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Abstract: We study constraints from Big Bang Nucleosynthesis on inert particles in a

dark sector which contribute to the Hubble rate and therefore change the predictions of the

primordial nuclear abundances. We pay special attention to the case of MeV-scale particles

decaying into dark radiation, which are neither fully relativistic nor non-relativistic during

all temperatures relevant to Big Bang Nucleosynthesis. As an application we discuss the

implications of our general results for models of self-interacting dark matter with light

mediators.
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1 Introduction

Among the various probes of the Standard Models of particle physics and cosmology, Big

Bang Nucleosynthesis (BBN) stands out by dating further back in time than any other ex-

isting observation. Using the baryon-to-photon ratio inferred from the Cosmic Microwave

Background (CMB), ηCMB, the predicted abundances of nuclei such as deuterium and

helium which have been formed in the first minutes after the Big Bang are in excellent

agreement with observations, in the case of deuterium to a precision of about one per-

cent [1, 2].

The primordial nuclear abundances depend quite sensitively on the Hubble rate H

during BBN, mainly due to the effect of the expansion rate on the temperature at which

protons and neutrons fall out of equilibrium. The Hubble rate is fully determined by

the total energy density ρ which can receive contributions from particles appearing in

theories beyond the Standard Model (SM). BBN is therefore a potentially powerful probe

of scenarios that predict a significant extra energy density at T ≃ 0.01− 10.0MeV [3–6].

This is particularly interesting in extensions of the SM containing a dark sector, i.e. a

collection of particles which are only weakly coupled to (or even fully decoupled from) the
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SM heat bath. Due to the small couplings of the new states to SM particles, such scenarios

are often hard to probe at terrestrial experiments such as colliders or dark matter direct

detection experiments. However, as long as the temperature of the dark sector is not

much smaller than the photon temperature, even a fully decoupled dark sector contributes

significantly to the energy budget of the Universe and hence alters the predictions of BBN.

If the masses of the relevant particles in the dark sector are sufficiently below the MeV

scale, mX ≪ MeV, they have essentially the same impact on the nuclear abundances

as extra SM-like neutrinos. In this case, their effect can be fully described by a single

number, ∆Neff, defined as the number of neutrinos leading to the same energy density as

the corresponding dark sector particles. Using the most recent observations of primordial

nuclear abundances as well as information from the Cosmic Microwave Background (CMB),

the current upper limit is given by ∆Neff . 0.2 at 95% C.L. [1]. Furthermore, for the case

of a stable or decaying dark sector particle X which is fully non-relativistic during BBN

(i.e. mX & 10 − 100MeV), upper bounds on the mass density of X have been derived

in [5–7].

On the other hand, particles with 0.01MeV . mX . 10MeV are neither ultra- nor

non-relativistic for all temperatures relevant to BBN, and hence their effect on the predicted

nuclear abundances cannot be simply parameterised by a temperature-independent number

such as ∆Neff. Dark sector particles with masses in the MeV range actually appear in

various extensions of the Standard Model, e.g. in the form of dark photons or dark Higgs

bosons. Interestingly these particles can mediate the interactions of dark matter (DM),

and if the DM particle is sufficiently heavier, an MeV-scale mediator can lead to significant

velocity dependent DM self-interactions [8–15], which in turn may solve potential small-

scale structure problems of the collisionless cold dark matter paradigm (see [16] for a recent

review).

In this work, we perform for the first time a dedicated study of BBN constraints on such

a scenario, i.e. an MeV-scale dark sector particle which is either stable or decays into other

dark sector states while being thermally decoupled from the SM heat bath. We outline our

procedure for calculating the relevant nuclear abundances and how we derive the bounds

from BBN in the next section. In section 3 we show how the Hubble rate evolves in our

general setup and evaluate the ensuing constraints from BBN. In section 4 we apply our

general results to a specific model, which features dark matter self-interactions as well as

late kinetic decoupling and has therefore been proposed as a solution to the possible small

scale structure problems mentioned above. In section 5 we summarise our results. Some

technical details of our calculations can be found in appendices A and B.

