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Abstract

Background: High throughput sequencing has become an important technology for studying expression levels in

many types of genomic, and particularly transcriptomic, data. One key way of analysing such data is to look for

elements of the data which display particular patterns of differential expression in order to take these forward for

further analysis and validation.

Results: We propose a framework for defining patterns of differential expression and develop a novel algorithm,

baySeq, which uses an empirical Bayes approach to detect these patterns of differential expression within a set of

sequencing samples. The method assumes a negative binomial distribution for the data and derives an empirically

determined prior distribution from the entire dataset. We examine the performance of the method on real and

simulated data.

Conclusions: Our method performs at least as well, and often better, than existing methods for analyses of

pairwise differential expression in both real and simulated data. When we compare methods for the analysis of

data from experimental designs involving multiple sample groups, our method again shows substantial gains in

performance. We believe that this approach thus represents an important step forward for the analysis of count

data from sequencing experiments.

Background

The development of high-throughput sequencing tech-

nologies in recent years [1-4] has led to a massive

increase in genomic data represented by counts. These

count data are distinct from those acquired using bead

and array technologies in that they are fundamentally

discrete, rather than continuous, in nature. Rather than

measurements of intensity, we acquire counts of the

number of times a particular sequence is observed in a

library, whether the source is genomic DNA, DNA frag-

ments produced by immunoprecipitation, mRNA or

small RNAs. Analyses of such sequence data are often

concerned with detecting differential representation,

that is, the discovery of data which are differentially

represented between sets of biological replicates, parti-

cularly, but not exclusively, in analyses of transcriptomic

data. These analyses are often challenging due to the

small sample sizes available as a consequence of the

relatively high cost of sequencing experiments.

This type of data first emerged from the serial analysis

of gene expression (SAGE) [5], and a number of

approaches were put forward for its analysis. Most of

the early methods did not properly allow for replication

or, when they did, could only be used to compare two

groups. Baggerly et al [6] and Lu et al [7] introduced

modelling approaches based on the overdispersed logis-

tic and overdispersed log-linear distributions respectively

that are able to handle both replicate data and multiple

comparisons between groups. Robinson and Smyth

derived an ‘exact test’ method based on the negative

binomial distribution [8], and further developed this

approach using a moderated test statistic sharing infor-

mation across genomic locations to stabilize dispersion

estimation in small samples [9]. This approach showed

improvements in accuracy compared with the overdis-

persed logistic and log-linear approaches, but the meth-

ods are limited to pairwise comparisons. A recently
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developed method, DEGseq[10] takes an alternative

approach, assuming normality of the log-ratios of the

data from different biological samples conditional on

the log geometric mean of the data. Another recent

method DESeq[11] also makes the assumption of a

negative binomial distribution, but adds the assumption

of a locally linear relationship between over-dispersion

and mean expression levels of the data. These later

methods have not yet been fully described, but again

appear strictly limited to pairwise comparisons.

We develop here an empirical Bayesian approach that

is able to increase the accuracy of predictions by bor-

rowing information across the dataset, but which

removes the restriction of only considering pairwise

comparisons and allows us to analyse more complex

experimental designs. We are able to show that our

method gives equivalent or improved performance in

both simulated and biological data when compared to

existing methods for the discovery of differential expres-

sion in pairwise comparisons, and offers improvements

in performance for more complex designs.

In order to address the problem of more complex

experimental designs involving multiple groups of sam-

ples, we develop our method in a very general form by

first establishing a framework for describing diverse pat-

terns of differential expression within a dataset. Using

this framework to define a set of models, we seek to

establish posterior probabilities of each model. Finally,

we demonstrate the applicability of our method to these

experimental designs on simulated data, and are able to

show substantial improvements in performance using

our method.

Methods

We adopt and adapt the nomenclature of Robinson and

Smyth [9] to describe SAGE data as this seems generally

applicable to the data from high-throughput sequencing

technologies. A set of data acquired by sequencing a

cDNA library contains a number of sequence tags. Since

in SAGE data, there is only one tag per mRNA molecule,

Robinson and Smyth [9] examine methods for detecting

differentially expressed tags between samples. However,

in a number of applications made possible by high-

throughput sequencing, we may wish to group multiple

tags together and acquire a single count for that group-

ing. For example, with whole transcriptome mRNA or

small RNA data, we may wish to consider the total num-

ber of counts for all tags coming from a defined locus. In

either case, for each distinct tag or grouping of tags, we

have an ordered list, or tuple, of discrete counts with the

sample order the same in each tuple. In the work that fol-

lows, we therefore refer simply to tuples, without needing

to specify whether these are counts of individually

sequenced tags or aggregated counts of multiple tags.

The library size is a measure of the total number of

counts in a given library, or some surrogate measure of

library size as discussed by Bullard et al [12], and is used

as a scaling factor for the observed data.

Approach

We take an empirical Bayesian approach to estimate the

posterior probabilities of each of a set of models that

define patterns of differential expression for each tuple.

This approach begins by defining each of our models in

terms of similarity and difference between samples. For

a given model, we seek to define which samples behave

similarly to each other, and for which sets of samples

there are identifiable differences. In order to assess the

posterior probabilities of each model for each tuple, we

consider a distribution for the tuple defined by a set of

underlying parameters for which some prior distribution

exists. Samples behaving similarly to each other should

possess the same prior distribution on the underlying

parameters of the tuple, while samples behaving differ-

ently should possess different prior distributions. We

develop our method based on the negative binomial dis-

tribution for the tuple data, and derive an empirical dis-

tribution on the set of underlying parameters from the

whole of the data set.

