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ABSTRACT

Computational protein design (CPD) algorithms that compute binding affinity, Ka, search
for sequences with an energetically favorable free energy of binding. Recent work shows
that three principles improve the biological accuracy of CPD: ensemble-based design, con-
tinuous flexibility of backbone and side-chain conformations, and provable guarantees of
accuracy with respect to the input. However, previous methods that use all three design
principles are single-sequence (SS) algorithms, which are very costly: linear in the number
of sequences and thus exponential in the number of simultaneously mutable residues. To
address this computational challenge, we introduce BBK*, a new CPD algorithm whose key
innovation is the multisequence (MS) bound: BBK* efficiently computes a single provable
upper bound to approximate Ka for a combinatorial number of sequences, and avoids SS
computation for all provably suboptimal sequences. Thus, to our knowledge, BBK* is the
first provable, ensemble-based CPD algorithm to run in time sublinear in the number of
sequences. Computational experiments on 204 protein design problems show that BBK*
finds the tightest binding sequences while approximating Ka for up to 105-fold fewer
sequences than the previous state-of-the-art algorithms, which require exhaustive enumer-
ation of sequences. Furthermore, for 51 protein–ligand design problems, BBK* provably
approximates Ka up to 1982-fold faster than the previous state-of-the-art iMinDEE/A�/K�

algorithm. Therefore, BBK* not only accelerates protein designs that are possible with
previous provable algorithms, but also efficiently performs designs that are too large for
previous methods.
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1. INTRODUCTION

Protein design is the prediction of protein sequences with desired biochemical functions, which often

involve binding to a target ligand. Computational protein design (CPD) casts functional design into a

structural optimization problem whose goal is to find amino acid sequences that fold into specified three-

dimensional structures. Protein design algorithms search a space defined by a biophysical input model, which

defines the sequence and structural search space (i.e., the input structure, allowed amino acid mutations, and

allowed protein flexibility); the optimization objective (e.g., design for binding affinity); and the energy

function (Boas and Harbury, 2007). Protein design algorithms (Donald, 2011; Gainza et al., 2016) have

successfully predicted protein sequences that fold and bind desired targets in vitro and in vivo. For example,

these algorithms have been used, with experimental validation, to predict drug resistance (Frey et al., 2010;

Reeve et al., 2015; Ojewole et al., 2017a) and to design enzymes (Lilien et al., 2005; Stevens et al., 2006;

Georgiev and Donald, 2007; Chen et al., 2009), new drugs (Gorczynski et al., 2007), inhibitors of protein–

protein interactions (Georgiev et al., 2008; Roberts et al., 2012), epitope-specific antibody probes (Georgiev

et al., 2012), and even neutralizing antibodies (Georgiev et al., 2014; Rudicell et al., 2014).

Computational methods can potentially search a large number of sequences to predict the proteins that

bind most tightly to a target ligand in less time and with fewer resources than in vitro methods such as

phage display (Carmen and Jermutus, 2002; Pál et al., 2006). However, four computational challenges have

prevented protein design algorithms from realizing this potential. First, for each binding interface, an

exponentially large number of conformations in each binding partner’s ensemble must be pruned or

considered to accurately predict binding affinity (Gilson et al., 1997; Lilien et al., 2005; Georgiev et al.,

2008; Donald, 2011). Second, for each sequence, finding the lowest energy conformations that most

influence binding affinity is NP-hard (Pierce and Winfree, 2002; Kingsford et al., 2005; Xu, 2005; Xu and

Berger, 2006; Peng et al., 2015), making algorithms that guarantee optimality expensive for larger designs.

Third, mutating a protein sequence induces conformational changes in the protein structure. Since such

conformational changes occur over many continuous degrees of freedom, algorithms that model continuous

flexibility must search over a large continuous conformation space. Fourth, the number of protein sequences

(i.e., the sequence space) grows exponentially with the number of simultaneously mutable residues in the

design. Therefore, previous algorithms either focus on accurately modeling smaller designs or attempt larger

designs by making simplifications that (1) ignore the ensemble nature of proteins, (2) disregard continuous

conformational flexibility, or (3) return heuristic solutions with no guarantees. A discussion of these sim-

plifications and their ramifications for protein design follows [see also Supplementary Information (SI)

section 2 (Ojewole et al., 2017b)].

