ
4ρ∗

)5 . (14)

The signal prior drops off as ρ−4, as expected from the
distribution astrophysical sources. The glitch prior has
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BBH signal in both data streams. The top panels show credible intervals for the whitened waveform reconstructions
(colored) the true waveform (black) for three different injections with merger time just before, coincident with, and
after the glitch, indicated by the vertical dashed line. The bottom panel shows the whitened data (gray) and the

glitch reconstructions from each injection using the same color scheme as the top panel. The horizontal dashed lines
indicate the vertical scale plotted in the top panel. The joint model accurately separates the GW signal from the

glitch despite the degree to which the two features in the data overlap in time and frequency. The test was performed
on O1 data containing a common glitch type in one detector and otherwise clean in the other. The simulated GW

events had parameters similar to GW150914 and were added to the data before analysis with BayesWave.
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FIG. 4: Caption

been designed to have a heavier tail at large ρ, since we
expect to have more loud instrumental glitches than loud
astrophysical signals. The priors on ρ for the signal and
glitch models are shown in Fig. 5

2. Wavelet dimension prior

In the original BayesWave configuration, the prior on
the number of wavelets (Nw) was flat. After LIGO’s first
observing run, the distribution of wavelets in real data

0 10 20 30 40 50
SNR

0.00

0.01

0.02

0.03

0.04

0.05

p(
SN

R)

Glitch prior
Signal prior

FIG. 5: Prior probability distribution on the ρ of
individual wavelets, for both the signal and glitch

model. In this example both priors peak at SNR = 5.

was used to develop a new prior. Using an analytic fit
to the 500 most significant background triggers for the
BayesWave’s unmodeled transient search of O1 data [34],
the wavelet distribution was empirically modeled as

p(Nw) =
4
√
3Nw

2πb2(3 + Nw

b )4
(15)
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where b = 2.9.

3. Sky position

For the extrinsic parameters, a feature was introduced
to fix the sky location of the GW source to a known
value. This is used for cases where there is a known elec-
tromagnetic counter part to the GW signal, such as the
kilonova associated with GW170817. Using a fixed sky
location speeds up run times, and can improve waveform
reconstructions.

IV. SAMPLER UPDATES

In addition to changes made to the underlying data
models tested by BayesWave, there has been a similar
scale of development to improve the efficiency of the
pipeline. Improved performance can be found in two ob-
vious places for an MCMC algorithm like BayesWave–
shortening the “burn in” time when the sampler is lo-
cating the most likely modes in the distribution, and in-
creasing the sampling efficiency, thereby decreasing the
autocorrelation length, of the chain samples.
Satisfying both goals at once, we have continued de-

veloping customized proposal distributions used by the
MCMC sampler. In general, proposal distributions which
are good approximations to the target distribution will
locate the important modes of the posterior more rapidly,
sample the distribution with a smaller autocorrelation
length. Below we describe proposals designed to lever-
age domain knowledge acquired either from a theoretical
basis of how the likelihood function depends on the pa-
rameters, or proposals built from the input data itself.
In service of improving convergence time, we also de-

scribe a new model initialization procedure to get the
sampler in a good starting position for the many compo-
nents of the model, particularly in the case where large
amplitude glitches bias the initial estimate of the noise
spectrum which would then require a large number of
samples to reduce down to the most parsimonious fit to
the data.

A. Sky Location Proposal

The sky location and source orientation are poorly
constrained for a two-detector network, often exhibiting
multiple posterior modes that are a challenge to sample.
These degeneracies are reduced with the addition of data
from additional detectors, though the improvement can
be small if the additional detectors are less sensitive than
the original pair. In an effort to improve convergence of
the sampler, we have introduced dedicated porposals to
update the right ascension and declination of the source,
(α, δ), and the amplitude A, initial phase φ0 and orien-
tation of the source, described by the polarization an-

gle ψ and elipticity ǫ. While the sky proposal we use
is only strictly valid for a two detector network and for
sources with fixed elliptical polarization, it can be used
for multi-detector networks, though the acceptance rate
will be reduced in those cases.
The sky-ring proposal selects a new sky location

(αy, δy) such that the time delay between the detectors
are preserved. This requires an overall time-shift dt to
be applied to the waveform, which can be computed from
the difference in the time of arrival at each detector for
the current (αx, δx) and proposed (αy, δy) location. The
sky ring is defined by rotations about the vector ẑ con-
necting the vertices (end stations) of the two detectors.
Defining the angle between the current signal propaga-

tion vector k̂x and ẑ: θ = acos(ẑ · k̂x), we can construct
the orthonormal triad (û, v̂, ẑ) with

û =
k̂x − cos θẑ

sin θ

v̂ =
ẑ × k̂x
sin θ

. (16)

The new sky location is then found by drawing an angle
φ uniformly in [0, 2π] and rotating about ẑ to yield

k̂y = sin θ(cosφû+ sin θv̂) + cos θẑ, (17)