2 Calculation of nuclear abundances and comparison to observations

For a given particle content in the dark sector, the relevant quantity affecting primordial

nuclear abundances is the corresponding additional energy density ρD(T ) on top of the SM
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contribution ρSM(T ), leading to a modified Hubble rate

H(T ) =

[

8πG

3
(ρSM(T ) + ρD(T ))

]1/2

, (2.1)

whereG is Newton’s constant. An increased Hubble rate during the era of BBNmodifies the

temperature at which neutrons and protons fall out of equilibrium and hence changes the

amount of neutrons available for the formation of helium [3, 17]. In addition the abundances

of heavier nuclei, which are formed at later times, depend on the interplay between the

corresponding reaction rates and H(T ) and are hence also modified by the existence of the

dark sector. We emphasise that for a fully decoupled dark sector as discussed in this work,

the change in the Hubble rate is in fact the only source of non-standard BBN physics, as

by definition none of the particles in the dark sector directly interact with nuclei.

Before discussing the derivation of ρD(T ) for specific setups in sections 3 and 4, let us

now first describe our procedure of calculating primordial nuclear abundances for a given

Hubble rate defined via eq. (2.1). We compute the primordial abundances of H, 2H, 3He,
6Li and 7Li using a modified version of the public AlterBBN code [18] (see also [19]), in

which we replace the standard expression for the Hubble rate by eq. (2.1). The predicted

abundances are then compared to the most recent compilation of observations [2]:

Yp (2.45± 0.04)× 10−1 (2.2)

D/H (2.53± 0.04)× 10−5 (2.3)

(6Li + 7Li)/H (1.6± 0.3)× 10−10 (2.4)
6Li/7Li . 0.05 (2.5)

As is well known there is a discrepancy between the SM prediction of the amount of

lithium and the value inferred from astrophysical observations [20]. While there is a slight

alleviation of this discrepancy for a larger Hubble rate as in our setup, we have confirmed

that when taking into account constraints from other elements, the change in the lithium

abundance is small and does not significantly improve the result compared to the SM

case. As the inference of the primordial lithium abundance suffers from large astrophysical

uncertainties, in particular due to stellar depletion [21], we conservatively only take into

account the limits from helium and deuterium in the following.

It is well known that due to the ever more precise observations of primordial abun-

dances (in particular of deuterium), theoretical errors associated to nuclear reaction rates

have become an important or sometimes even dominant source of systematic uncertainty

of BBN constraints on physics beyond the SM. The ±1σ high and low values of the nuclear

reaction rates are implemented in AlterBBN and we compute the corresponding abundance

ratios Ri, R
+σ
i and R−σ

i . We then define the theoretical error on each abundance ratio via

σthRi = min
i

(∣

∣Ri −R+σ
i

∣

∣ ,
∣

∣Ri −R−σ
i

∣

∣

)

, (2.6)

i.e. in case of asymmetric errors we choose the smaller one as a proxy for a one sigma

Gaussian error1. A given point in parameter space is then considered to be excluded at

1This procedure gives similar results compared to the method developed in [22].
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the n-sigma level if

∆Ri ≡

∣

∣

∣Ri −Robs
i

∣

∣

∣

/

√

(

σthRi

)2
+
(

σobsRi

)2
≥ n (2.7)

for at least one abundance ratio Ri.

For a given exotic energy density, the calculation of the ratios Ri further depends on

the neutron lifetime τn as well as the baryon-to-photon ratio η. In the following we will set

the neutron lifetime to the PDG value of τn = 880 s [1] (we have checked that a variation of

the neutron lifetime within its uncertainties does not appreciably affect our results). The

baryon-to-photon ratio can either be left as a free parameter which is then constrained by

BBN observations themselves, or by using additional information, e.g. by employing the

measurements from the CMB. The first option may give rise to a sizeable range of possible

values for η during BBN, e.g. we obtain ηBBN ∈ [5.9, 6.4] × 10−10 assuming SM physics

(in sufficient agreement with [2]). Employing the most recent CMB measurement fixes

ηCMB = (6.10± 0.04)× 10−10 [23] and therefore leads to more stringent BBN constraints.

It should be kept in mind that, by deriving constraints from BBN using the determination

of the baryon-to-photon ratio from the CMB, one implicitly assumes that η is constant

between TBBN ≃ MeV and TCMB ≃ eV, that is ηBBN = ηCMB. While this is indeed the

case for the scenario of a light mediator coupled to a sterile neutrino discussed later in this

work, this assumption can be violated in other set-ups with entropy production after the

end of BBN. In light of this, we derive two sets of exclusion limits denoted by BBN only

and BBN+ηCMB. In the former case, we vary η and exclude a data point only in case the

criterion (2.7) is fulfilled for all baryon-to-photon ratios. In the latter case, we explicitly

fix η to the central CMB value2 and exclude a data point if the criterion (2.7) is fulfilled

for this particular baryon-to-photon ratio.