Global Minimum Energy Conformation (GMEC)-based algorithms (Desmet et al., 1992; Gainza et al., 2012;

Roberts and Donald, 2015; Hallen and Donald, 2016; Viricel et al., 2016) assume that the lowest energy

conformation accurately predicts binding affinity. However, GMEC-based designs cannot accurately model

entropic change due to binding (Fleishman et al., 2011) and can disproportionately favor sequences with

energetically favorable GMECs over sequences with tight binding affinity (Lilien et al., 2005; Georgiev et al.,

2008; Chen et al., 2009; Sciretti et al., 2009; Roberts et al., 2012; Silver et al., 2013). Many protein design

algorithms (Leaver-Fay et al., 2011; Traoré et al., 2013, 2016; Simoncini et al., 2015; Viricel et al., 2016) rely on

a simplified, discrete model of side-chain flexibility. However, discrete rotamers model a small subset of protein

energetics, which are sensitive to small atomic movements not permitted by the discrete model. To overcome

this limitation, researchers have developed provable algorithms (Georgiev et al., 2008; Gainza et al., 2012;

Roberts et al., 2012; Hallen et al., 2015, 2016; Roberts and Donald, 2015) that incorporate continuous side-

chain flexibility (Georgiev et al., 2008; Gainza et al., 2012). Another important aspect of design algorithms is

the quality of the computed results. Whereas GMEC-based design is NP-hard (Pierce and Winfree, 2002;

Kingsford et al., 2005; Xu, 2005; Xu and Berger, 2006), computation of thermodynamic ensembles and

associated partition functions is #P-hard (Valiant, 1979; Nisonoff, 2015; Viricel et al., 2016). Provable protein

design algorithms return either the optimal sequences or conformations (Desmet et al., 1992; Leach and Lemon,

1998; Gainza et al., 2012; Hallen et al., 2013; Traoré et al., 2013, 2016; Roberts and Donald, 2015; Simoncini

et al., 2015; Viricel et al., 2016) with respect to the input model or return provably good approximate solu-

tions (Lilien et al., 2005; Georgiev et al., 2008; Roberts et al., 2012; Hallen et al., 2015, 2016). Nonprov-

able algorithms such as Metropolis Monte Carlo methods (Lee and Levitt, 1991; Kuhlman and Baker, 2000;

Leaver-Fay et al., 2011) instead use stochastic methods to rapidly sample the space described by the input
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model. These algorithms return solutions without any guarantees. Thus, ensemble-based design, a realistic

model of structural flexibility, and provable optimality of the computed sequences with respect to the input

model improve the predictive power of protein design algorithms. However, each of these design principles also

increases the cost of protein design (as a function of the number of sequences).

Single-sequence (SS) algorithms, which explicitly evaluate each possible sequence, are powerful and

versatile. Molecular dynamics (Leech et al., 1996; Zheng et al., 2008), for instance, is frequently applied to

design for binding affinity. The approach models ensembles and continuous flexibility. Provable algorithms

have also been developed to model these two phenomena. The K* algorithm (Lilien et al., 2005; Georgiev

et al., 2008; Roberts et al., 2012) in osprey (Lilien et al., 2005; Georgiev et al., 2006, 2008; Georgiev and

Donald, 2007; Gainza et al., 2012, 2013; Roberts et al., 2012; Hallen et al., 2013, 2015, 2016; Roberts and

Donald, 2015; Hallen and Donald, 2016; Jou et al., 2016) uses a combination of dead-end elimination

pruning (Georgiev et al., 2008; Gainza et al., 2012) and A* (Hart et al., 1968; Leach and Lemon, 1998;

Roberts et al., 2015) gap-free conformation enumeration to provably and efficiently approximate Ka. K*

and all previous provable ensemble-based algorithms that model continuous side-chain flexibility (Hallen

et al., 2015, 2016) are SS algorithms. The empirical and asymptotic runtime complexity of SS algorithms is

linear in the number of possible sequences, and, therefore, exponential in the number of mutable residues.

Thus, designs with many mutable residues rapidly become intractable when using SS algorithms. The

comets algorithm (Hallen and Donald, 2016) in osprey is the only provable multistate design algorithm

that is more efficient than SS algorithms. However, its binding predictions are GMEC based rather than

ensemble based. Additional background and references are located in SI section 2 (Ojewole et al., 2017b).

To efficiently search large sequence spaces while retaining all the benefits of provable guarantees,

ensemble-based design, and continuous side-chain flexibility, we present a new, provable algorithm:

Branch and Bound over K* (BBK*). The key innovation of BBK* is the multisequence (MS) bound: BBK*

efficiently computes upper and lower bounds on the binding affinities of partial sequences, which are

shared by a combinatorial number of full sequences. By avoiding costly SS computation, BBK* runs in time

sublinear in the number of sequences. To our knowledge, BBK* is the first provable, ensemble-based

algorithm to do so. BBK* not only avoids explicitly computing all possible sequences, but also provably

and efficiently enumerates sequences in a gap-free decreasing order of binding affinity. Therefore, BBK*

provides a vast performance improvement over the previous state-of-the-art, by not only accelerating

protein designs that were possible with previous provable algorithms but also efficiently handling large

designs that previous algorithms could not compute in a reasonable amount of time.

By presenting BBK*, our article makes the following contributions:

(1) A novel, ensemble-based algorithm that provably computes the same results as the previous state of the

art (exhaustive search over sequences) but is empirically combinatorially faster, returns a gap-free list of

sequences in decreasing order of binding affinity, and runs in time sublinear in the number of sequences.