The proposal density for the sky ring move is constant,
and cancels in the Metropolis-Hastings ratio. Since
BayesWave references the time of arrival to a reference
detector (usually H1), there is no need to shift the arrival
time. If, however, the time of arrival is referenced to the
Geocenter, then the arrival time needs to be shifted by

an amount ∆t = Ri · (k̂y − k̂x), where Ri is the posi-
tion of detector i relative to the Geocenter. If there are
three or more detectors the sky ring proposal can be used
by picking a pair of detectors i, j. The acceptance of the
sky ring proposal will be lower in multi-detector networks
since the mapping only keeps the arrival time constant
for that one pair of detectors.
The sky-ring proposal on its own has a low acceptance

rate even for a two detector network. This is because
the projection of the signal onto the detectors depends
on the sky location. For a two detector network, and
for signals with fixed elliptical polarization, we can find
new extrinsic parameters, polarization angle ψ, elliptic-
ity ǫ, amplitude A and overall phase φ0 such that the
waveforms in each detector are identical at the new sky
location. This mapping greatly improves the acceptance
rate of the sky-ring proposal.
The requirement that the waveform projections are the

same at the current and proposed sky location yields the
set of four equations:

uxf1+x + vxf1×x = uyf1+y + vyf1×y

wxf1+x + zxf1×x = wyf1+y + zyf1×y

uxf1+x + vxf2×x = uyf2+y + vyf2×y

wxf2+x + zxf2×x = wyf2+y + zyf2×y (18)
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where the fi+ and fi× are the the primitive antenna pat-
terns in the ith detector, which are related to the full
antenna patterns by

F+(α, δ, ψ) = f+(α, δ) cos(2ψ) + f×(α, δ) sin(2ψ)

F×(α, δ, ψ) = −f+(α, δ) sin(2ψ) + f×(α, δ) cos(2ψ) .(19)

The quantities u, v, w, z are defined such that

u = A(cosφ cos(2ψ) + ǫ sinφ sin(2ψ))

v = A(cosφ sin(2ψ)− ǫ sinφ cos(2ψ))

w = A(sinφ cos(2ψ)− ǫ cosφ sin(2ψ))

z = A(sinφ sin(2ψ) + ǫ cosφ cos(2ψ)) (20)

We can solve for {uy, vy, wy, zy}:

uy =
vxf[×y ×x ×x×y] + uxf[×y +x +x×y]

f[×y +y +y×y]

vy =
vxf[×x +y +y×x] + uxf[+x +y +y+x]

f[×y +y +y×y]

wy =
zxf[×y ×x ×x×y] + wxf[×y +x +x×y]

f[×y +y +y×y]

zy =
zxf[×x +y +y×x] + wxf[+x +y +y+x]

f[×y +y +y×y]
(21)

where f[abcd] = f1af2b − f1cf2d. Our next task is to in-
vert the expressions for (u, v, w, z) to solve for (A,ψ, ǫ, φ).
Some algebra yields

φy =
1

2
atan (q) (22)

where

q =
2(uywy + vyzy)

(w2
y + z2y)− (u2y + v2y)

. (23)

For 0 ≤ φy ≤ π/4, and 3π/4 ≤ φy ≤ π the ellipticity is
given by

ǫ−1
y =

u2y + v2y + w2
y + z2y)

√

1 + q2 + (u2y + v2y)

2(uyzy − vywy)
√

1 + q2

− (w2
y + z2y) + 2q(uywy + vyzy)

2(uyzy − vywy)
√

1 + q2
(24)

and the amplitude is given by

Ay =

(

(
√

1 + q2 + 1)(u2y + v2y) + 2q(uywy + vyzy)

2
√

1 + q2

+
(
√

1 + q2 − 1)(w2
y + z2y)

2
√

1 + q2

)1/2

(25)

For π/4 < φy < 3π/4 the ellipticity is given by

ǫy =
(u2y + v2y + w2

y + z2y)
√

1 + q2 + (u2y + v2y)

2(uyzy − vywy)
√

1 + q2

− (w2
y + z2y) + 2q(uywy + vyzy)

2(uyzy − vywy)
√

1 + q2
, (26)

and the amplitude is given by

Ay =

(

(
√

1 + q2 + 1)(u2y + v2y) + 2q(uywy + vyzy)

2ǫ2y
√

1 + q2

+
(
√

1 + q2 − 1)(w2
y + z2y)

2ǫ2y
√

1 + q2

)1/2

(27)

Defining

g = (1 +
√

1 + q2)vy + qzy

h = (1 +
√

1 + q2)uy + qwy (28)

the polarization angle is given by

ψy =



















1
2 atan2(g, h) for 0 ≥ φy ≤ π/4

1
2 atan2(ǫyh, ǫyg) for π/4 < φy ≤ 3π/4

1
2 atan2(−g,−h) for 3π/4 < φy ≤ π

(29)

