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ABSTRACT

Recent efforts in data cleaning have focused mainly on prob-
lems like data deduplication, record matching, and data
standardization; none of these focus on fixing incorrect at-
tribute values in tuples. Correcting values in tuples is typ-
ically performed by a minimum cost repair of tuples that
violate static constraints like CFDs (which have to be pro-
vided by domain experts, or learned from a clean sample of
the database). In this paper, we provide a method for cor-
recting individual attribute values in a structured database
using a Bayesian generative model and a statistical error
model learned from the noisy database directly. We thus
avoid the necessity for a domain expert or master data. We
also show how to efficiently perform consistent query an-
swering using this model over a dirty database, in case write
permissions to the database are unavailable. We evaluate
our methods over both synthetic and real data.

1. INTRODUCTION
Although data cleaning has been a long standing problem,

it has become critically important again because of the in-
creased interest in web data and big data. Among these, the
need to efficiently handle structured data that is rife with in-
consistency and incompleteness is also more significant than
ever. Indeed multiple studies, such as [1] emphasize the
importance of effective and efficient methods for handling
“dirty data” at scale. Although this problem has received
significant attention over the years in the traditional data-
base literature, the state-of-the-art approaches fall far short
of an effective solution for big data and web data.

A variety of data cleaning approaches have been proposed
over the years, from traditional methods (e.g., outlier de-
tection [2], noise removal [3], entity resolution [4, 3], and
imputation[5]) to recent efforts on examining integrity con-
straints. Although these methods are efficient in their own
scenarios, their dependence on clean master data is a signif-
icant drawback.

Specifically, state of the art approaches (e.g., [6, 7, 8])
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attempt to clean data by exploiting patterns in the data,
which they express in the form of conditional functional de-
pendencies (or CFDs). However, these approaches depend
on the availability of a clean data corpus or an external ref-
erence table to learn data quality rules or patterns before
fixing the errors in the dirty data. Systems such as Con-
Quer [9] depend upon a set of clean constraints provided by
the user. Such clean corpora or constraints may be easy to
establish in a tightly controlled enterprise environment but
are infeasible for web data and big data. One may attempt
to learn data quality rules directly from the noisy data. Un-
fortunately however, our experimental evaluation shows that
even a small amount of noise severely impairs the ability to
learn useful constraints from the data.

To avoid dependence on clean master data, in this paper,
we propose a novel system called BayesWipe that assumes
that a statistical process underlies the generation of clean
data (which we call the data source model) as well as the cor-
ruption of data (which we call the data error model). The
noisy data itself is used to learn the generative and error
model parameters, eliminating dependence on clean master
data. Then, by treating the clean value as a latent random
variable, BayesWipe leverages these two learned models and
automatically infers its value through a Bayesian estimation.
We model the data source model through a Bayesian net-
work, and the error process as a mixture of error features (to
handle typo-related errors, substitution errors, and omission
errors). We make the assumption that errors are generated
independently in all the attributes.

We designed BayesWipe so that it can be used in two differ-
ent modes: a traditional offline cleaning mode, and a novel
online query processing mode. The offline cleaning mode of
BayesWipe follows the classical data cleaning model, where
the entire database is accessible and can be cleaned in situ.
This mode is particularly useful for cleaning data crawled
from the web, or aggregated from various noisy sources.

The online query processing mode of BayesWipe is moti-
vated by big data scenarios where it is impractical to create
a local copy of the data and clean it offline, either due to
large size, high frequency of change, or access restrictions. In
such cases, the best way to obtain clean answers is to clean
the resultset as we retrieve it, which also provides us the
opportunity of improving the efficiency of the system, since
we can now ignore entire portions of the database which are
likely to be unclean or irrelevant to the top-k. BayesWipe

uses a query rewriting system that enables it to efficiently
retrieve only those tuples that are important to the top-k
result set. This rewriting approach is inspired by, and is a
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Figure 1: The architecture of BayesWipe. Our framework
learns both data source model and error model from the
raw data during the model learning phase. It can perform
offline cleaning or query processing to provide clean data.

significant extension of the QPIAD system for handling data
incompleteness [10].

To summarize our contributions, we:

• Propose that data cleaning should be done using a
principled, probabilistic approach.

• Develop a novel algorithm following those principles,
which uses a Bayes network as the generative model
and maximum entropy as the error model of the data.