(2) Proofs of correctness for MS bounds, a key innovation in BBK*.

(3) A new two-pass bound that more efficiently computes a provable e-approximation to the desired

partition functions.

(4) Totally 255 protein designs showing that BBK* approximates binding affinity for full sequences up

to 1982-fold faster than the best previous algorithm and that BBK* computes the best binding

sequences in a large sequence space up to 105-fold more efficiently than exhaustive search.

(5) Support for both continuous side-chain and backbone flexibility, demonstrating the ability of BBK*

to handle multiple modes of protein flexibility in addition to large conformation and sequence

spaces.

(6) An implementation of BBK* in our laboratory’s open-source osprey (Lilien et al., 2005; Georgiev

et al., 2006, 2008; Georgiev and Donald, 2007; Gainza et al., 2012, 2013; Roberts et al., 2012;

Hallen et al., 2013, 2015, 2016; Roberts and Donald, 2015; Hallen and Donald, 2016; Jou et al.,

2016) protein design software package, available for download as free software.

2. COMPUTING THE PARTITION FUNCTION

To successfully design for improved binding affinity Ka, design algorithms must consider the energy of more

than just the GMEC. In particular, all algorithms that design for improved Ka optimize the ratio of partition
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function Z for the bound and unbound states of the protein and ligand [Eq. (2)]. Protein design can thus be cast as

an optimization problem. For an n-residue protein design problem with at most a amino acids per mutable

residue, let P, L, and PL denote the unbound protein, unbound ligand, and bound protein–ligand complex,

respectively. For each sequence s, let Q(s) be the set of discrete rigid rotamer conformations defined by the

allowed amino acids for each mutable residue of s. For a rigid rotamer conformation c, let E
X

be a pairwise

energy function with respect to input structure X, which may be one of P, L, or PL. In particular, we consider the

case of design with continuous rotamers (Georgiev et al., 2008; Gainza et al., 2012). We define E
X
(c) to be the

energy of c for structure X after energy minimizing the side chains of mutable residues.

2.1. K*

We define the Boltzmann-weighted partition function Z
X
(s) as

Z
X
(s) =

X

c2Q(s)

exp ( - E
X
(c)=RT): (1)

We define the K* score, a partition function ratio that approximates binding affinity, Ka‚ as

K�(s) =
Z

PL
(s)

Z
P
(s)Z

L
(s)
: (2)

As stated in Section 1, the K* approximation and, by extension, the full partition function are #P-hard to

compute (Valiant, 1979; Nisonoff, 2015; Viricel et al., 2016). Therefore, researchers have not only de-

veloped heuristic algorithms that rapidly compute loose partition function bounds, but also developed

efficient, provable algorithms that compute e-approximations to the partition function. Probabilistic algo-

rithms bound the partition function either provably (Wainwright et al., 2013) or nonprovably (Fromer and

Yanover, 2008). An efficient e-approximation to Z
X
(s) is computed in Lilien et al. (2005), Georgiev et al.

(2008), and Roberts et al. (2012). However, these methods are designed to compute partition functions for

SSs. For an n-residue design with at most t possible amino acids at each residue and q rotamers per amino

acid, provable SS methods must compute or bound the partition functions of all tn sequences, each with qn

conformations. Thus, previous SS algorithms for protein design for binding affinity take time exponential in

n (O(tn)) when computing the sequence with the best predicted binding affinity.

Therefore, to provably find the best binding sequences, new efficient provable algorithms are needed to

search over an exponentially large sequence space, in which each sequence represents an exponentially

large conformation space. BBK* addresses this need. BBK* compares partial sequences (for which some

mutable residues have not been assigned an amino acid identity) without computing the partition functions

for all full sequences (which assign a specific amino acid to each mutable residue). BBK* computes bounds

on the free energies of partial sequences, and avoids enumerating conformations from sequences with poor

binding affinity by pruning sequences during search. As we describe in Section 3, pruning these sequences

circumvents prohibitive computational costs required to compute many SS K* scores.

3. A* SEARCH OVER SEQUENCES, WITH MULTISEQUENCE BOUNDS

It may at first seem counter-intuitive to compute the sequence with optimal binding affinity, along with

its predicted K* score, without explicitly computing the K* scores of all possible sequences. Indeed, all

previous ensemble-based provable methods, as well as many heuristic methods, are SS methods: they must

individually evaluate and compare each sequence to provably return the optimal sequence. In contrast,

BBK* bounds the K* ratios of a combinatorial number of sequences efficiently and can prune these

sequences without computing any SS bounds. The key to this improvement is the observation that a partial

sequence s0 with poor predicted binding affinity adversely affects the K* score of the combinatorial set of

sequences that contain s0. That is, the best possible K* score consistent with s0 limits the K* ratio of all

sequences consistent with s0. Henceforth, we refer to a bound on the binding affinity for a sequence as a

bound on the sequence. To compute a bound on all sequences consistent with s0, BBK* computes the

partition function for an ensemble that contains conformations from multi-sequence. Figure 1 shows the

difference between SS and MS ensembles. The K* ratio of a MS ensemble is a provable upper bound on the

best possible K* ratio of all sequences that contain s0. We show this MS bound is not only cheaper to
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compute, but it also allows BBK* to compare a combinatorial number of sequences without computing any