As a validation of our procedure to constrain additional energy densities using BBN ob-

servations, we re-derive the standard constraints on the effective number of additional neu-

trinos ∆Neff, corresponding to an additional energy density ρD(T ) ≡ ∆Neff · 2 ·
7
8
π2

30Tν(T )
4,

with Tν(T ) being the temperature of the SM neutrinos as a function of the photon temper-

ature T . At 2σ, 3σ and 5σ, we obtain a BBN+ηCMB upper limit of ∆Neff ≃ 0.31, 0.54, 1.02,

respectively, which is in good agreement with other recent results [2].

3 Generic constraints for a decoupled MeV-scale dark sector particle

3.1 Setup and assumptions

Having defined our procedure of obtaining BBN bounds for a given ρD(T ), we now proceed

to the actual calculation of the exotic energy density in a fairly general setup of a decoupled

MeV-scale particle. More precisely, we consider an extension of the SM by a dark sector

which in particular contains an additional boson φ withmφ ∼ MeV as well as a light particle

N with a mass well below the MeV scale3. For studying generic BBN constraints on such

2The value of η inferred from the CMB is largely independent of the extra energy density [1], so it is a

good approximation to use the value ηCMB inferred under the assumption of SM physics.
3At this point there is no dependence on the quantum numbers of the light state.
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a scenario it is not necessary to specify the complete particle content of the dark sector4;

hence, we will only make the following minimal assumptions regarding its cosmological

history:

• At large temperatures T , the particle φ is in chemical equilibrium within the dark

sector and then decouples at a photon temperature Tcd, corresponding to the tem-

perature TD(Tcd) in the dark sector. This setup could e.g. be realised by coupling φ

to an additional dark matter particle ψ which freezes out via the process ψψ̄ ↔ φφ.

• φ can decay into NN̄ , with the lifetime τφ being a free parameter to be constrained

by BBN observations.

• The visible and hidden sector are fully decoupled, i.e. any couplings of φ and N to

SM states are considered to be sufficiently small.

• If not stated otherwise, we also assume that N never thermalises within the dark

sector, implying in particular a small coupling to φ, corresponding to large lifetimes

τφ. However, we will explicitly abandon this assumption in section 4 where we discuss

the relevance of BBN constraints in the context of a simple model of dark matter

coupled to φ.

With these assumptions, there are four free parameters relevant for the discussion of BBN

constraints: the temperature Tcd of the SM sector at which the particle φ decouples, the

corresponding temperature TD(Tcd) of the dark sector, the mass mφ and the lifetime τφ
of the MeV-scale particle φ. For given values of these parameters, we now outline the

derivation of the energy densities ρφ(T ) and ρN (T ) at T < Tcd, which enter the Hubble

rate H(T ) defined in eq. (2.1) and hence the calculation of the primordial abundances via5

ρD(T ) ≃ ρφ(T ) + ρN (T ).

3.2 Cosmological evolution of the dark sector

After chemical and kinetic6 decoupling of φ from the dark sector heat bath at T = Tcd,

the Boltzmann equation for the phase space density fφ(t, E) [24] rewritten in terms of the

photon temperature T and the momentum of φ p is given by

(

T

1 + ∆∗s(T )

∂

∂T
+ p

∂

∂p

)

fφ(T, p) =
1

τφ

mφ

H(T )
√

m2
φ + p2

fφ(T, p) , (3.1)

4In fact, given that we work with a minimal particle content, the dark sector energy density will be

minimal and our bounds will be correspondingly conservative.
5This is largely independent of the energy density in dark matter, which is typically negligible at the

time of BBN.
6We note that after chemical decoupling φ could still be in kinetic equilibrium with the dark sector

down to Tkd < Tcd, leading to a collision operator Celastic[fφ] appearing on the right hand side of eq. (3.1).