• Develop novel query rewriting techniques so that this
algorithm can also be used in an online scenario.

• Empirically evaluate the performance of our algorithm
using both controlled and real datasets.

The rest of the paper is organized as follows. We begin by
describing the architecture of BayesWipe in the next section,
where we also present the overall algorithm. Section 3 de-
scribes the learning phase of BayesWipe, where we find the
generative and error models. Section 4 describes the offline
cleaning mode, and the next section details the query rewrit-
ing and online data processing. We describe the results of
our empirical evaluation in Section 6, and then conclude by
summarizing our contributions.

2. BAYESWIPE OVERVIEW
BayesWipe views the data cleaning problem as a statisti-

cal inference problem over the structured data. Let D =
{T1, ..., Tn} be the input structured data which contains a
number of corruptions. Ti ∈ D is a tuple with m attributes
{A1, ..., Am} which may have one or more corruptions in its
attribute values. Given a candidate replacement set C for
a possibly corrupted tuple T in D, we can clean the data-
base by replacing T with the candidate clean tuple T ∗ ∈ C
that has the maximum Pr(T ∗|T ). Using Bayes rule (and
dropping the common denominator), we can rewrite this to

T ∗
best = argmax[Pr(T |T ∗)Pr(T ∗)] (1)

If we wish to create a probabilistic database (PDB), we don’t
take an argmax over the Pr(T ∗|T ), instead we store the
entire distribution over the T ∗ in the resulting PDB.

For online query processing we take the user query Q∗,
and find the relevance score of a tuple T as

Score(T ) =
∑

T∗∈C

Pr(T ∗)
︸ ︷︷ ︸

source model

Pr(T |T ∗)
︸ ︷︷ ︸

error model

R(T ∗|Q∗)
︸ ︷︷ ︸

relevance

(2)

In this paper, we used a binary relevance model, where
R is 1 if T ∗ is relevant to the user’s query, and 0 otherwise.
Note that R is the relevance of the query Q∗ to the candidate
clean tuple T ∗ and not the observed tuple T . This ensures
that those tuples whose corrected versions are relevant to
the query are ranked higher than the tuples that are clean,
but irrelevant.

Architecture: Figure 1 shows the system architecture for
BayesWipe. During the model learning phase (Section 3),
we first obtain a sample database by sending some queries
to the database. On this sample data, we learn the genera-
tive model of the data as a Bayes network (Section 3.1). In
parallel, we define and learn an error model which incorpo-
rates common kinds of errors (Section 3.2). We also create
an index to quickly propose candidate T ∗s.

We can then choose to do either offline cleaning (Sec-
tion 4) or online query processing (Section 5), as per the sce-
nario. In the offline cleaning mode, we can choose whether
to store the resulting cleaned tuple in a deterministic data-
base (where we store only the T ∗ with the maximum pos-
terior probability) or probabilistic database (where we store
the entire distribution over the T ∗). In the online query pro-
cessing mode, we obtain a query from the user, and do query
rewriting in order to find a set of queries that are likely to
retrieve a set of highly relevant tuples. We execute these
queries and re-rank the results, and then display them.

Algorithm 1: The algorithm for offline data cleaning

Input: D, the dirty dataset.
BN ← Learn Bayes Network (D)
foreach Tuple T ∈ D do
C ← Find Candidate Replacements (T )
foreach Candidate T ∗ ∈ C do

P (T ∗)← Find Joint Probability (T ∗, BN)
P (T |T ∗)← Error Model (T, T ∗)

end

T ← arg max
T∗∈C

P (T ∗)P (T |T ∗)

end

In Algorithms 1 and 2, we present the overall algorithm
for BayesWipe. In the offline mode, we show how we iterate
over all the tuples in the dirty database, D and replace them
with cleaned tuples. In the query processing mode, the first
three operations are performed offline, and the remaining
operations show how the tuples are efficiently retrieved from
the database, ranked and displayed to the user.

3. MODEL LEARNING
This section details the process by which we estimate the

components of Equation 2: the data source model Pr(T ∗)
and the error model Pr(T |T ∗)

3.1 Data Source Model
The data that we work with can have dependencies among

various attributes (e.g., a car’s engine depends on its make).



Algorithm 2: Algorithm for online query processing.