An important advantage of our method is that the

evaluation of posterior probability for multiple models is

simply achieved. For this reason, the techniques

described are developed in a very general form.

Model definitions

In forming a set of models for the data, we consider

which patterns are biologically likely. In the simplest

case of a pairwise comparison, we have count data from

some samples from both condition A and condition B.

If we suppose that we have two biological replicates for

each condition, then there are four libraries, A1, A2, B1,

B2, where A1, A2 and B1, B2 are the replicates. In most

cases, it is reasonable to suppose that at least some of

the tuples may be unaffected by our experimental condi-

tions A and B. The count data for each sample in these

tuples will then share the same underlying parameters.

However, some of the tuples may be influenced by the

different experimental conditions A and B. For such a

tuple, the data from samples A1 and A2 will share the

same set of underlying parameters, the data from sam-

ples B1 and B2 will share the same set of underlying

parameters, but, crucially, these sets of parameters will

not be identical. We can thus treat our models as non-

overlapping sets of samples. Our first model, of no dif-

ferential expression, is thus defined by the set of sam-

ples {A1, A2, B1, B2}. Our second model, of differential

expression between condition A and condition B is

defined by the sets {A1, A2} and {B1, B2}.
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More complex models

In the simple example described, only two models are

plausible, and this framework may seem overly complex.

However, in experimental designs involving multiple

sample groups, many more models are possible. As an

example, we consider the next most complex experi-

mental design, involving samples from three distinct

conditions A, B and C. In this case, for a given tuple,

either the data are equivalently distributed across all

samples, or they are equivalently distributed under two

conditions but not under the third, or they are differ-

ently distributed in all three conditions. There are thus

five models which we need to consider.

In the first of these, all samples are equivalently dis-

tributed, and so the model is defined by the set {A1, A2,

..., B1, B2, ..., C1, C2, ...}. We then need to consider the

three models under which there is equivalent distribu-

tion under two conditions but not the third. The first of

these models can be described by the sets {A1, A2, ..., B1,

B2, ...}, {C1, C2, ...}, in which the data from condition A

and condition B are distributed equivalently, and the

data from condition C are differently distributed. Simi-

larly, we need to consider the other two models in

which a single condition differs from the other two, {A1,

A2, ..., C1, C2, ...}, {B1, B2, ...} and {B1, B2, ..., C1, C2, ...},

{A1, A2, ...}. Finally, we need to consider the model

defined by the sets {A1, A2, ... }, {C1, C2, ... }, {A1, B2, ...},

in which the data from all three conditions are differ-

ently distributed.

It is clear from considering even this relatively simple

example that the number of potential models rises

rapidly as the number of different experimental condi-

tions increases. We should also note, however, that in

many cases we will be able to exclude particular models

based on biological knowledge (if, for example, we know

that condition B is a subtype of condition A, we might

exclude the model defined by {A1, A2, ..., C1, C2, ...}, {B1,

B2, ...}), and so the complexity of the system need not

grow too rapidly. Our task is now to determine the pos-

terior probability of each of our models, given the data,

for each tuple. This will allow us to form ranked lists of

the tuples, ordered by the posterior probabilities of a

particular model (for instance, a model of differential

expression between experimental conditions).

One interesting advantage of determining posterior

probabilities, rather than significance values (p-values)

for each comparison, is that, since we acquire posterior

probabilities for each model and each tuple, and since

these models are mutually exclusive, it is trivial to com-

bine models of interest by summing the posterior prob-

abilities. For example, if we are interested not in any

specific type of differential expression, but simply in

whether or not differential expression of any type exists

in our data, we can acquire the probability of differential

expression of any type by summing the posterior prob-

abilities of all (biologically plausible) models that

describe differential expression. We can then rank the

tuples on these probabilities as well as on the probabil-

ities of individual models.

Equivalence of distributions

Suppose we have the count data from a set of n samples

 = {A1, ..., An}, such that the observed data for a parti-

cular tuple, c, is given by (u1c, ..., unc) where uic is the

count for a particular tuple c for sample i. For each

sample Ai, we also have the library size scaling factor li.

For each tuple, then, we can consider the data to be

D u u l lc lc nc= {( , ),( , , )}n 1

Now we consider some model M on these data

defined by the sets {E1, ..., Em}. If, in this model, the

samples Ai and Aj are in the same set Eq, then we know

that they have the same parameters of underlying distri-

bution θq. We can define a set K = {θ1, ..., θm}. For nota-

tional simplicity, we will also define the data associated

with the set Eq as Dqc = {(uic : Ai Î Eq), (li : Ai Î Eq)}

Given a model M for the data, then the quantity of

interest for each tuple c is the posterior probability of

the model M given the data Dc, that is

  
( | )

( | ) ( )

( )
M D

c

Dc M M

Dc

= (1)

We can then attempt to calculate ℙ(Dc |M) by consid-

ering the marginal likelihood

  ( | ) ( | , ) ( | )D M D K M K M Kc c= ∫ d (2)

Negative binomially distributed data

There are a number of possible distributions which

could be used for Dc|K, M and K|M. One approach that

seems natural is to assume that the data are Poisson dis-

tributed and the parameters Gamma distributed, thus

modelling the rarity of any individual molecule being

sequenced and allowing a form of the Poisson-Gamma

conjugacy to be used in calculating ℙ(Dc |M). However,

as Robinson and Smyth [8] point out, this model fails to

take into account the extra variability introduced by bio-

logical replication. An assumption that the data are

negative binomially (over-dispersed Poisson) distributed

may be used to account for this variability. Robinson

and Smyth [9] showed the existance of over-dispersion

in real data, and we are also able to see this in the data

set we introduce below. Furthermore, Lu et al [7] show

in simulated data that an assumption of a negative
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binomial distribution can be robust even if the data are

not truly negative binomially distributed.