SS bounds. By bounding every possible sequence consistent with a partial sequence, BBK* can provably

eliminate those sequences, and prune a combinatorial number of sequences without performing any SS

computation. Figure 2 illustrates the combinatorial speedup provided by MS bound pruning, whereby

pruning the partial sequence obviates computation of all SSs containing the partial sequence. MS bounds

are not limited to pruning based on binding affinity, however. They are also useful for pruning combi-

nations of sequences whose favorable K* scores are due to energetically unfavorable unbound states that

cannot fold into ligand-binding poses. SS methods compute binding affinity for each of these sequences. In

contrast, BBK* prunes these partial sequences using MS bounds, thereby avoiding many costly SS com-

putations. Details are provided in section A.7 of the SI (Ojewole et al., 2017b).

The improvement of BBK* over SS methods can be measured using cost per sequence. We show the

improvement is threefold: BBK* (a) reduces the cost to compute a bound on a combinatorial number of

sequences, (b) eliminates all computational costs once a sequence is pruned, and (c) when it must compute

a bound for an SS, computes a bound that is in many cases cheaper than the bounds computed by previous

SS algorithms. To guarantee that the first sequence returned is optimal, an algorithm must either compute or

bound the partition function for all possible sequences. Previous provable algorithms compute a provable

SS bound of the partition function, called an e-approximation (SS-e bound), for each sequence (Lilien et al.,

2005; Georgiev et al., 2008; Roberts et al., 2012). These SS-e bounds are guaranteed to be within a user-

specified e of the K* score for a sequence. BBK* also provably returns the optimal sequences, but does so

without enumerating all possible sequences. Instead of SS-e bounds, BBK* computes an MS bound, which is

an upper bound on the best possible K* score of multiple sequences that share a common partial sequence.

We will now compare the cost of bounding sequences with SS algorithms with the cost with BBK*.

Consider an n-residue protein design: we are given an initial partial sequence s0, which fixes amino acid

identity (but not the rotamer) for a residues, and u residues do not have a fixed amino acid identity

(a + u = n). If the design problem allows at most t amino acids per unassigned (u) residue and at most q

rotamers for any amino acid, there are tu sequences containing s0 and qa partial conformations defined by s0.
A complete sequence would still have qn conformations, and computing the energy of a conformation takes

O(n2) time using a pairwise energy function. Thus, an SS algorithm would spend O(tuqnn2) worst-case time

individually computing the K* scores of all tu sequences. In contrast, the cost of an MS bound is

O(qa(a2 + q2t2un)), which includes O(qaa2) time to compute the pairwise energy of the a assigned residues

of all qa partial conformations, and O(qa + 2t2un) time to compute a bound on the energy of each partial

conformation. By reducing two exponentials from tu to t2, and from qn to qa + 2, BBK* computes an MS

bound in time sublinear in the number (tu) of sequences. The cost to compute a single provable MS bound

(that holds for all tu sequences) is, therefore, significantly smaller than the cost to compute tu SS bounds.

FIG. 1. A toy protein design problem in which conformational ensembles (A) and optimal mutations (B) must be

computed at three residues. Residues of the fibronectin F1 module (Fn, blue ribbon) and of a fragment of Staphylo-

coccus aureus fibronectin binding protein A (FNBPA-5, green ribbon) are shown (PDB id: 2RL0). Side-chain con-

formations, labeled with amino acid identity, are also shown per residue. (A) Previous provable methods require a fully

defined sequence to compute an SS e-approximation bound on binding affinity [i.e., a K� score, Eq. (2)]. (B) A key

innovation in this article is the MS bound for binding affinity in protein design. An MS bound is a provable bound on

the binding affinity of a partial sequence. Unassigned residues, whose amino acid identities are not defined by the

partial sequence, adopt side-chain conformations from multiple amino acids, shown as the blue, purple, pink, and light

blue ensembles. Thus, an MS bound is a provable upper bound on the binding affinity of all sequences containing that

partial sequence, and is obtained without computing any SS bounds. (The full analysis of the Fn:FNBPA-5 design

problem is described in Section 4.3). MS, multi-sequence; SS, single sequence.
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Furthermore, these MS bounds are used to prune partial sequences containing combinations of mutations:

for a pruned partial sequence s0, all tu sequences containing s0 are provably eliminated from search without

any additional computation. That is, BBK* provably, combinatorially prunes the search space. Since this

pruning occurs during search, rather than as a preprocessing step, the pruning performed by BBK* is

distinct from previous pruning techniques such as dead-end elimination (Desmet et al., 1992; Dahiyat and