However, we show in appendix A that the impact of Tkd on our results is negligible and consequently we

set Tkd = Tcd in the following discussion.
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with ∆∗s(T ) ≡ T/(3g∗s(T )) · dg∗s(T )/dT and where g∗s(T ) denotes the number of entropy

degrees of freedom of the SM. Furthermore, at chemical decoupling we have

fφ(T = Tcd, p) = f̄φ(T = Tcd, p) ,

with f̄φ(T, p) being the phase space distribution of φ in chemical equilibrium. The solution

of this initial value problem is given by

fφ(T, p)
∣

∣

T<Tcd
=



 exp





√

m2
φ + p2∗(T, Tcd)

TD(Tcd)



− 1





−1

× exp



−
1

τφ

∫ Tcd

T

mφ
√

m2
φ + p2∗(T, λ)

·
1 + ∆∗s(λ)

H(λ)λ
dλ



 (3.2)

with the red-shifted momentum

p2∗(T, λ) ≡ p2 ·

(

g∗s(λ)
1/3λ

g∗s(T )
1/3T

)2

. (3.3)

This form of fφ(T, p) is straightforward to understand: For τφ → ∞, the exponential

term vanishes and the phase-space density simply follows from redshifting all momenta

according to p ∝ 1/R ∝ g∗s(T )
1/3T , as defined in eq. (3.3). For finite τφ, the abundance

of the mediator is exponentially suppressed by a factor ∼ exp(−t/(γeffτφ)), where γeff is

the time-averaged (or equivalently temperature-averaged) Lorentz boost of the mediators.

The energy and number density of φ then follow from

ρφ(T ) =
gφ
2π2

∫

∞

0
dp p2

√

p2 +m2
φ fφ(T, p) , (3.4)

nφ(T ) =
gφ
2π2

∫

∞

0
dp p2 fφ(T, p) , (3.5)

with gφ denoting the number of spin-degrees of freedom of φ. In the following we will

discuss scalar (gφ = 1) as well as massive vector (gφ = 3) fields.

The decrease in ρφ due to the decay of the mediators φ is balanced by the increase of

the energy density of the decay products N , which then also contributes to the expansion

rate of the Universe. If the only production mechanism of N is the decay of the particle φ,

the integrated Boltzmann equation for ρN (i.e. the summed energy density of N and N̄)

takes the form

dρN (T )

dT
− 4

1 + ∆∗s(T )

T
ρN (T ) = −

1 + ∆∗s(T )

H(T )T

mφnφ(T )

τφ
, ρN (T = Tcd) ≃ 0 . (3.6)

Here, the second term on the left-hand side accounts for the decrease of ρN due to the

expansion of the universe (ρN ∝ (g
1/3
∗s T )

4 without φ decay), while the right-hand side

describes the increase of ρN due to the decay of φ, properly taking into account the Lorentz

factor in the decay process. For given nφ(T ), the solution to eq. (3.6) is given by

ρN (T ) =
1

τφ

(

g∗s(T )
1/3T

)4
∫ Tcd

T

mφnφ(λ)
(

g∗s(λ)
1/3λ
)4 ·

1 + ∆∗s(λ)

H(λ)λ
dλ . (3.7)
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Figure 1. Left panel: evolution of the energy densities ρφ and ρN for exemplary choices of mφ,

Tcd, TD(Tcd) and two different lifetimes of the particle φ as a function of the photon temperature

T . For comparison we also show the energy density of the SM sector ρSM. Right panel: tempera-

ture dependence of the equivalent effective number of additional neutrinos ∆Neff(T ) for the same

scenarios. The temperatures relevant to BBN are indicated in grey.

We remark that in accord with eq. (2.1), H(T ) also contains a contribution from

dark sector particles, necessitating an iterative solution of eqs. (3.2) and (3.7). We have

confirmed however that for deviations ofH(T ) relevant to BBN constraints, such a recursive

procedure does not significantly change our results and that it is sufficient to only take into

account the SM contribution to the Hubble parameter in eqs (3.2) and (3.7).

We illustrate the solutions for ρφ(T ) and ρN (T ) for different choices of parameters in

the left panel of Fig. 1. As long as t ≪ τφ and T ≫ mφ the energy density of φ simply

follows the usual scaling behaviour for massless particles, ρφ ∝ R−4 ∝ g∗s(T )
4/3T 4. For

T . mφ, the energy density instead falls off less steeply (ρφ ∝ R−3), leading to a relative

increase of ρφ compared to the massless case. Furthermore, at temperatures corresponding

to t & τφ, the abundance of φ becomes exponentially suppressed and its energy density

is transferred to the massless decay products N , which again scale as ρN ∝ R−4. Hence,

the total energy density ρD(T ) increases with larger mφ and/or τφ and we can already

anticipate that the BBN bounds on such a scenario will be strongest for sufficiently heavy

and long-lived mediators.