In the case of equal library sizes, it is possible under

an assumption of a negative binomial distribution to

develop an exact test for the likelihood of observing the

data given non-differential expression. The problem of

unequal library sizes can be approached by generating

‘pseudodata’ that is approximately identically distributed

to the real data but has a common library size. This is

the approach taken by Robinson and Smyth [9]. As an

alternative to this approach, we use numerical methods

in an empirical Bayesian approach that allows us to

retain the real data, using library size as a scaling factor.

We consider a sample Ai belonging to the set Eq with

library size li. We now assume that the count in this

sample at tuple c, uic is distributed negative binomially,

with mean μqli and dispersion jq, where θq = (μq, jq).

Then one parametrization can be defined as

( ; , , )
( )

( ) !
u l

uic q

q uic
li q q

ic i q q

q

 


  



=
+ −

− +













−

Γ

Γ

1

1
1

1

11

1

li q

q li q
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

 − +















There is unfortunately no obvious conjugacy that can

be applied as in the Poisson-Gamma case. However, if

we can define an empirical distribution on K then we

can estimate ℙ(Dc | M) numerically. We assume first

that the θq Î K are independent with respect to q. Then

  

 

( | ) ( | , ) ( | )

( | ) ( )

D M D K M K M K

D

c c

q

qc q q q

=
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∫
∫∏

d

d  

This assumption reduces the dimensionality of the

integral and thus improves the accuracy of the numeri-

cal approximation to the integral.

Next we suppose that for each θq Î K we have a set of

values Θq that are sampled from the distribution of θq.

Then we can derive the approximation [13]
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The task that then remains is to derive the set Θq

from the data.

Empirically derived distributions on K

We can derive an empirical distribution on K by exam-

ining the whole dataset. For each set of samples Eq, we

would like to find some estimate of the mean and dis-

persion of the distribution underlying the data from a

single tuple, Dqc. By similarly finding estimates of the

mean and dispersion for a large number of tuples, we

would have our sampling Θq. The chief difficulty here

lies in properly estimating the dispersion. For example,

suppose that the data from a given tuple shows genuine

differential expression. If the model that we are testing

assumes that there is no differential expression, then

the dispersion will be substantially over-estimated for

this tuple. Since we do not know in advance which

tuples are genuinely differentially expressed and which

are not, we need to consider the replicate structure of

the data in order to properly estimate the dispersions.

We define the replicate structure by considering the

sets {F1, ... Fs} where i, j Î Fr if and only if sample Aj is

a replicate of Ai.

Given this structure for the data, we can estimate the

dispersion of the data in a tuple Dc by quasi-likelihood

methods [14]. Quasi-likelihood methods have been

shown to give good estimations of the dispersion of a

single tuple in this setting [8]. We first define


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Taking this value for jc we can then re-estimate the

values 
∧

ic
by maximum likelihood methods, choosing

the values for 
∧

ic
that maximise the likelihoods
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for each r.

We then iterate on our estimations of jc and 
∧

ic
until we achieve convergence.

This gives us a value for jc. We then need to estimate

the mean of the distribution underlying the data Dqc,

that is, for the set of samples in Eq, which we can easily

do by fixing the value acquired for jc and estimating

the mean μqc by maximum likelihood methods, choosing

the value for μqc that maximises the likelihood

 D
uic c
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li qc c

qc c qc

i A Ei q

, ,
!{ : }

 


  ( ) =
+ −( )

− +



( )∈
∏

Γ

Γ

1

1

1

1







 − +















−


 

c
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li qc

c li qc

u1

1

for each q.

We can then form the set Θq = {(μqc, jc)} by repeating

this process for multiple h, and are then able to calcu-

late ℙ(Dc | M) from Eqn 3.

This method of estimating the dispersion assumes that

the dispersion of a tuple is constant across different sets

of samples. In most cases, where the number of samples

is low, this is likely to be the best approach. Where

there is some expectation that the dispersion will be

substantially different between sets of replicates, there
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may be advantages to estimating the dispersions indivi-

dually for each of the different sets of samples in each

model, while still considering the replicate structure

within these sets. This is easily done by restricting the

data (and corresponding replicate structure) to Dqc

when estimating the dispersion in Eqn 4. We found no

substantial differences between these approaches in

simulation studies (unpublished data) and so show only

the results acquired when the dispersion of each tuple is

assumed constant.

Estimation of prior probabilities of each model

A number of options are available when considering the

prior probabilities of each model ℙ(M) required in Eqn

1. If we are able to estimate these from other sources,

this may provide the optimum solution. However, in

many cases we may not be able to provide a reasonable

estimate of prior probabilities. We propose that the

methods suggested by Smyth [15] for estimating propor-

tions of differentially expressed genes in analysis of

microarray experiments may reasonably be adapted to

estimate these priors. We begin by choosing (ideally

based on our prior knowledge about the models) some

value p to use as the prior probability for the model M

in order to estimate the posterior probability ℙ(M | Dc)

for the cth tuple. But then we can derive a new estimate

′ = 〈 〉p M Dc c( | )

for the prior probability of model M. By iterating until

convergence, we acquire estimates of the prior probabil-

ities for each model. In practice, we find that the initial

choice of the ps has no substantial effect on the values

to which they finally converge. This method is straight-

forward to implement, but potentially allows for positive

feedback and hence over-estimation of the prior prob-

ability of a model (and corresponding under-estimation

of the prior probabilities of the other models).