Mayo, 1996). BBK* pruning is used after dead-end elimination pruning to further improve empirical

performance. Finally, MS bounds are in many cases inexpensive to compute when compared with the

O(qnn2) complexity of computing an SS-e bound for an SS. Since there are qa partial conformation energy

bounds to compute, the cost of an MS bound increases exponentially as a increases. Obviously, when

a << n, qa + 2 << qn. This is very advantageous for A* search, because a is initially very small: when

BBK* begins search, a = 1, and increases one at a time. Furthermore, a + u = n, and a never exceeds n. Thus

in many cases a << n, and MS bound costs of O(qa + 2t2un) are significantly smaller than the SS-e costs of

O(qnn2) for an SS. Use of MS bounds enables BBK* to efficiently bound and prune sequences that would

otherwise require O(qnn2) time each to evaluate.

The algorithmic advances that make MS bounds possible are new bounds on partial and full sequences. We

denote the design states unbound protein, unbound ligand, and bound complex as P, L, and PL, respectively.

The following definitions of these new bounds are sufficient for the theorems provided in the main article—

the precise definitions involve some subtleties, which are deferred to section A of the SI (Ojewole et al.,

2017b). Given a sequence s and a state X 2 fP‚ L‚ PLg, the function L
X
(s) is a provable lower bound of the

partition function for s in state X, and U
X
(s) is a provable upper bound on the partition function for s in state X.

For a partial sequence s0‚ L
X
(s0) and U

X
(s0) are, respectively, partition function lower and upper bounds for

the combinatorial number of sequences containing s0. These lower- and upper-bounding functions are

combined into an upper-bounding function K +
a (s0) on the partition function ratio of s0.

Definition 1. Let s be a sequence. K +
a (s) is defined as follows:

K +
a (s) =

U
PL

(s)

L
P
(s)L

L
(s)
: (3)

FIG. 2. BBK* pruning efficiently explores the sequence space. An example design of residues 192 and 194 of the

fourth fibronectin F1 module and residues 649 and 651 of a fragment Staphylococcus aureus fibronectin binding protein

a-5 is shown (Fig. 1, PDB id: 2RL0). As BBK* searches the sequence space (tree above) its MS bounds provably prunes

subtrees from the sequence space. All sequences containing R194/I649 are pruned (red crosses) after computing exactly

one MS bound: the bound on the partial sequence R194/I649, which is an upper bound for all sequences containing

R194/I649. Sequences containing M192/C194/I649 are pruned (red crosses) after computing only the MS bound for the

partial sequence M192/C194/I649. All pruned sequences and partial sequences, shown as empty gray circles, have no

additional computation performed. Even though SS bounds are initiated for both I192/C194/I649/E651 and I192/C194/

I649/D651, the latter is pruned after computing a mer e d-approximation bound (orange leaf node), which is cheaper,

and not as tight as a e-approximate bound. A provable e-approximation bound (green leaf node) is computed for only

the optimal sequence, I192/C194/I649/E651. In contrast, SS methods compute separate e-approximate bounds (which

are expensive) for all eight possible sequences, shown as leaf nodes in the tree.
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The following theorem establishes the relationship between the partition function ratio of a partial

sequence and the partition function ratio of any sequence containing the partial sequence:

Theorem 1. Let s be a partial or complete sequence. For any partial sequence s0 � s, K +
a (s0) bounds

K +
a (s) from above:

K +
a (s0) � K +

a (s) � Z
PL

(s)

Z
P
(s)Z

L
(s)

= K�(s): (4)

A proof of this theorem is provided in section A.3 of the SI (Ojewole et al., 2017b). Theorem 1 shows

that the bounds used by BBK* are admissible. That is, they never underestimate the K* ratio of any partial

sequence. Thus, BBK* uses K +
a (s0) as the optimistic bounding function for A* search. Previously, A* search

has been used to provably enumerate conformations within some energy window Ew of the GMEC (Leach

and Lemon, 1998) and to provably approximate the partition function of single sequences (Lilien et al.,

2005; Georgiev et al., 2008; Donald, 2011; Roberts et al., 2012). Since Equation (4) defines an admissible

bound over sequences, all of the provable guarantees of A* apply to BBK*. With these guarantees, BBK*

provably searches over sequences rather than conformations, and is guaranteed to return a gap-free list of

sequences in order of decreasing binding affinity.

3.1. Algorithm overview

BBK* bounds all possible sequences either with the MS bounds described in Section 3, or by computing

an SS bound as described in Lilien et al. (2005), Georgiev and Donald (2007), and Roberts et al. (2012). In

brief, to bound an SS, BBK* computes a gap-free list of conformations whose statistical mechanical

energies [Eq. (1)] are used to bound the K* ratio. The algorithm reports an error bound d such that the

computed bound is guaranteed to be no more than a (1 + d) factor greater than the true K* ratio. We refer to

these SS, d-approximate bounds (Georgiev et al., 2008; Georgiev, 2009) as SS-d bounds. As the gap-free

list of conformations used for an SS-d bound grows in size, the computed SS bound becomes tighter (d
decreases). Eventually, d � e, and the SS bound becomes a provable e-approximation, which we refer to as

an SS-e bound. We refer to an SS-d bound constructed this way as a running bound, which BBK*

incrementally tightens as it enumerates additional conformations (Georgiev et al., 2008).