Input: D, the dirty dataset
Input: Q, the user’s query
S ← Sample the source dataset D
BN ← Learn Bayes Network (S)
ES ← Learn Error Statistics (S)
R← Query and score results (Q,D,BN)
ESQ← Get expanded queries (Q)
foreach Expanded query E ∈ ESQ do

R← R∪ Query and score results (E,D,BN)
RQ← RQ∪ Get all relaxed queries (E)

end

Sort(RQ) by expected relevance, using ES
while top-k confidence not attained do

B ← Pick and remove top RQ
R← R∪ Query and score results (B,D,BN)

end

Sort(R) by score
return R

Therefore, we represent the data source model as a Bayes
network, since it naturally captures relationships between
the attributes via structure learning and infers probability
distributions over values of the input tuples. We learn both
the structure and the parameters of the network using ex-
isting state of the art tools, Banjo [11] and Infer.NET [12].
For a given T ∗ tuple, P (T ∗) can then be evaluated by a
constant-time computation, using the conditional probabil-
ity tables of the learned Bayes network.

3.2 Error Model
The error model Pr(T |T ∗) is also estimated from noisy

data. There are many types of errors that can occur in
data. We focus on the most common types of errors that
occur in data that is manually entered by näıve users: ty-
pos, deletions, and substitution of one word with another.
We also make an additional assumption that error in one at-
tribute does not affect the errors in other attributes. This is
a reasonable assumption to make, since we are allowing the
data itself to have dependencies between attributes, while
only constraining the error process to be independent across
attributes. With these assumptions, we are able to come up
with a simple and efficient error model, where we combine
the three types of errors using a maximum entropy model.

Given a set of clean candidate tuples C where T ∗ ∈ C, our
error model Pr(T |T ∗) essentially measures how clean T is,
or in other words, how similar T is to T ∗.

Edit distance similarity: This similarity measure is used
to detect spelling errors. Edit distance between two strings
TAi and T ∗

Ai
is defined as the minimum cost of edit opera-

tions applied to dirty tuple TAi transform it to clean T ∗
Ai

.
Edit operations include character-level copy, insert, delete
and substitute. The cost for each operation can be modified
as required; in this paper we use the Levenshtein distance,
which uses a uniform cost function. This gives us a distance,
which we then convert to a probability using [13]:

fed(TAi , T
∗
Ai

) = exp{−costed(TAi , T
∗
Ai

)} (3)

Distributional similarity feature: This similarity mea-
sure is used to detect both substitution and omission errors.
Looking at each attribute in isolation is not enough to fix

these errors. We propose a context-based similarity measure
called Distributional similarity (fds), which is based on the
probability of replacing one value with another under a sim-
ilar context [14]. Formally, for each string TAi and T ∗

Ai
, we

have:

fds(TAi , T
∗
Ai

) =
∑

c∈C(TAi
,T∗

Ai
)

Pr(c|T ∗
Ai

)Pr(c|TAi)Pr(TAi)

Pr(c)
(4)

where C(TAi , T
∗
Ai

) is the context of an attribute value, which
is a set of attribute values that co-occur with both TAi and
T ∗
Ai

. Pr(c|T ∗
Ai

) = (#(c, T ∗
Ai

) + µ)/#(T ∗
Ai

) is the proba-
bility that a context value c appears given the clean at-
tribute T ∗

Ai
in the sample database. Similarly, P (TAi) =

#(TAi)/#tuples is the probability that a dirty attribute
value appears in the sample database. We calculatePr(c|TAi)
and Pr(TAi) in the same way. To avoid zero estimates for
attribute values that do not appear in the database sample,
we use the Laplace smoothing factor (µ).

Unified error model: We need a unified error model which
can accommodate all three types of errors (and be flexi-
ble enough to accommodate more errors when necessary).
For this purpose, we use the well-known maximum entropy
framework [15]. For each attribute of the input tuple T and
T ∗, we have the unified error model Pr(T |T ∗) defined as
follows:

Pr(T |T ∗) =
1

Z
exp

{

α
m∑

i=1

fed(TAi , T
∗
Ai

) + β
m∑

i=1

fds(TAi , T
∗
Ai

)

}

(5)

where α and β are the weight of each feature, m is the
number of attributes in the tuple. The normalization factor
is Z =

∑

T∗ exp
{∑

i λifi(T
∗, T )

}
.