An alternative to this approach would be to establish

some distribution on the prior probabilities of our mod-

els and find the marginal posterior probability of the

data based on this distribution. One approach to this

might be to use the distribution of posterior probabil-

ities as an approximation to a distribution on the priors.

We could then use a numerical integration method to

re-estimate the posterior probabilities, and iterate as

before. However, in practice this method is extremely

computationally intensive and offers little improvement

in the accuracy of the predictions made (unpublished

data).

The scaling factor ℙ(Dc)

Finally, we need to consider the scaling factor ℙ(Dc) in

Eqn. 1. Since the number of possible models on M on

 is finite, though potentially large, the scaling factor ℙ

(Dc) can be determined by summing over all possible M,

given appropriate priors ℙ(M). In practice, the number

of models may be limited by only considering those that

are biologically plausible, or by imposing some distribu-

tion on the number of sets in M in a similar manner to

Lönnstedt et al’s approach [16] for analysis of variance

in microarray data.

Results and Discussion

We use both simulated and real data to compare the

method we have developed to the previously developed

methods of Robinson and Smyth [9] as implemented in

the edgeR [17,18] (version 1.4.7) Bioconductor [19]

package, the overdispersed log-linear model of Lu et al

[7], the overdispersed logistic model of Baggerly et al

[6], and the recently released methods DEGseq[10] (ver-

sion 1.2.2) and DESeq[11] (version 1.0.4). We compare

these methods to our empirical Bayes approach as

implemented in the R package baySeq (version 1.1.23),

with the default settings used for the baySeq and

edgeR packages. Overall, we found that the default set-

tings of the edgeR package seem to give good perfor-

mance. Alterations to the default settings, in particular

to the ‘moderation’ parameter, caused some small

improvements in performance for some simulations but

degraded it slightly in others. We have, therefore, used

the default settings here as in real-world applications it

will be difficult to determine how to alter these settings

to optimise performance. The recommended method of

operation for the DESeq package is to infer library sizes

from the data. However, we observed that this gave

extremely poor performance in simulations in which a

large proportion of the data are differentially expressed

in a single direction. We therefore use the known library

sizes in the implementation of the DESeq method, as

we also do for all other methods, with the exception of

DEGseq, which does not accept library size as a para-

meter. The DEGseq package has multiple modes of

operation; we found that the MA plot-based method

with random sampling (MARS) performed best on

simulated data (unpublished data) and have therefore

used this approach (with default settings otherwise) in

the comparison studies.

Comparison of methods for pairwise comparisons:

simulated data

We begin by applying the methods being evaluated to

the simulation studies described in Robinson and Smyth

[9]. We choose to replicate these simulation studies, and

the manner in which the results are presented, in order

to allow direct comparisons between our method and

previous approaches to this problem. The purpose of

these simulations is to establish the ability of the
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methods to rank the tuples in order of differential

expression and evaluate the number of true and false

positives for the top N tuples.

Random dispersion simulations

Robinson and Smyth [9] suggest one possible simulation

for high-throughput sequencing count data. The library

sizes, li, are sampled from a uniform distribution

between 30000 and 90000. These library sizes are con-

siderably smaller than those available from the current

generation of sequencing technologies. However,

increasing the library size to better reflect current levels

does not significantly alter the conclusions drawn,

because the ‘library size’ is, in effect, a scaling factor. All

tuples are simulated from a negative binomial distribu-

tion, and we simulate differential expression by varying

the means of the distribution from which they are

sampled.

For a non-differentially expressed tuple c, we simulate

the data with means lcli where the lc are sampled ran-

domly from a a set of values empirically estimated by

the edgeR method from a SAGE dataset consisting of

both normal and cancerous cells [20].

Ten percent of the ten thousand simulated tuples are

differentially expressed. In order to produce both over

and under-expression in our simulated data, we simulate

the differentially expressed data in one of two ways,

where the alternatives are chosen at random for each

tuple. We can simulate the data for the first n1 samples

with means c il b/ while the data from the remaining n2
samples are simulated with mean c il b Alternatively,

we can simulate the data for the first n1 samples with

mean c il b while the data from the remaining n2
samples are simulated with mean c il b/ .

Small (n1 = n2 = 2) and moderate (n1 = n2 = 5) num-

bers of libraries are compared, with large (b = 8) and

moderate (b = 4) differential expression. Dispersions are

randomly sampled from a gamma distribution with

shape = 0.85 and scale = 0.5.

For the baySeq method, posterior probabilities were

calculated for each tuple for each of two models, one

defining differential expression between the first n1
libraries and the second n2 libraries and one defining no

differential expression between any library. Figure 1

shows the estimated posterior probability of differential

expression plotted against the estimated log fold change

for a single simulation with b = 8 and n1 = n2 = 5. We

see a ‘wine glass’ shaped plot, characteristic of this

analysis.

The ‘stem’ of the goblet is made up of tuples with low

fold change and reasonably high levels of expression.

With these tuples, it is relatively easy to identify them as

non-differentially expressed, and so these tuples have

low posterior probability of differential expression. How-

ever, some tuples with low fold change also have very

low absolute values. With low absolute values in a tuple,

it becomes harder to determine whether or not the

tuple is genuinely differentially expressed or not, and so

these values tend to have slightly higher posterior prob-

abilities of differential expression than tuples with high

absolute values but low fold change. The top of the

stem, with a posterior probability of differential expres-

sion of around 0.2, is thus composed of tuples that have

only one or two counts observed in any sample. For

these very low expression tuples, changes of only one or

two counts in a sample can lead to a relatively large fold

change difference. However, these small changes do not

substantially affect the posterior probability and so,

although we see a spread in the fold change at the top

of the stem, the posterior probability of differential

expression remains low for these tuples. We tend not to

see a similar spread for the tuples near the base of the

stem as these tuples tend to have a high expression. For

a tuple with a high expression to show a high fold

change, but nevertheless have a low posterior probability

of differential expression, there must be a very high dis-

persion associated with such a tuple, which will not

often occur.