Using the above formulae, the phase φy covers the
range [0, π]. To cover the full range φy ∈ [0, 2π] we also
need to include the solutions found by setting φy → φy+π
and ψy → ψy + π/2, while keeping Ay and ǫy fixed.
The deterministic mapping ~x→ ~y given above requires

a non-trivial Jacobian in the Metropolis-Hastings ratio
given by J = |∂~y/∂~x|. Numerical central differences are
then used to compute ∂yi/∂xj

B. {t, f,Q} proposal

For trans-dimensional MCMC algorithms to efficiently
sample in dimension space, well-designed proposal distri-
butions which leverage domain knowledge are important.
In addition to what is described in detail in [2], we have
developed a new proposal to determine where wavelets
should be placed in parameter space.
The proposal density is proportional to the matched

filter signal to noise ratio ρ maximized over the wavelet
phase, computed on a grid in time-frequency space with
resolution of 5 ms in time and 4 Hz in frequency. The Q-
scan is repeated for several different “layers” in Q, which
has units of time, using a grid spacing of 2 s. The result is
a three-dimensional discretized grid in time-frequency-Q
space proportional to ρ. The distribution is then normal-

ized by
(

∑

ijk ρ
2
ijk

)1/2

where i, j,k are indices denoting

the t, f , and Q grid location. The distribution is used
to propose new wavelets in the fit, or to update current
wavelet locations by rejection sampling uniform draws
from {t, f,Q} volume. The remaining wavelet parame-
ters (A and φ0) are drawn from the prior.
Figure 6 shows two dimensional slices of the {t, f,Q}

proposal at different Q “layers” increasing from top left
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FIG. 6: Two dimensional slices in the time-frequency
plane of the {t, f,Q} proposal at increasing Q layers

from top left to bottom right. The input data contains
GW150914. The proposal will preferentially select

draws from the Q layers where the signal appears most
compactly, thereby maximizing the ρ per cell in the

grid.

to bottom right. Note how, as Q changes, so too does the
aspect ratio of features highlighted in the time-frequency
map. Different signal morphologies will be better repre-
sented by different Q layers, which in turn will provide
better sampling efficiency. The example data used in this
figure contains the BBH event GW150914. The charac-
teristic “chirp” shape is most clearly and compactly rep-
resented at the middle Q layers shown here (top right
and bottom left) and would therefore be preferentially
chosen for proposing updates to the wavelet model.
The {t, f,Q} proposal is most impactful as a proposal

for transdimensional moves, when adding or removing a
wavelet from the fit, but is also part of the proposal cycle
for within dimension moves, taking an existing wavelet
and proposing to replace it with a fair draw from the
proposal.

C. Fast start PSD and glitch model

The BayesWave noise model may use many hundreds
of parameters to describe the spline control points, the
Lorentzian lines and the glitch model wavelets. Con-
sequently, it can take hundreds of thousands of itera-
tions for the sampler to reach the equilibrium distribution
(“burn-in”), especially when loud glitches are present.
The burn-in time can be reduced significantly by start-
ing the chains at a good initial solution for the power
spectral density and glitch model. We have adopted the
fast deterministic method for iteratively estimating the
PSD and finding a maximum likelihood solution for the
glitch model that is part of the low latency GlitchBuster
algorithm, which can be used to remove noise transients
from the LIGO/Virgo data in real time.
The GlitchBuster algorithm works as follows: The

first step is to find a robust estimate for the power spec-
tral density. Estimating the PSD for stationary, Gaussian
noise is straightforward, and there are many methods to
chose from. It is much more challenging to estimate the
PSD for data that has a combination of Gaussian noise,
non-stationary noise transients (glitches), and long du-
ration non-stationarity that causes the PSD estimate to
vary with time. GlitchBuster employs an iterative ap-
proach using the same short data segments analyzed by
BayesWave. The first step is to apply a Tukey window
then FFT the data to compute the power spectrum. A
running median is used to smooth the spectrum. Choos-
ing the width of the smoothing window involves a trade-
off between spectral distortion and smoothness. If the
window is too wide the smoothed spectrum underesti-
mates the slope of the power spectrum, while if the win-
dow is too short the resulting spectrum will not be very
smooth. We also want the window to be wide enough so
that sharp spectral line features get flagged as outliers.
For the short 4-8 second data segments that are typi-
cally analyzed by BayesWave, we employ a 16 Hz window
across much of the band, with a smaller 8 Hz window be-
low 64 Hz, and a 4 Hz window below 32 Hz where the
spectrum is very steep. With longer data segments the
windows can be smaller since there are more frequency
samples per Hz. Line features are identified as regions
where the raw PSD exceeds the running median by some
factor, typically set at 10. The full PSD model is the sum
of the running median and the outliers. This initial PSD
estimate can be biased by glitches, so the next step is
to identify and remove the glitches. To do this the data
is first whitened using the initial estimate for the PSD,
then wavelet transformed using an over complete basis
of continuous Morlet-Gabor wavelets. Wavelet denois-
ing [35] is then used to remove regions of excess power
(the glitches). The denoised data is then returned to the
frequency domain, and the PSD estimation procedure is
repeated. The original data is whitened using the new
PSD estimate, followed by another round of wavelet de-
noising. This cycle is repeated until the ρ of the glitch
model stabilizes, which typically takes between one and
five iterations. The entire procedure takes approximately
one second for a four second data segment, taking pro-
portionally longer as the segment length increases.