3.3 Finding the Candidate Set
The set of candidate tuples, C(T ) for a given tuple T are

the possible replacement tuples that the system scores as
corrections to T . The larger the set C is, the longer it will
take for the system to perform the cleaning. If C contains
many unclean tuples, then the system will waste time scoring
tuples that are inherently unclean.

An efficient approach to finding a reasonably clean C(T )
is to consider the set of all the tuples in the sample database
that differ from T in not more than j attributes. An effi-
cient method is to creating j + 1 indices, and checking only
candidate tuples that are retrieved by an exact lookup from
these indices.

4. OFFLINE CLEANING
In order to clean the data in situ, we first use the tech-

niques of the previous section to learn the data source model,
the error model and create the index. Then, we iterate over
all the tuples in the database and use Equation 1 to find the
T ∗ with the best score. We then replace the tuple with that
T ∗, thus creating a deterministic database using the offline
mode of BayesWipe.

Setting the parameter Recall from Section 3.2 that there
are parameters in the error model called α and β, which need
to be set. Interestingly, in addition to controlling the rela-
tive weight given to the various features in the error model,
these parameters can be used to control overcorrection by
the system.



Overcorrection: Any data cleaning system is vulnerable
to overcorrection, where a legitimate tuple is modified by the
system to an unclean value. Overcorrection can have many
causes. In a traditional, deterministic system, overcorrection
can be caused by erroneous rules learned from infrequent
data. For example, certain makes of cars are all owned by
the same conglomerate (GM owns Chevrolet). In a misguided
attempt to simplify their inventory, a car salesman might list
all the cars under the name of the conglomerate. This might
provide enough support for the system to learn the wrong
rule (Malibu → GM).

Typically, once an erroneous rule has been learned, there
is no way to correct it or ignore it without a lot of oversight
from domain experts. However, BayesWipe provides a way
to regulate the amount of overcorrection in the system with
the help of a ‘degree of change’ parameter. Without loss of
generality, we can rewrite Equation 5 to the following:

Pr(T |T ∗) =
1

Z
exp

{

γ
(

δ

m∑

i=1

fed(TAi , T
∗
Ai

)

+ (1− δ)
m∑

i=1

fds(TAi , T
∗
Ai

)
)}

where the parameters α and β have been replaced by δ and
(1−δ), since we are only interested in their relative weights.
To make the this transformation, a normalization constant,
γ has been pulled out of the bracket. This parameter, γ, can
be used to modify the degree of variation in Pr(T |T ∗). High
values of γ imply that small differences in T and T ∗ cause
a larger difference in the value of Pr(T |T ∗), causing the
system to give higher scores to the original tuple (compared
to a modified tuple).

5. QUERY REWRITING FOR ONLINE

QUERY PROCESSING
In this section we extend the techniques of the previous
section so that it can be used in an online query process-
ing method where the result tuples are cleaned at query
time. Two challenges need to be addressed to do this ef-
fectively. First, certain tuples that do not satisfy the query
constraints, but are relevant to the user, need to be retrieved,
ranked and shown to the user. Second, the process needs to
be efficient, since the time that the users are willing to wait
before results are shown to them is very small. We show our
query rewriting mechanisms aimed at addressing both.

We begin by executing the user’s query (Q∗) on the data-
base. We store the retrieved results, but do not show them
to the user immediately. We then find rewritten queries
that are most likely to retrieve clean tuples. We do that in
a two-stage process: we first expand the query to increase
the precision, and then relax the query by deleting some
constraints (to increase the recall).

5.1 Increasing the precision of rewritten queries
Since our data sources are inherently noisy, it is important

that we do not retrieve tuples that are obviously incorrect.
Doing so will improve not only the quality of the result tu-
ples, but also the efficiency of the system. We can improve
precision by adding relevant constraints to the query Q∗

given by the user. For example, when a user issues the
query Model = Civic, we can expand the query to add rel-
evant constraints Make = Honda, Country = Japan, Size =

Mid-Size. These additions capture the essence of the query
— because they limit the results to the specific kind of car
the user is probably looking for. These expanded structured
queries generated from the user’s query are called ESQs.

Each user query Q∗ is a select query with one or more
attribute-value pairs as constraints. In order to create an
ESQ, we will have to add highly correlated constraints to
Q∗.