In the arms of the wine glass, we see that as the fold

change increases, the posterior probability of differential

expression also increases, although there is a wide range

of posterior probabilities for (for example) a fold change

of 4. We see this range of posterior probabilities of dif-

ferential expression for a given fold change as the

Figure 1 Estimated posterior probabilities of differential

expression against observed fold-change. Estimated posterior

probabilities of differential expression against observed fold-change

from a single simulation of ten thousand tuples, of which one

thousand are truly differentially expressed (DE) and nine thousand

are not differentially expressed (non-DE).
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posterior probability also depends heavily on both the

dispersion observed within the data, and the level of

expression of the tuple, since, as before, it is easier to

tell whether or not a highly expressed tuple is genuinely

differentially expressed or not. For high posterior prob-

abilities of differential expression, we see an increased

density of tuples, predominately consisting of truly dif-

ferentially expressed tuples.

As in Robinson and Smyth [9], false discovery rate

(FDR) curves are used to assess the ability of the meth-

ods to successfully rank the tuples. False discovery rates

for these data are calculated by [9] on the basis of one

simulation. For increased robustness, we estimate mean

false discovery rates for the top N tuples over 100 simu-

lations (Figure 2). For the baySeq method, the tuples

were ordered by the posterior probability of differential

Figure 2 Mean FDR curves for different numbers of libraries and degrees of differential expression. Mean FDR curves, based on 100

simulations, comparing the performance of multiple methods in identifying pairwise differential expression. The data contain 1000 truly DE

tuples and 9000 non-DE tuples and are simulated with varying number of libraries n1 and n2, different degrees of differential expression b, and

randomly chosen dispersions for each tuple (~ Γ (0.85, 0.5)).
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expression and true and false positive rates were calcu-

lated on the basis of this ordering. For the edgeR, the

overdispersed log-linear, overdispersed logistic, DESeq

and DEGseq methods, the tuples were ordered on the

basis of the p-values estimated by each method.

In these simulations, the baySeq method appears to

perform as well or better than the existing methods.

The performance of the baySeq approach is virtually

identical to that of edgeR for small numbers of libraries

(n1 = n2 = 2). For larger numbers of libraries, baySeq

appears to offer an improvement in performance over

edgeR. For small b, the overdispersed log-linear

approach seems to show comparable performance to

edgeR and baySeq. For larger b, however, particularly

for higher numbers of selected tuples, the edgeR and

baySeq methods perform considerably better than the

log-linear approach. The log logistic, DESeq and DEG-

seq methods always perform poorly compared with

both the edgeR method and the baySeq approach.

To establish whether this difference in performance

for these methods is meaningful in a practical sense, we

estimate from these analyses that if we were to validate

the top 200 tuples identified by edgeR, baySeq, and the

overdispersed log-linear model fit, for n1 = n2 = 2, b = 4

we would expect 92.66 false positives for the baySeq

method, 91.13 from edgeR and 98.65 for the overdis-

persed log-linear approach. For n1 = n2 = 2, b = 8, we

would expect 36.88, 36.46, and 64.43 false positives

from baySeq, edgeR and the overdispersed log-linear

approaches respectively. However, for the higher num-

bers of libraries, where n1 = n2 = 5, for b = 4 we expect

18.60, 29.44 and 24.74 false positives, while for b = 8 we

expect 1.33, 3.25 and 5.42 false positives from the bay-

Seq method, edgeR and the overdispersed log-linear

approach respectively. For higher numbers of libraries,

therefore, we achieve a practically meaningful improve-

ment by using the baySeq method.

Fixed dispersion simulations

For completeness of comparison with previous methods,

we also consider a less realistic simulation first devel-

oped by Lu et al [7]. We simulate ten library sizes as

before. The tuples are again simulated from a negative

binomial distribution but now with a fixed dispersion j

of either 0.17, 0.42 or 0.95. 5000 non-differentially

expressed tuples are simulated with mean lli, and 5000

tuples are chosen to be differentially expressed; those

from libraries 1-5 are again simulated with mean lli
while those from libraries 6-10 are simulated with mean

blli, and so we see only over-expression of libraries

6-10 in the data. These simulations are applied with l =

0.0002 and b = 4.

As in Robinson and Smyth [9], we examine the results

by considering receiver-operating characteristic (ROC)

curves for all analyses (Figure 3). The performance of

the DEGseq methods is strikingly poor. Further investi-

gation showed that this loss of performance is associated

with the large proportion of tuples that are differentially

expressed in the same direction, that is, all up-regulated

in libraries 6-10. If either the proportion of differentially

expressed tuples is reduced sufficiently, or if similar pro-

portions of up-regulation and down-regulation exist in

the data, then the performance the DEGseq method

improves substantially. This poor performance occurs

becuase of the assumption by the DEGseq method that

the mean of the log-ratios between samples is approxi-

mately zero. In this case, because the differential expres-

sion always occurs in the same direction, this

assumption fails. This may be a problem in real-life

applications if large numbers of genomic features are all

affected similarly.