The PSD estimate, made up of a smooth component
and a collection of outliers, is next mapped to the pa-
rameters used by the BayesLine Bayesian spectral esti-
mation algorithm. The smooth component of the PSD
is used to compute the initial cubic spline model using a
fixed frequency spacing, typically set equal to the min-
imum spacing allowed by the BayesLine spline model.
The outliers are mapped onto the Lorentzian line model
by finding the central frequency, frequency extent and
maximum height of each outlier region, and using these
to compute the central frequency, amplitude and scale of
the Lorentzian function that approximates the outliers.

With the initial PSD model in hand, the next step is
to solve for the glitch model in a form that can be used



11

10-50

10-48

10-46

10-44

10-42

10-40

10-38

 10  100  1000

|h
(f
)|
2

f [Hz]

data

posterior

initial model w/ maxL start

initial model w/out maxL start

-150

-100

-50

0

50

100

150

-0.2 -0.15 -0.1 -0.05  0  0.05

h
(t
)

t - 1187008881.4457 [s]

data

posterior

initial model w/ maxL start

initial model w/out maxL start

FIG. 7: Demonstration of the improved model
initialization from GlitchBuster using the glitch in the
Livingston data near GW170817 [13]. The top panel

shows the data (gray), and PSD estimates with (green)
and without (orange) the maximum likelihood wavelet

initialization step from GlitchBuster. These are
compared to the posterior after the sampler has finished
(purple). The excess power in the PSD model shown in
the orange curve is due to the BayesLine parameters
fitting part of the glitch. The bottom panel shows the
whitened glitch model compared to the data. The

orange curve is from the initialization of the wavelet
model that uses a fair draw from the prior. Note that
the GlitchBuster wavelet model starts at a solution

where the reconstruction is consistent with the
posterior. The median of the PSD posterior was used
for whitening each of the glitch reconstructions in the

bottom panel.

by BayesWave. While the wavelet denoising procedure
used in the PSD estimation produces a glitch model, it is
not in a form that can be used by BayesWave. Moreover,
the denoising is performed using wavelets with a single
quality factor, and much better fits can be found using
wavelets with a range of quality factors. To that end,
the whitened data is wavelet transformed at geometric
sequence quality factors using continuous Morlet-Gabor
wavelets on a grid in time and frequency, following the
identical procedure used to produce the TFQ proposal.
The loudest pixel in the TFQ map is found, and if it ex-
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FIG. 8: Demonstration of convergence time
improvement when using the PSD and glitch model
initialization on a high ρ glitch in the Livingston
detector during the binary neutron star merger

GW170817. The top left panel shows the log likelihood
chain of the sampler, top right shows the number of
wavelets used in the fit, and the bottom panel shows

the residual after glitch subtraction. The orange curves
are for the version of BayesWave using a random

starting point for the chains. The green traces are for
the sampler that uses the new initialization step. Both
versions achieve a similar fit to the glitch (as shown in
the likelihood and residual plots) but the green curves
achieve that fit with a smaller number of wavelets,
which the orange curve was slowly trending towards

before the sampler was stopped.

ceeds some ρ threshold (e.g. ρ = 3), the corresponding
wavelet is subtracted from the data. Since continuous
wavelets overlap with their neighbors, the TFQ map has
to be updated in a region surrounding the wavelet that
was removed. The procedure is repeated with the up-
dated TFQ map until no significant outliers remain. The
parameters of the loud wavelets identified in this way can
now be used as a starting point for the BayesWave glitch
model. The iterative subtraction procedure is improved
by adding a likelihood maximization step after each sub-
traction, similar to the F-statistic procedure [36], but
using the collection of wavelets as the filter functions.

Figure 8 compares the convergence on data contain-
ing a high amplitude noise transient with (green) and
without (orange) using the GlitchBuster initialization.
The top left panel shows the likelihood chain for the
sampler, both of which reach similar values although
the GlitchBuster-initialized chain achieves that value
∼ O(10) times faster. However, the number of wavelets
used by the naive start (top right panel) is larger, and
10s of thousands of sampler iterations were required
for the model to even begin sampling with the more
parsimonious number of wavelets. The bottom panel
shows that in both cases the glitch is adequately removed
from the data (gray) by comparing the residuals (orange
and green), also indicated by the comparable likelihoods
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achieved by both chains. The data used in this example
contains the glitch just before the GW170817 merger [13].