Searching for correlated constraints to add requires Bayesian
inference, which is an expensive operation. Therefore, when
searching for constraints to add to Q∗, we restrict the search
to the union of all the attributes in the Markov blanket [16].
The Markov blanket of an attribute comprises its children,
its parents, and its children’s other parents. It is the set of
attributes whose value being given, the node becomes inde-
pendent of all other nodes in the network. Thus, it makes
sense to consider these nodes when finding correlated at-
tributes. This correlation is computed using the Bayes Net-
work that was learned offline on a sample database (recall
the architecture of BayesWipe in Figure 1.)

Given a Q∗, we attempt to generate multiple ESQs that
maximizes both the relevance of the results and the coverage
of the queries of the solution space.

Note that if there are m attributes, each of which can take
n values, then the total number of possible ESQs is nm.
Searching for the ESQ that globally maximizes the objec-
tives in this space is infeasible; we therefore approximately
search for it by performing a heuristic-informed search. Our
objective is to create an ESQ with m attribute-value pairs
as constraints. We begin with the constraints specified by
the user query Q∗. We set these as evidence in the Bayes
network, and then query the Markov blanket of these at-
tributes for the attribute-value pairs with the highest pos-
terior probability given this evidence. We take the top-k
attribute-value pairs and append them to Q∗ to produce k
search nodes, each search node being a query fragment. If Q
has p constraints in it, then the heuristic value of Q is given
by Pr(Q)m/p. This represents the expected joint probability
of Q when expanded to m attributes, assuming that all the
constraints will have the same average posterior probability.
We expand them further, until we find k queries of size m
with the highest probabilities.

5.2 Increasing the recall
Adding constraints to the query causes the precision of

the results to increase, but reduces the recall drastically.
Therefore, in this stage, we choose to delete some constraints
from the ESQs, thus generating relaxed queries (RQ). No-
tice that tuples that have corruptions in the attribute con-
strained by the user can only be retrieved by relaxed queries
that do not specify a value for those attributes. Instead, we
have to depend on rewritten queries that contain correlated
values in other attributes to retrieve these tuples. Using re-
laxed queries can be seen as a trade-off between the recall
of the resultset and the time taken, since there are an ex-
ponential number of relaxed queries for any given ESQ. As
a result, an important question is the order and number of
RQs to execute.

We define the rank of a query as the expected relevance of
its result set.

Rank(q) = E

(∑

Tq
Score(Tq|Q

∗)

|Tq|

)
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where Tq are the tuples returned by a query q, and Q∗ is
the user’s query. Executing an RQ with a higher rank will
have a more beneficial result on the result set because it will
bring in better quality result tuples.

Estimating this quantity is difficult because we do not
have complete information about the tuples that will be re-
turned for any query q. The best we can do, is to approxi-
mate this quantity.

Let the relaxed query be Q, and the expanded query
that it was relaxed from be ESQ. We wish to estimate
E[P (T |T ∗)] where T are the tuples returned by Q. Using
the attribute-error independence assumption, we can rewrite
that as

∏m
i=0 Pr(T.Ai|T

∗.Ai), where T.Ai is the value of the
i-th attribute in T. Since ESQ was obtained by expanding
Q∗ using the Bayes network, it has values that can be con-
sidered clean for this evaluation. Now, we divide the m
attributes of the database into 3 classes: (1) The attribute
is specified both in ESQ and in Q. In this case, we set
Pr(T.Ai|T

∗.Ai) to 1, since T.Ai = T ∗.Ai. (2) The attribute
is specified in ESQ but not in Q. In this case, we know
what T ∗.Ai is, but not T.Ai. However, we can generate an
average statistic of how often T ∗.Ai is erroneous by looking
at our sample database. Therefore, in the offline learning
stage, we precompute tables of error statistics for every T ∗

that appears in our sample database, and use that value.
(3) The attribute is not specified in either ESQ or Q. In
this case, we know neither the attribute value in T nor in
T ∗. We, therefore, use the average error rate of the entire
attribute as the value for Pr(T.Ai|T

∗.Ai). This statistic is
also precomputed during the learning phase. This product
gives us the expected rank of the tuples returned by Q.

5.3 Terminating the process
We begin by looking at all the RQs in descending order

of their rank. If the current k-th tuple in our resultset has
a relevance of λ, and the estimated rank of the Q we are
about to execute is R(Tq|Q), then we stop evaluating any
more queries if the probability Pr(R(Tq|Q) > λ) is less than
some user defined threshold P. This ensures that we have
the true top-k resultset with a probability P.