BBK* maintains a max heap whose node values correspond to either full or partial sequences and whose

node keys are an upper bound on all K* scores [Eq. (2)] in the sequence space represented by the node. The

heap is initialized with a node representing the entire sequence space. BBK* then repeatedly removes the

max node x of the heap and performs one of the following operations:

(1) Branch. If x contains a partial sequence s0, then s0 is expanded. Expansion creates t new child nodes

by selecting an unassigned residue r in s0, and creating a new child node for each allowed amino acid

a at r. Each child node contains s0 plus the additional mutation of a assigned at r. These nodes are

bounded with MS bounds or SS-d bounds and reinserted into the heap.

(2) Update. If x contains a complete sequence s, whose bound is an SS-d bound, then BBK* enumerates

m additional conformations (m = 8 in our study), tightening the SS-d bound. x is reinserted into the

heap, with the updated SS-d bound as its key. Computing this tighter SS-d bound is important for

pruning sequences, as shown by our computational experiments in Section 4.2.

(3) Return. If node x contains a full sequence, whose bound is an SS-e bound, then the sequence in x has

the best K* score of all unenumerated sequences (as with A*, all better sequences are guaranteed to

have already been enumerated). The sequence of x is returned.

BBK* terminates when it has enumerated the top k sequences (by SS-e bound), where k is a user-

specified number. A detailed description of the algorithm is provided in section A.8 of the SI (Ojewole

et al., 2017b).

4. COMPUTATIONAL EXPERIMENTS

We implemented BBK* in our laboratory’s open source osprey (Gainza et al., 2013) protein design

package and compared our algorithm with the previous state-of-the-art SS iMinDEE/A�/K� algorithm
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(Lilien et al., 2005; Georgiev et al., 2008; Roberts et al., 2012). We computed the five best binding

sequences using both BBK* and iMinDEE/A�/K� for 204 different protein design problems from 51

different protein–ligand complexes. For each protein–ligand interface, we created four design problems

spanning the wild-type sequence and all sets of single, double, triple, and quadruple mutants, respec-

tively. In each design problem, we modeled either eight or nine residues at the protein–ligand interface

as mutable and flexible. Each mutable residue was allowed to assume its wild-type identity or mutate to

13–19 other amino acids. The size of the resulting design problems ranged from 10 to 2:6 · 106 sequences

and 105 to 1011 conformations (over all sequences). In all cases, we modeled continuous side-chain

flexibility using continuous rotamers (Gainza et al., 2012; Roberts and Donald, 2015). As in Georgiev

et al. (2008) and Gainza et al. (2012), rotamers from the Penultimate Rotamer Library (Lovell et al.,

2000) were allowed to minimize to any conformation within 9� of their modal v-angles. For all design

problems, we performed minimized dead-end elimination pruning (minDEE) (Georgiev et al., 2008),

followed by either iMinDEE/A�/K� or BBK*. The initial pruning window (Gainza et al., 2012) was 0.1

kcal/mol, and the SS-e bound accuracy was 0.683 [details are provided in section A.9 of the SI (Ojewole

et al., 2017b)]. Each design either provably returned the optimal sequences or was terminated after

30 days. A detailed description of the 51 protein–ligand systems in our experiments, the 204 protein

design problems based on these systems, and our experimental protocol is provided in section C.1 of the

SI (Ojewole et al., 2017b).

4.1. Performance comparison

As the size of the sequence space increases, so does the efficiency of BBK* over iMinDEE/A�/K�

(Fig. 3), demonstrating that the complexity of BBK* is in practice sublinear in the number of sequences.

Because iMinDEE/A�/K� computes individual sequence binding energies as SS-e bounds, we first measured

the efficiency of BBK* using the number of SS-e bounds computed. Since K� scores in iMinDEE/A�/K� are

based on minimized conformation energies (Lilien et al., 2005; Georgiev et al., 2008; Gainza et al., 2012),

whose computation represents a major computational bottleneck, we also measured efficiency using the

number of conformation energy minimizations performed. Last, we compared the running times of BBK*

with those of iMinDEE/A�/K�.
We divide the design problem sizes into three categories: the smallest problems have between 10 and 102

sequences, medium-sized problems contain between 102 and 104 sequences, and the largest problems contain

between 104 and 107 sequences. After 30 days, BBK* completed all 204 designs, but iMinDEE/A�/K�

completed only 107 of 204 designs: all 39 of the smallest designs, 54 of 63 medium-sized designs, and only 14

of the 111 largest designs. We now discuss results for the 107 designs completed by iMinDEE/A�/K�. Because

iMinDEE/A�/K� computes individual sequence binding energies as SS-e bounds, we first measured the effi-

ciency of BBK* using the number of SS-e bounds computed (Fig. 3A). For small, medium, and large designs,

respectively, BBK* was on average 17-fold, 162-fold, and 2568-fold more efficient than iMinDEE/A�/K�.
Next, we measured efficiency using the number of conformation energy minimizations performed (Fig. 3B).