V. POST PROCESSING

While the output of the RJMCMC in BayesWave is
samples from the posterior distribution of wavelet pa-
rameters and extrinsic parameters common to the sig-
nal (such as sky location, polarisation information), ul-
timately it is the morphology and properties of the GW
signal that are of interest. Below we discuss the post pro-
cessing used to translate raw samples into more meaning-
ful outputs.

A. Waveform reconstructions

For each sample in the resulting posterior, the wavelet
parameters are summed to produce a GW waveform h =
h(ti), where i ∈ {1, Nt} with Nt the number of discrete
time steps1. For each time step ti, the BayesWave post
processing calculates the median and bounds of the 50%
and 90% credible intervals on the posterior distribution
of h(ti). An example of a waveform reconstructions is
shown in Fig. 9.
BayesWave also produces a posterior distribution on

h̃(f), the GW waveform in the frequency domain. The

median and credible intervals for h̃(f) are calculated in
the same manner as described above.

B. Frequency evolution reconstructions

In addition to the time and frequency domain wave-
forms, one may also be interested in looking at the fre-
quency evolution over time of the GW signal (for exam-
ple, one may wish to look for the characteristic “chirp”
of a compact binary inspiral). The BayesWave post pro-
cessing produces posterior distributions of this frequency
evolution, f(t). This f(t) is found by using points where
h(t) = 0 (also called the zero crossings). The frequency
at the jth zero crossing, denoted t0j is given by

f(t0j ) =
1

t0j+1 − t0j−1

. (30)

The BayesWave post processing calculates f(t) for each
h(t) posterior sample, and again calculates the median
and 50% and 90% credible intervals. An example is
shown in Fig. 9.

1 The number of discrete time steps is determined by the sampling

rate and segment length used in the BayesWave analysis
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FIG. 9: Example of the reconstructions from the post
processing phase for the whitened time domain

waveform (top), and the frequency evolution over time
(bottom) for the example event GW170814 [37]. The
solid line is the median reconstruction, and the shaded
bands are the 50% and 90% credible intervals. For the
frequency evolution over time, the process described in
Sec. VB uses the zero-crossings of the reconstructed
waveform, and as such times where the reconstructed
strain is consistent with zero the f(t) reconstruction
will have large credible intervals in this region. This is
seen in times before about 1.8 seconds, and after merger

(about 2.0 seconds) in the lower plot.

C. Waveform moments

Another way to characterize the signal is to calcu-
late the central moments of the reconstructed waveform.
BayesWave post processing calculates the first two central
moments both in the time domain (central time and du-
ration) and the frequency domain (central frequency and
bandwidth) along with their probability distributions. In
principle, we can calculate higher order moments too, but
those are less intuitive, and expected to be measured less
precisely. A comprehensive study of the parameter es-
timation capabilities of BayesWave (including estimation
of waveform moments) has been presented in [9].

D. Whitening tests

When the PSD is estimated from on-source data us-
ing the BayesLine algorithm, a number of tests are
performed in order to ensure that the computed PSD
whitens the data. The tests are described in more detail
in [6] and include histograms of the real and imaginary
Fourier domain residuals as compared to a N (0, 1) dis-
tribution, properties of the combined 2-D distribution,
and the Anderson-Darling test. The latter quantifies the
degrees to which samples are drawn from a target dis-
tribution and results in a p-value for the null hypoth-
esis that the fourier residuals are draws from N (0, 1).
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of the whitened Fourier residuals of 4s of data around
GW150914. The noise power spectral density has been

computed with BayesWave and the target N (0, 1)
distribution is shown for reference.

The Anderson-Darling test is performed for various band-
widths, the ensure that the resulting PSD whitens all
relevant frequency ranges of the analysis. An example of
a histogram of the whitened Fourier residuals is shown
in Fig. 10 corresponding to 4s of LIGO-Hanford data
around GW150914. The p-value for the plotted data is
0.81, suggesting that the null hypothesis that the resid-
uals are drawn from N (0, 1) cannot be ruled out.

VI. REVIEW TESTS

BayesWave and BayesLine periodically undergo stan-
dard review tests for sampling algorithms. Perhaps the
most common (and computationally inexpensive) review
test is the “constant likelihood test”, i.e. run the code
in a configuration where the likelihood function is a con-
stant. In this case the posterior is equal prior and the
resulting samples must follow the prior distributions for
all model parameters. This test ensures that sampling
satisfies detailed balance and it does indeed produce fair
samples from the posterior distribution. We routinely
confirm that BayesWave passes this test.
Another common test (though computationally more

expensive) that checks the likelihood itself is the “P-p
test”, where simulated signals are drawn from the prior
distribution of each parameter and then analyzed. If a
sampler is unbiased, then the true value for each param-
eter must be at the p− th percentile of its posterior dis-
tribution for p events. Stated differently, a plot of the
fraction of events where the true value is at a certain
percentile of the posterior must be diagonal for each pa-
rameter. This test is stronger but more computationally
intensive, requiring dozens of injections.
Figure 11 shows the results of the P-p test for the sky

location (top panel) and the individual model parameters
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FIG. 11: PP plots for model parameters and sky
localization.