6. EMPIRICAL EVALUATION
We quantitatively study the performance of BayesWipe in

both modes — offline, and online, and compare it against
state-of-the-art CFD approaches. We used three real datasets
spanning two domains: used car data (one with controlled
synthetic noise, and one with real noise) and census data.

6.1 Experiments

Offline Cleaning Evaluation: In Figure 2a, we compare
BayesWipe against CFDs [17]. The dotted line that shows
the number of CFDs learned from the noisy data quickly
falls to zero, which is not surprising: the algorithm to learn
CFDs was not designed to tolerate noise in the dataset —
as a result any constraints that are violated by even a single
tuple in the dataset are not learnt. As a result, the CFD
is unable to clean any tuples, because in order for a tuple
to be cleaned, it needs to violate some constraints. On the
other hand, BayesWipe is able to clean between 20% to 40%
of the incorrect values. It is interesting to note that the per-
centage of tuples cleaned increases initially and then slowly
decreases, because for very low values of noise, there aren’t
enough errors for the system to learn a reliable error model
from; and at larger values of noise, the data source model
learned from the noisy data is of poorer quality.

Setting γ: As explained in Section 4, the weight given to
the edit distance (δ) compared to the weight given to the
distributional similarity (1 − δ); and the overcorrection pa-
rameter (γ) are parameters that can be tuned, and should
be set based on which kind of error is more likely to occur.
In our experiments, we performed a grid search to determine
the best values of δ and γ to use. In Figure 2b, we vary γ,
keeping δ = 2/5.

The “values corrected” data points in the graph corre-
spond to the number of erroneous attribute values that the
algorithm successfully corrected (when checked against the
ground truth). The “false positives” are the number of le-
gitimate values that the algorithm changes to an erroneous
value. When cleaning the data, our algorithm chooses a
candidate tuple based on both the prior of the candidate as
well as the likelihood of the correction given the evidence.
Low values of γ give a higher weight to the prior than the
likelihood, allowing tuples to be changed more easily to can-
didates with high prior. The “overall gain” in the number
of clean values is calculated as the difference of clean values
between the output and input of the algorithm.

If we set the parameter values too low, we will correct
most wrong tuples in the input dataset, but we will also
‘overcorrect’ a larger number of tuples. If the parameters
are set too high, then the system will not correct many er-
rors — but the number of ‘overcorrections’ will also be lower.
Based on these experiments, we picked a parameter value of
δ = 0.638, γ = 5.8 and kept it constant for all our experi-
ments. However, note that even if the parameters are not
set optimally, the system still performs useful data cleaning.
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Car: mazda cx-9 touring suv gasoline 3.5l v6 24v mpfi dohc 6-speed automatic fwd 4 113" 

Car: mazda cx-9 touring suv gasoline 3.7l v6 24v mpfi dohc 6-speed automatic fwd 4 113" 

 

 First is correct 

 Second is correct 

How confident are you about your selection? 

 Very confident     Confident    Slightly Confident    Slightly Unsure    Totally Unsure 

(c) A fragment of the questionnaire provided to the Mechan-
ical Turk workers.

Figure 3: Performance evaluations, and user study questionnaire

Online Query Processing: While in the offline mode, we
had the luxury of changing the tuples in the database itself,
in online query processing, we use query rewriting to obtain
a resultset that is similar to the offline results, without mod-
ification to the database. We consider a SQL select query
system as our baseline. We evaluate the precision and recall
of our method against the ground truth and compare it with
the baseline, using randomly generated queries.

We issued randomly generated queries to both BayesWipe

and the baseline system. Figure 2c shows the average pre-
cision over 10 queries at various recall values. It shows that
our system outperforms the SQL select query system in top-
k precision, especially since our system considers the rele-
vance of the results when ranking them. On the other hand,
the SQL search approach is oblivious to ranking and returns
all tuples that satisfy the user query. Thus it may return
irrelevant tuples early on, leading to a loss in precision.