Here, BBK* minimized, on average, 10-, 43-, and 113-fold fewer conformations for small, medium, and large-

sized designs, respectively, compared with iMinDEE/A�/K�. Last, we compared empirical running times for

both methods (Fig. 3C). On average, BBK* was 36-, 67-, and 97-fold faster than iMinDEE/A�/K� for small,

medium, and large-sized designs, respectively.

Based on the data from the 107 designs that iMinDEE/A�/K� was able to complete within 30 days, we

conclude that BBK* provides a combinatorial speedup over iMinDEE/A�/K�. Crucially, BBK* is not only

more efficient but also retains the provability guarantees and biophysical modeling improvements (i.e.,

ensemble-based design and continuous flexibility) employed by SS iMinDEE/A�/K�. In one large design

(2.6 · 106 sequences), involving a camelid single-domain VHH antibody fragment in complex with RNase

A (PDB id: 2P49), BBK* pruned >99.9% of sequences to provably find the best five sequences. Therefore,

BBK* can design over similarly sized sequence spaces to high-throughput experimental screening methods

such as phage display (Carmen and Jermutus, 2002; Pál et al., 2006).

4.2. Sequence space pruning

BBK* owes its efficiency to two complementary modes of sequence pruning: MS bound pruning and SS-

d bound pruning. Figure 4A shows the efficiency gains in BBK* due to MS bound pruning. In small,

medium, and large design problems, respectively, BBK* pruned up to 90%, 99%, and 99.9% of the
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sequence design space using MS bound pruning. These data show that the amount of MS pruning increased

significantly with the size of the design space. Figure 4B illustrates the efficiency gains in BBK* due to

SS-d bound pruning. In small, medium, and large design problems, respectively, SS-d pruning eliminates

up to 98%, 99.9%, and 99.99% of the sequences not pruned by MS pruning. These data show that the

amount of SS-d pruning increased with the size of the design problem. Further details are provided in

sections A.10 and B.1 of the SI (Ojewole et al., 2017b).

Importantly, MS bound pruning and SS-d bound pruning have multiplicative synergy, producing a

combined pruning effect of up to 99.99999% of the original sequence space while provably finding the five

FIG. 3. BBK* is up to five orders of magnitude more efficient than iMinDEE/A�/K�. BBK* completed all 204

designs within a 30-day limit, whereas iMinDEE/A�/K� completed only 107. (A) The number of SS-e bounds

performed versus the number of sequences in the design space. Results are shown for computing only the best

sequence (blue) and computing the best five sequences (orange). SS algorithms, including the best previous algorithm

iMinDEE/A�/K�, must compute binding affinity for all possible sequences (green curve). BBK* required up to

6 · 105-fold fewer SS-e bounds to find the best sequences. (B) The number of energy-minimized conformations by

BBK* and iMinDEE/A�/K� versus the number of sequences in the design space. iMinDEE/A�/K� completed only 107

of 204 designs (left of the vertical line) before the 30-day timeout. For these designs, BBK* was up to 1700-fold more

efficient. (C) BBK* and iMinDEE/A�/K� running times versus the number of sequences in the design space. For the

107 designs completed by iMinDEE/A�/K� within 30 days (left of the vertical line), BBK* was up to 800-fold more

efficient than iMinDEE/A�/K�.
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best binding sequences. In one example, we redesigned the protein–protein interface (PPI) of a camelid

affinity-matured single-domain VHH antibody fragment (PDB id: 2P4A). The sequence space, 2.6 · 106

sequences, consisted of all quadruple mutants in the 9-residue PPI. BBK* pruned all but 2078 sequences

using MS pruning and then pruned 2071 sequences from these remaining 2078 sequences using SS-d bound

pruning. These data show how BBK* prunes a combinatorial number of sequences from the design space,

producing dramatic efficiency gains over SS methods. See SI section 5.2 for details (Ojewole et al., 2017b).

4.3. Design with coupled continuous side-chain and backbone flexibility

To determine whether design with a fixed backbone and continuous rotamers predicts tight binding in the

same sequences as does a model with both local backbone flexibility and continuous rotamers, we used

BBK* to redesign the human fibronectin F1:Staphylococcus aureus FNBPA-5 interface (Lower et al., 2011)

(PDB id: 2RL0) for binding affinity. As we discuss below, the flexible backbone model favors binding in

different sequences than the fixed backbone model does. Details of our experimental protocol are provided

in section C.3 of the SI (Ojewole et al., 2017b).