(wavelet parameters and extrinsic parameters) (bottom
panel). Shaded regions denote 1-, 2-, 3-σ errors. In all
cases we recover diagonal lines within the expected error.
The study was performed using simulated signals and
simulated noise.

VII. CONCLUSIONS

The BayesWave algorithm continues to be improved,
with additional functionality added and efficiency
achieved since the initial release. The most significant
changes in the release described here include: the ability
to model signals with general polarization content; si-
multaneous modeling of signals and noise transients; and
significantly improved sampling. With this added func-
tionality the use cases for BayesWave continue to grow,
including glitch subtraction, tests of general relativity,
and independent checks of the waveform models used to
describe compact binary mergers.
Work continues to further extend and improve the per-

formance. Future updates will allow for the joint sam-
pling of compact binary coalescence templates and noise
transients in addition to marginalization over the power
spectral density of the noise. This functionality will be
particularly valuable for low mass systems, such as binary
neutron star mergers, where the long duration of the sig-
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nals makes it highly likely that noise transients will also
be present in the data. New tests of general relativity will
be made possible by extending the polarization model to
allow for scalar and vector polarization states. Dynamic
spectral modeling, where the power spectral density can
change with time, will be made possible by switching the
analysis from the Fourier domain to the discrete wavelet
domain [38].
Looking further afield, the BayesWave approach is be-

ing applied to other branches of gravitational wave as-
tronomy, including pulsar timing arrays [39, 40] and the
future space-based LISA detector [41].

Appendix A: Software & Workflow

BayesWave is an open source software project dis-
tributed under the terms and conditions of the Gnu Pub-
lic License (GPL2). Source code and documentation can
be found at [42]. Code development takes place via Git-
Lab flow, with the core development team contributing
and enhancing the software through regular merge re-
quests from feature branches on their own forks of the
repository.
The BayesWave software stack and workflow is com-

prised of 4 principal components: BayesWavePipe (writ-
ten in python): a workflow generation tool; BayesWave
(C): the main analysis application which reads and con-
ditions data, and fits for the various models described
in this work; BayesWavePost (C): post-processing ap-
plication which parses the results from BayesWave to
produce reconstructed time- and frequency-domain rep-
resentations of the models and cleaned data. Results
are presented through a collection of python-based plot-
ting and web-page generation scripts. Given a single
time to analyze, along with a configuration file detail-
ing the time-frequency volume of interest and the anal-
ysis mode, BayesWavePipe is used to construct a simple
HTCondor[43] DAGMan workflow in which each of these
applications is executed in serial. The process is trivially
extended to larger analyses, such as Monte-Carlo simula-
tions signal detection and characterization or background
trials for significance estimation, by executing the same
workflow as many times as required but as parallel, inde-
pendent jobs on high-throughput computing resources.
BayesWave is packaged with conda [44] and technically-

and scientifically-reviewed releases are available from the
standard IGWN conda environment [45] which is dis-
tributed via the OASIS CVMFS [46] repository managed
by the Open Science Grid project [47, 48]. Docker im-
ages with the most recent release and the current state of
the main git branch are available from the container reg-
istry associated with the source code repository. Finally,
these docker images are distributed to the OSG CVMFS
container repository (where they are automatically con-
verted to singularity images), provisioning access to the
latest and development versions of the code, in addition
to the reviewed packages in conda, on OSG resources.

Appendix B: Workflow Characterization

In this appendix we characterize typical BayesWave
analysis job profiles to provide an idea of the compu-
tational resources required to operate BayesWave in a
variety of canonical use-cases and configurations. Scenar-
ios selected include power spectral density estimation for
BBH events using BayesLine, gravitational wave signal
model waveform reconstructions, and BayesFactor eval-
uation for all-sky burst search follow-up studies.
Our figures of merit for each configuration are the cu-

mulative wall clock- and CPU-times, the peak memory
usage and the peak disk usage, recorded by HTCondor
over the lifetime of the job. Workflows used in this char-
acterization ran from Singularity containers, using native
support in HTCondor, and images deployed in the OSG
CVMFS repository. All calculations were performed on
Intel Xeon E3-1240 v5 processors in the dedicated LIGO
computing cluster at the California Institute of Technol-
ogy.
Finally, it is worth noting that, due to its long run-

times (up to nearly 2 days in some cases considered here
and often longer in more extreme cases), BayesWave saves
its the state of the calculation every hour and exits, to be
resumed by the workflow management system, in order
avoid data loss in case of worker node contention or loss
of connectivity. We find this process has negligible detri-
mental impact on the time-to-solution for continuously
running jobs, while being absolutely critical to operating
on shared resources.