Figure 2d shows the improvement in the absolute numbers
of tuples returned by the BayesWipe system. The graph
shows the number of true positive tuples returned (tuples
that match the query results from the ground truth) mi-
nus the number of false positives (tuples that are returned
but do not appear in the ground truth result set). We also
plot the number of true positive results from the ground
truth, which is the theoretical maximum that any algorithm
can achieve. The graph shows that the BayesWipe system
outperforms the SQL query system at nearly every level of
noise. Further, the graph also illustrates that — compared
to a SQL query baseline — BayesWipe closes the gap to the
maximum possible number of tuples to a large extent. In ad-
dition to showing the performance of BayesWipe against the
SQL query baseline, we also show the performance of Bayes-
Wipe without the query relaxation part (called BW-exp1).
We can see that the full BayesWipe system outperforms the
BW-exp system significantly, showing that query relaxation
plays an important role in bringing relevant tuples to the
resultset, especially for higher values of noise.

This shows that our proposed query ranking strategy in-
deed captures the expected relevance of the to-be-retrieved
tuples, and the query rewriting module is able to generate
the highly ranked queries.

Efficiency: In Figure 3a we evaluate the time taken as the
number of tuples in the database increases, and in Figure
3b we show the time taken as the noise varies. These graphs
show that both the offline and online modes of BayesWipe

complete in a reasonable time. In particular, this shows that

1BW-exp stands for BayesWipe-expanded, since the only
query rewriting operation done is query expansion.

Confidence BayesWipe Original

High confidence only 56.3% 43.6%
All confidence values 53.3% 46.7%

Table 1: Results of the Mechanical Turk Experiment, show-
ing the percentage of tuples for which the users picked the
results obtained by BayesWipe as against the original tuple.

the query processing mode shows the time taken remains
mostly constant under both varying database size as well as
noise. This is because the most expensive parts of the query
processing algorithm (determining the error and generative
models) are precomputed offline. This shows that BayesWipe

can be used as a viable tool for large-scale web-data.

Evaluation on real data with naturally occurring er-

rors: In this section we used a dataset of 1.2 million tu-
ples crawled from the cars.com website2 to check the per-
formance of the system with real-world data, where the cor-
ruptions were not synthetically introduced. Since this data
is large, and the noise is completely naturally occurring, we
do not have ground truth for this data. To evaluate this
system, we conducted an experiment on Amazon Mechani-
cal Turk. First, we ran the offline mode of BayesWipe on the
entire database. We then picked only those tuples that were
changed during the cleaning, and then created an interface
in mechanical turk where only those tuples were shown to
the user in random order. Due to resource constraints, the
experiment was run with the first 200 tuples that the system
found to be unclean.

An example is shown in Figure 3c. The turker is presented
with two cars, and she does not know which of the cars
was originally present in the dirty dataset, and which one
was produced by BayesWipe. The turker will use her own
domain knowledge, or perform a web search and discover
that a Mazda CX-9 touring is only available in a 3.7l engine,
not a 3.5l. Then the turker will be able to declare the second
tuple as the correct option with high confidence.

The results of this experiment are shown in Table 1. As we
can see, the users consistently picked the tuples cleaned by
BayesWipe more favorably compared to the original dirty tu-
ples, proving that it is indeed effective in real-world datasets.
Notice that it is not trivial to obtain a 56% rate of success
in these experiments. Finding a tuple which convinces the
turkers that it is better than the original requires searching
through a huge space of possible corrections. An algorithm
that picks a possible correction randomly from this space is

2http://www.cars.com

http://www.cars.com


likely to get a near 0% accuracy.
The first row of Table 1 shows the fraction of tuples for

which the turkers picked the version cleaned by BayesWipe

and indicated that they were either ‘very confident’ or ‘con-
fident’. The second row shows the fraction of tuples for all
turker confidence values, and therefore is a less reliable in-
dicator of success.

7. CONCLUSION
In this paper we presented a novel system, BayesWipe that

works using end-to-end probabilistic semantics, and without
access to clean master data. We showed how to effectively
learn the data source model as a Bayes network, and how to
model the error as a mixture of error features. We showed
the operation of this system in two modalities: (1) offline
data cleaning, an in situ rectification of data and (2) online
query processing mode, a highly efficient way to obtain clean
query results over inconsistent data. We empirically showed
that BayesWipe outperformed existing baseline techniques in
quality of results, and was highly efficient. We also showed
the performance of the BayesWipe system at various stages
of the query rewriting operation. User experiments showed
that the system is useful in cleaning real-world noisy data.
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