Figure 3 Mean ROC curves for data with constant dispersion. Mean ROC curves, based on 100 simulations, comparing the performance of

multiple methods in identifying pairwise differential expression. The data contain 5000 truly DE tuples and 5000 non-DE tuples and are

simulated from a negative binomial distribution with constant dispersion for all tuples j = 0.17, 0.42 or 0.95.
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Of the remaining methods, we see that as the disper-

sion increases, the performance of all the methods

decreases; however, the baySeq approach appears to

outperform all existing methods for all values of j, in

that, for low false positive rates, the baySeq method

has higher true positive rates. This effect is particularly

noticeable for simulations involving higher dispersion.

The overdispersed logistic model in general performs

worse than the overdispersed log-linear method. In turn,

the overdispersed log-linear approach is outperformed

by the DESeq method, which is outperformed by the

edgeR method. This roughly corresponds to the relative

performance of these methods on the more realistic

simulations.

Comparison of methods for pairwise comparisons:

biological data

We next apply the methods to a set of data acquired by

Illumina sequencing small RNAs (20-24 nucleotide)

from leaf samples of Arabidopsis thaliana (Gene Expres-

sion Omnibus accession number GSE16959). The

experimental data are taken from two wild-type samples

and two RDR6 (RNA-dependent RNA polymerase 6)

knockout samples. It is known that RDR6 is required

for production of tasRNAs (trans-acting small RNAs)

[21]. We would therefore expect to see differential

expression of tasRNAs in a comparison between the

wild-type and the mutant samples; specifically, under-

expression of tasRNA associated small RNA sequences

in the RDR6 knockouts.

We consider only those sequence reads that perfectly

matched the Arabidopsis genome as defined by The

Arabidopsis Information Resource (TAIR) [22] (version

9). Sequences were matched using the PatMaN algo-

rithm [23]. A total of 70619 unique small RNA

sequences matching the genome were observed in the

data, and the total number of genome matching reads,

used to define the library sizes, were 1840563, 594356,

1477155 and 276006 for the two wildtype and two

RDR6 mutant knockout samples respectively. We exam-

ined this data for overdispersion by performing likeli-

hood-ratio tests on the reads acquired for each

sequence by fitting both a Poisson model and an alter-

native negative binomial model, allowing for both differ-

ences in library size and between the two sample types.

Although many sequences showed no significant varia-

tion from the Poisson model, a substantial number

showed very significant variation (Figure 4). This effect

is noticeable particularly in those sequences which have

a high average count, presumably because it is for these

sequences that overdispersion can reasonably be

detected.

We identified 678 different small RNA sequences that

perfectly matched the tasRNA loci (TAS1a, TAS1b,

TAS1c, TAS2, TAS3 and TAS3b) and matched nowhere

else in the genome. 21 of these small RNA sequences

showed higher expression in the RDR6 mutant than in

the wild-type samples and these were excluded, leaving

657 potential true positives. We applied the methods to

the count data for each small RNA sequence, seeking

differential expression between the wild-type samples

and the RDR6 knockout samples. We then ranked the

sequences by the extent to which they are reported as

differentially expressed by each method. We would

expect a sizeable fraction of our 657 potential true posi-

tives to appear near the top of the list.

Figure 5 shows the number of tasRNA associated

sequences that are identified by the various methods

against the number of small RNA sequences selected as

differentially expressed for the top three thousand small

RNA sequences. Both edgeR and baySeq identify con-

siderably more tasRNA-associated small RNAs than the

DESeq method and the overdispersed logistic and over-

dispersed log-linear approaches, with the overdispersed

logistic model performing particularly poorly. The bay-

Seq method in general identifies more tasRNA asso-

ciated small RNA sequences than edgeR for a given

Figure 4 (Log) p-values of real sequence data under null

hypothesis of no overdispersion against mean expression

levels of each sequence. (Log) p-values of real sequence data

under the null hypothesis of no overdispersion and alternative

hypothesis of overdispersion. We acquire these for each sequence

by performing likelihood-ratio tests on the fit of a Poisson model

and an alternative negative binomial model, allowing for both

differences in library size and between the two sample types.

Although a number of sequences show no significant variation from

the Poisson model, a substantial number show very significant

variation. The sequences for which overdispersion is particularly

significant are those with high mean expression levels, as these are

the sequences for which overdispersion can most easily be

detected.
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number of selected small RNA sequences. Perhaps sur-

prisingly, DEGseq does well in this comparison, identi-

fying only slightly fewer tasRNA-associated small RNAs

than baySeq and edgeR for low numbers of selected

small RNAs, and slightly more tasRNA-associated small

RNAs once the number of small RNAs selected is

greater than 500.

Multi-group experimental designs

We next illustrate the application of our method to a

more complex experimental design involving multiple

experimental conditions. We return to the example dis-

cussed in the Methods section, in which we have

sequence data from three conditions; condition A, con-

dition B and condition C, with n libraries from each

condition. There are five different models for these data;

one in which there is no differential expression of any

kind, three models in which one of the conditions

shows differential expression compared to the other two

conditions, and one model in which data from all three

conditions are different from each other.

We investigate the ability of our method to detect

such patterns of differential expression by adapting the

more realistic simulations proposed by Robinson and

Smyth [9]. In total, data from 3n libraries are simulated,

of which two thousand tuples are in some manner dif-

ferentially expressed. The library sizes, and dispersions

of each tuple are simulated as before, as are tuples with

no true differential expression.

Five hundred tuples are simulated to have equivalently

distributed data between condition A and condition B,

with data from condition C differently distributed. In

order to simulate both over and under-expression in the

data, we simulate the data in one of two ways, where

the alternatives are chosen at random for each tuple.