1. BBH PSD Estimation

BayesLine power spectral density estimates have
proven a critical component of upstream, template-based
parameter estimation efforts. To characterize BayesLine
performance we have re-analyzed each of the 24 BBH
events in the O3a[] LIGO-Virgo catalog using identical
time-frequency configurations to those used to provide
the PSD estimates as used in the parameter estimation
results in []2. Each event was analyzed with ten indepen-
dent trials to account for fluctuations in system load, and
network / disk performance. Two sets of results are pro-
duced: one set using the “low-latency” BayesLine config-
uration, with 100000 MCMC iterations, which was used
to inform online parameter estimation efforts in O3, and
a “high-latency” BayesLine configuraion with 4000000
MCMC iterations, as used in the offline parameter esti-
mation reported in [].
Figure 12 show, from top to bottom: the wall-time,

peak memory usage and peak disk space used by the

2 The O3a catalog events were analyzed with a variety of time-

frequency configurations: higher-mass BBH mergers result in

shorter-duration, lower-frequency signals, necessitating analysis

of a smaller time-frequency volume.
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FIG. 12: Job characterization metrics for the main
BayesWave RJMCMC process for low-latency

BayesLine PSD estimation for LIGO-Virgo O3a catalog
BBH events. Results are grouped by each event’s

time-frequency and detector configuration.

main BayesWave RJMCMC program, running in the low-
latency BayesLine configuration. CPU-time is not mea-
surably different from wall time for these jobs and is not
shown here. Results from each of the 24 BBH events are
grouped by the BayesLine time-frequency configuration
and number of detector data streams used in the analysis.
The median wall-time for low-latency BayesLine PSD
estimation ranges between ∼ 1minute, for the smallest
time-frequency volumes considered here (2 data streams
with duration 4s and sample frequency 512Hz), to ∼ 12
minutes for the 3 detector analyses with 8 second seg-
ments, sampled at 2048Hz. Note that the correspond-
ing BayesWavePost jobs, which parse the sampled model
parameters and reconstruct the inferred PSD, typically
complete in under 30 seconds here, with minimal memory
and disk footprints; their data is not shown.

Equivalent statistics for the offline BayesLine PSD es-
timation are shown in figure 13. The time-to-solution has
increased proportionately with the 40-fold increase in the
number of MCMC iterations, with wall times now mea-
sured in hours: the PSD for the smallest time-frequency
volume is now only attained after a median wall time of
40minutes, while the longer 8-second segments require

7.5 hours.
Now that we are into a regime where jobs are run-

ning long enough as to require periodic checkpointing
their progress, it is worth checking that the exit/resume
behavior every hour is not detrimental to workflow effi-
ciency. Figure 13 also shows the CPU-time, as well as the
wall time: The difference in the median Wall- and CPU-
time is less than 5% of the total Wall-time, while their
distributions are, to all intents and purposes, identical.
This provides some reassurance that there is no signifi-
cant startup penalty incurred from saving and resuming
jobs.
The difference in the memory footprint is more

marginal, with that cost being dominated by storing a
identical time-frequency maps of the data. Unsurpris-
ingly, the storage requirements have also increased signif-
icantly, going from ∼2–20MB for the low-latency analy-
sis, to ∼18–130MB for the offline analysis.
As before, the BayesWavePost jobs do not add sig-

nificantly to the total time-to-solution, taking, at most,
about 15minutes to complete and presenting nearly
identical memory and disk footprints as the parent
BayesWave jobs.

2. BBH Waveform Reconstructions

We now repeat the characterization above using the
gravitational wave signal model. In these analyses, we
compute the evidence for the signal model, sample the
posterior probability distribution function for the signal
model parameters to reconstruct the underlying gravita-
tional wave signal present in the data stream from each
detector, and we compute posterior probability density
functions for a variety of moments of the reconstructed
waveforms. Typically, the waveform reconstructions from
such analyses are used to search the data for deviations
from physically parameterized waveform models []. As
before, we re-analyze each of the BBH events from the
LIGO-Virgo O3a catalog [], using 10 independent trials
in each case to average over any fluctuations in e.g., sys-
tem load or network performance. These waveform re-
construction analyses use the median offline BayesLine
PSDs computed in the previous section. That is, the
metrics obtained here are purely for the evaluation of
the signal model and do not include any overhead for
PSD estimation.
Finally, it should be noted that full BayesWave wave-

form reconstruction comparisons, like those in [], typ-
ically use Monte-Carlo simulations of template-based
waveform reconstructions, in addition to analyzing the
actual gravitational wave signal. In assessing any ex-
pected total resource consumption based on the follow-
ing measurements then, the reader should scale these re-
sults by the number of Monte-Carlo simulations to be
performed (usually O(100)).
Figures 14 show the wall-time, peak memory consump-

tion and the disk usage of the BBH events from the
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FIG. 13: Analysis job metrics for the main BayesWave
RJMCMC process for final BayesLine PSD estimation

for LIGO-Virgo O3a catalog BBH events.