In the first experiment, we redesigned the fibronectin F1:FNBPA-5 interface for binding affinity over the

wild-type sequence and 15 single amino acid polymorphisms. Our results showed that using the flexible

backbone model versus the fixed backbone model increased the size of the design conformation space by

1417-fold but only increased the running time by 4-fold in BBK*. By comparison, iMinDEE/A�/K� required

48-fold more time than BBK* to complete the flexible backbone design. Our results also showed that the

BBK* sequence rankings between the two input models had a Spearman correlation coefficient of only

q = 0.53. Thus, the flexible backbone model favors binding in different sequences than the fixed backbone

model does. For instance, the FNBPA-5 D650E mutant is predicted to bind less tightly than the wild-type in

the fixed backbone model (Fig. 5A) but more tightly than WT in the flexible model (Fig. 5B). In our second

experiment, the sequence design space consisted of the wild-type sequence and 25 single amino acid

polymorphisms. The BBK* sequence rankings produced by the two input models had a Spearman correlation

coefficient of q = 0.82 [additional details are provided in section B.2 of the SI (Ojewole et al., 2017b)].

Relative to the fixed backbone model, the flexible backbone model increased the size of the design confor-

mation space by 8447-fold but only increased the running time by only 1.7-fold in BBK*. iMinDEE/A�/K�

required 89-fold more time than BBK* to complete the design using the flexible backbone model.

FIG. 4. BBK* used MS and SS-d bounds to prune up to 99.99999% of the sequence space. (A) Sequence space

reduction due to MS pruning. The fraction of unpruned sequences (gray) normalized to the total number of sequences

(green). BBK* used MS bounds to provably prune up to 99.9% of the sequence space. BBK* does not compute SS-e
bounds for pruned sequences. (B) The fraction of BBK* SS-e bounds (blue for the best sequence and orange for the best

five sequences) normalized to the number of sequences not pruned by MS bound pruning (gray). To compute the best

sequences, BBK* calculated SS-e bounds for as few as 0.01% of the unpruned sequences. The remaining 99.99% of

these sequences were pruned at mere SS-d accuracy.
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It is important to note that these experiments are only possible with provable algorithms. Without the

provable guarantees of BBK*, it would be difficult and perhaps unsound to compare the results of CPD with

and without coupled continuous side-chain and backbone flexibility, since differences induced by the fixed

backbone and rotamer model cannot be deconvolved from differences stemming from undersampling or

inadequate stochastic optimization. Thus, BBK* provides provable methods to analyze the difference in

predicted sequences between different models of side-chain and backbone flexibility.

5. CONCLUSION

BBK* fills an important lacuna in protein design: we presented a novel algorithm that can search

efficiently not over the energies of single conformations, but over the binding affinity of sequences. BBK*

is, to our knowledge, the first provable, ensemble-based algorithm to search in order of binding affinity and

run in time sublinear in the number of sequences. Previously, protein designers either employed heuristic

algorithms to compute locally optimal sequences, or computed provably accurate approximations of

binding affinity for each sequence individually. BBK* not only computes the globally optimal sequences,

but it also does so while combinatorially pruning the search space. Our experiments show that BBK* can

search over sequence spaces of up to 2.6 · 106 sequences, a capacity comparable with high-throughput

experimental screening methods such as phage display. Thus, BBK* liberates binding affinity-based protein

design from the efficiency barrier imposed by exhaustive search. Ensemble-based design for affinity over

large sequence spaces was previously possible only with heuristic algorithms (with no guarantees), or using

high-throughput wet-bench experiments. BBK* enables CPD by providing new Ka algorithms, with provable

guarantees, for these large-scale protein designs.
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FIG. 5. BBK* efficiently handles coupled continuous side-chain and local backbone flexibility. Selected residues

from ensembles, computed by BBK*, of human fibronectin F1 modules 4–5 (magenta) in complex with a fragment of

Staphylococcus aureus fibronectin binding protein A 5 [FNBPA-5, PDB id: 2RL0, (Lower et al., 2011)]. The design

space consisted of the wild-type sequence and either 15 or 25 single amino acid mutants. (A) Ensemble of the wild-type

sequence based on the original crystal structure. The design used a fixed FNBPA-5 backbone (green) and continuous

side-chain flexibility. (B) Ensemble of the wild-type sequence using two backbones: the original FNBPA-5 backbone

(green) and a second backbone (PDB id: 2RKY, cyan) with RMSD 1.3 Å from the original [found using the MASTER

program (Zhou and Grigoryan, 2015)]. The sequence rankings [by K� score, Eq. (2)] from the fixed and flexible

backbone models had Spearman correlation coefficients of q = 0.53 and q = 0.82 in the 15 and 25 mutant designs,

respectively. This shows that the flexible backbone model favors binding in very different sequences than the fixed

backbone model does.
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