We can simulate the data from condition A and condi-

tion B from a distribution with mean c il b/ and the

data from condition C from a distribution with mean

c il b . Alternatively, we simulate the data from condi-

tion A and condition B from a distribution with mean

c il b and the data from condition C from a distribu-

tion with mean c il b/ .

Another five hundred tuples are simulated similarly

such that tuples have equivalently distributed data in

conditions A and C, but differently distributed data in

condition B, while a third five hundred tuples are simu-

lated such that tuples have equivalently distributed data

in conditions B and C, but differently distributed data in

condition A.

A further five hundred tuples are simulated in such a

way that the data from all three conditions are differ-

ently distributed. For a given tuple, we simulate data

from condition X1 from a distribution with mean lcli.

For condition X2, we simulate from a distribution with

mean c il b2 , and for condition X3 we simulate from

a distribution with mean c il b2 Conditions A, B and

C are randomly allocated to be conditions X1,X2, X3 for

each tuple, and so we see various patterns of differential

expression between these samples.

We again evaluate the methods by looking at the false

discovery rates. In this analysis, we are interested in the

ability of our method to accurately identify each of the

different types of differential expression by simulta-

neously considering all possible models for the data. We

can also consider the ability of our method to detect dif-

ferential expression of any kind by taking the sum, for

each tuple, of the posterior probabilities of all five mod-

els describing differential expression. We can thus con-

sider four FDR curves for each type of differential

expression present in the data, and an additional FDR

curve for data showing differential expression of any

kind.

For the pre-existing methods, in the overdispersed

log-linear and the overdispersed logistic approaches, we

are able to form linear models that describe all possible

patterns of differential expression present in the data.

For the edgeR, DEGseq and DESeq methods, we are

only able to carry out pairwise comparisons and so we

carry out three analyses on each dataset, one for each

pattern of differential expression in which a single

experimental condition is differentially expressed when

Figure 5 Number of tasRNA-associated small RNAs identified

as differentially expressed in RDR6 knockout experiment.

Number of tasRNA-associated small RNAs against the number of

differentially expressed small RNAs at the top of each list acquired

by each method in an analysis of small RNA data from two wild-

type samples and two RDR6 knockout samples. We expect tasRNA-

associated small RNAs to be under-expressed in the RDR6 knockout

samples, and hence to find these amongst the differentially

expressed tuples.
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compared to the other two. We are unable to consider

directly, by the method of pairwise comparisons, the

pattern of differential expression in which all three

experimental conditions are differentially expressed, and

so we do not use the edgeR, DEGseq or DESeq meth-

ods for the identification of tuples of this type.

We present the data (Figure 6) for b = 8 and n = 2 or

n = 5. Again, for increased robustness, we estimate

mean false discovery rates for the top N tuples over 100

simulations for all models. As would be expected, for all

methods the false discovery rates are almost identical

for the three models in which a single experimental

Figure 6 Mean FDR curves for analyses of more complex experimental designs. Mean FDR curves, based on 100 simulations, comparing

the performance of multiple methods in identifying more complex patterns of differential expression. The data are simulated from samples

coming from three experimental conditions A, B and C, giving a total of five possible patterns of differential expression. We show here the false

discovery rates for the identification of tuples where one experimental condition differs from the other two ({A1, ..., An, B1, ..., Bn} {C1, ... Cn}) and

for the identification of tuples where all three experimental conditions are different ({A1, ..., An}{B1, ... Bn}{C1, ... Cn}). The data are simulated with

varying number of libraries n in each experimental condition.
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condition is differentially expressed when compared to

the other two conditions. We therefore show only the

results for differential expression of conditions A and B

compared with condition C, together with the results

for the case where all three experimental conditions are

differentially expressed. In this more complex experi-

mental design, baySeq outperforms all existing meth-

ods, particularly as the number of libraries available

increases. Perhaps surprisingly, the edgeR method does

better than either the overdispersed log-linear or over-

dispersed logistic method in discovery of differential

expression that can be expressed in terms of a pairwise

comparison, as, to a lesser extent, does the DESeq

method. The DEGseq method, however, does not per-

form as well as any of the alternatives in these

comparisons.

Figure 7 shows how baySeq performs for the differ-

ent models. The false discovery rate for the model in

which all three experimental conditions differ from each

other is considerably higher than that for pairwise com-

parisons, indicating the additional difficulty of fitting

this more complex model. If we consider the suggestion

described in the Methods section, of finding differential

expression of any type by summing the posterior prob-

abilities of all models describing differential expression,

we see that the false discovery rate for tuples identified

in this way is very low, particularly as the number of

libraries available increases. This might suggest that

some of the false discovery of the individual models

may be due to differential expression of one type on

occasion being mistaken for differential expression of

another type.

Conclusions

We present an empirical Bayes method, baySeq, that

can simultaneously establish posterior probabilities of

multiple models of differential expression and performs

as well as or better than any existing techniques for

identifying pairwise differential expression in count data.