O3a catalog. Again, results are grouped by total time-
frequency volume used in the analyses. As before, the dif-
ference in wall- and cpu-times, is much smaller than the
overall wall-time so, in the interests of brevity, the latter
is not shown. Evaluating the signal model now presents
a more formidable computational challenge, with wall-
times in the range of 5–48 hours. Further, figure 14 shows
the metrics for the corresponding BayesWavePost child
jobs. While these jobs still typically complete in well
under an hour, their memory requirements can be sub-
stantial, due to a need to store several thousand time-
domain waveform reconstructions in memory - the me-
dian peak memory consumption gets as high as 11GB
for the 8 second segments considered here.
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FIG. 14: Analysis job metrics for the main BayesWave
RJMCMC process for evaluation of the gravitational

wave signal model for the purposes of waveform
reconstruction analyses. Configurations shown are those

used for the LIGO-Virgo O3a catalog events.

Appendix C: Optimization

1. Delta Likelihood Updates

Computing the full likelihood (3) for a network with
M detectors over a time span with N data points takes
O(MN) operations. The computational cost of the likeli-
hood calculation can be significantly reduced by perform-
ing “delta” updates that are localized in frequency. For
example, the amplitude envelope of the Morlet-Gabor
wavelets falls off as exp[−π2τ2(f − f0)

2], and to a good
approximation, the likelihood only needs to be com-
puted for frequencies f0 − δf < f < f0 + δf , with
δf ≃ 4/(πτ) = 8f0/Q when updating the contribution
from a particular wavelet.

The delta likelihood updates work as follows. Sup-
pose the model is currently given by hx. The resid-
ual is rx = d − hx and the log likelihood is given by
lnLx = −(rx|rx)/2+Wx where Wx depends only on the
noise model. Holding the noise model fixed and adding
(removing) a single wavelet Ψ to the model yields the
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FIG. 15: Analysis job metrics for the BayesWavePost
process, run subsequent to the jobs shown in figure 14.

updated residual ry = rx∓Ψ and the updated likelihood

lnLy = lnLx + δ lnL (C1)

where

δ lnL = (Ψ|Ψ)/2± (Ψ|rx) . (C2)

The delta likelihood only has to be evaluated over fre-
quency band f0±δf . The computational saving is signif-
icant for wavelets with large quality factors Q, and/or for
wavelets with low central frequencies f0. The same delta
likelihood method can be used to update the parameters
of an existing wavelet in the model by first subtracting
a wavelet with the current parameters, then adding a
wavelet with the updated parameters.

2. Recursive Evaluation of Wavelets

The expressions (4) for the Morlet-Gabor wavelets con-
tain real and complex exponentials that can be costly
to evaluate. Replacing these function calls by recursion
relations significantly decreases the computational cost.
The term exp[±2πi(f − f0)t0 + φ0)] in the frequency do-
main expression, and cos(2πf0(t − t0) + φ0) in the time
domain expression, can be computed using trigonomet-
ric recursion relations. Picking a reference frequency f∗

or reference time t∗, the phase terms can be written
as Φn = Φ∗ + n∆Φ, where for the frequency domain
case Φ∗ = 2π(f∗ − f0)t0 + φ0 and ∆Φ = 2π∆ft0, and
for the time domain case Φ∗ = 2π(t∗ − t0)f0 + φ0 and
∆Φ = 2π∆tf0. The evaluation is initialized by comput-
ing the four terms cosΦ0, sinΦ0, cos∆Φ, sin∆Φ. Sub-
sequent values are found by multiplication and addition
according to the recursion relation

cosΦn+1 = cosΦn cos∆Φ− sinΦn sin∆Φ

sinΦn+1 = cosΦn sin∆Φ + sinΦn cos∆Φ . (C3)

The amplitude terms contain exponentials of the
form exp[−Q2f/f0], exp[−π2τ2(f − f0)2], and exp[−(t−
t0)

2/τ ]. The first of these terms is linear in the frequency
increment ∆f , while the later include quadratic terms in
∆f or ∆t. The term A = exp[−Q2f/f0] can be com-
puted using the recursion

An+1 = Ane
−Q2∆f/f0 , (C4)

with A0 = exp[−Q2f∗/f0]. The terms with quadratic in
the increments require a two-part recursion. For exam-
ple, the frequency domain term A = exp[−π2τ2(f−f0)2]
can be computed using the recursion relation

An+1 = Anαne
(2f0∆f−∆f2)π2τ2

αn+1 = αne
−2(πτ∆f)2 (C5)

with

A0 ≡ e−(π2τ2(f∗−f0)
2)

α0 = e−2π2τ2f∗∆f

(C6)

The quadratic time-domain amplitude exp[−(t− t0)
2/τ ]

can be computed in a similar fashion.
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