More significantly, this method enables the analysis of

experimental designs involving multiple sample groups

while using the whole data set to establish parameters

on the level of dispersion present. This allows consider-

ably greater accuracy in the analysis of more complex

experimental designs than has previously been possible,

and is hence a significant step forward in the analysis of

the data being produced by high-throughput sequencing

technologies. That the method produces posterior prob-

abilities of models of differential expression, rather than

significance values, offers a number of advantages in

downstream analysis; for example, it becomes a simple

matter to find an expected number of differentially

Figure 7 Comparison of baySeqmethod’s performance for different models in complex experimental designs. Mean FDR curves, based

on 100 simulations, comparing the performance of the baySeq method in identifying differential expression of different types in an analysis of

more complex experimental designs. The data are simulated from samples coming from three experimental conditions A, B and C, giving a total

of five possible patterns of differential expression. We show here the false discovery rates for the identification of tuples where one experimental

condition differs from the other two ({A1, ..., An, B1, ... Bn}{C1, ... Cn}) and for the identification of tuples where all three experimental conditions are

different ({A1, ..., An}{B1, ... Bn}{C1, ... Cn}). We also show false discovery rates for the identification of tuples showing differential expression of any

kind.
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expressed tuples, or to combine posterior probabilities

of multiple models.

In developing this method, we have established a well-

defined framework for describing diverse patterns of dif-

ferential expression between samples. We then take an

empirical Bayes approach in order to establish posterior

probabilities of each model for each tuple. We achieve

this by assuming that the data for each tuple is negative

binomially distributed. This assumption is supported by

the presence of over-dispersion in true data (Figure 4)

and the work by Lu et al [7] showing that an assump-

tion of a negative binomial distribution can be robust

even if the data are not truly negative binomially distrib-

uted. We then estimate empirical prior distributions for

the parameters of these negative binomial distributions.

This is a very natural approach as high-throughput

sequencing provides a large set of data from which to

estimate prior distributions. An interesting feature of

this approach is the flexibility we gain in choosing how

to estimate the parameters of the negative binomial dis-

tributions. We have chosen to use quasi-likelihood

methods here as they seem to give better performance

than maximum-likelihood approaches (unpublished

data). However, other methods of estimating these para-

meters (for example, Robinson and Smyth’s [9] moder-

ated conditional maximum likelihood, or Anders and

Huber’s [11] method for linking the variance of the

negative binomial distribution to the mean) might be

adapted to further improve the performance of our

method. We can also deal easily with the problem of

different library sizes, as this parameter can be built

directly into the assumptions about the distribution of

the data.

Our method is relatively computationally intensive,

but has been implemented to take advantage of parallel

processing, such that an analysis of pairwise differential

expression of ten thousand tuples coming from ten sam-

ples takes approximately 7.5 minutes running on a

machine with eight 2 GHz processors. We compare

baySeq to the method implemented in the edgeR pack-

age, because this has been reported to outperform other

existing approaches for pairwise comparisons [9], and is

the most commonly used method for analysis of count

data (based on Bioconductor download statistics). We

also include comparisons to two recently developed

methods for pairwise comparisons, DESeq and DEGseq,

and to the older overdispersed logistic and overdispersed

log-linear methods as these latter approaches allow for

analysis of more complex experimental designs.

Comparisons of the methods on pairwise data are

made on the basis of previously developed simulation

studies [9], as well as on real biological data, and the

baySeq method developed here performs comparably

to, and in some cases better than any existing approach.

We also see that one of the recently developed methods,

DEGseq, shows extremely poor performance when

there is a high proportion of unidirectional differential

expression, although it is comparable to both edgeR and

baySeq in other circumstances. When the dispersion

of data is constant, the proportion of differentially

expressed tuples is high, and the differential expression

is unidirectional, there appears to be a clear improve-

ment in performance by baySeq compared to all other

methods using their default parameters (Figure 3).

For analyses of data with random dispersions (Figure

2), baySeq performs almost identically to edgeR for

small numbers of libraries, but show a marked improve-

ment in performance for larger numbers of libraries.

The overdispersed log-linear method performs almost

identically to baySeq for low levels of differential

expression, but shows substantially worse performance

for higher levels of differential expression. The DESeq

and DEGseq methods show noticably worse perfor-

mance compared to baySeq as both the level of differ-

ential expression and the number of libraries increases,

with DEGseq performing particularly poorly. The over-

dispersed logistic method is always amongst the worst

performers.

Analysis of real biological data again suggests that

our method performs at least as well, and potentially

better, than edgeR, while both methods appear to sub-

stantially outperform the overdispersed log-linear and

logistic methods. The DESeq method again appears to

perform poorly compared to baySeq. However, in

these data DEGseq shows performance comparable to

baySeq.

The chief advantage of the empirical Bayes method

developed here, however, is its ready applicability to

more complex experimental designs, although at present

these methods remain limited to comparisons involving

multiple groups, and are not able to account for, for

example, paired samples. One possible extension to this

work is thus the generalisation of the methods to some

form of generalised linear model approach. However,

our method is able to simultaneously identify multiple

types of differential expression from a single experiment.

In comparisons of the methods using simulations of an

experimental design involving multiple groups (Figure

6), the baySeq method appears to offer substantial

improvements over existing methods. Figure 7, which

compares the performance of the baySeq method in

identifying different patterns of differential expression,

suggests that we should expect some loss of perfor-

mance for the baySeq method for more complex pat-

terns of differential expression. However, we can also

see that combining models to acquire, for example, pos-

terior probabilities of differential expression of any kind,

is a valuable approach.
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Our method thus provides performance as good as or

better than previous methods whilst enabling experi-

menters to simultaneously consider many diverse sam-

ple types in a single sequencing experiment. We believe

that this is a valuable approach representing an impor-

tant step forward for the analysis of count data from

sequencing experiments.

Availability and Requirements

The empirical Bayes method developed in this paper are

implemented in the software package baySeq[24] for

the cross-platform computing environment R [25] (ver-

sion 2.3 or greater). baySeq is released under the GPL-

3 licence as part of the Bioconductor project [19] at

http://www.bioconductor.org/packages/2.6/bioc/html/

baySeq.html
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