In the right panel of Fig. 1, we show for the same set of model parameters the cor-

responding effective number of SM neutrinos which would give rise to the same energy

density,

∆Neff(T ) ≡
ρφ(T ) + ρN (T )

2 · 7
8
π2

30Tν(T )
4
. (3.8)

It can be seen from Fig. 1 that for a decaying MeV-scale mediator ∆Neff(T ) can vary by

more than one order of magnitude during the temperatures relevant to BBN, and the level

of tension between predicted and observed nuclear abundances cannot be directly inferred

by comparing to the corresponding exclusion limits on a constant value of ∆Neff.
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3.3 Resulting bounds from BBN

In this section we present the bounds from BBN on our scenario. As discussed above there

are four relevant parameters, the mediator mass mφ and lifetime τφ as well as the chemical

decoupling temperature Tcd and the corresponding temperature in the dark sector TD(Tcd).

In Fig. 2 we show the resulting bounds from BBN for scalars (left panels) and vectors (right

panels), for different slices of the parameter space. The red regions indicate the 2σ, 3σ and

5σ exclusions, making use of ηBBN = ηCMB. For comparison we also show a 2σ bound for

freely varying η, denoted BBN only, which as expected is somewhat weaker. We further

indicate whether the leading bound is due to the abundance of deuterium (D/H) or helium

(Yp).

The top panels show the dependence on the particle mass mφ and lifetime τφ. For

sufficiently small τφ and mφ, φ decays before BBN and while it is still relativistic. In

that case, the energy density behaves as extra radiation throughout, corresponding to a

constant ∆Neff during BBN. For Tcd = TD(Tcd) = 5GeV, the corresponding value can be

easily obtained from

∆Neff ≃
gφ

2 · 7/8

(

g⋆S(10MeV)

g⋆S(5GeV)

)4/3

≃

{

0.036 for a scalar φ

0.11 for a vector φ
(3.9)

which as expected agrees with our numerical result of ρD(T ) in this region of parameter

space. Clearly, this value of ∆Neff is not excluded by BBN. Note that the resulting ∆Neff

is much smaller than unity largely because of significant entropy production in the SM

sector between freeze out and BBN, increasing the photon temperature T with respect to

the dark sector temperature TD(T ). Towards larger masses and lifetimes the dark sector

energy density increases. The diagonal exclusion lines are essentially determined by the

condition T (t = τφ) ∼ mφ: for values of τφ and/or mφ larger than that, φ decays only

after it has become non-relativistic. It then profits from the R−3 scaling of non-relativistic

matter as opposed to the R−4 scaling of radiation, increasing ρD(T ) towards larger masses

and lifetimes, leading to conflicts with observations. We furthermore observe that the

bounds from BBN become insensitive to the lifetime of φ once τφ is sufficiently large, as in

this limit the particle is practically stable during BBN.

The panels in the second row show the dependence of the BBN bounds on the dark

sector temperature TD(Tcd) and the lifetime τφ. Increasing TD(Tcd) compared to the pho-

ton temperature T obviously increases the energy density in the dark sector, ρD(T ), and

therefore leads to more stringent limits. Again the bounds get stronger for larger lifetimes

when the particle φ becomes non-relativistic prior to its decay.

The bottom panels show the dependence on the chemical decoupling temperature Tcd
and lifetime τφ. It can be seen that the BBN bounds are largely insensitive to Tcd, except

for small temperatures close to the QCD phase transition, where g⋆S drops rapidly and the

dark sector does not cool effectively compared to the SM sector any longer.

Formφ & 10MeV, the decaying particle is non-relativistic for all temperatures relevant

to BBN, a scenario discussed already in [6]. We conclude this section by updating the

exclusion limits given in that work; the main improvement is that we take into account
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Figure 2. BBN bounds for decaying scalar (left panels) and vector (right panels) particles in

different slices of the parameter space. The red regions enclosed by the solid, dashed and dotted

curves correspond to 5σ, 3σ and 2σ bounds under the assumption ηBBN = ηCMB. The dash-dotted

blue curve denotes the 2σ BBN only bound, while the solid green curve indicates which nuclear

abundance is mainly responsible for the exclusion.

the most recent information on the baryon-to-photon ratio from the CMB as well as more

recent input for the nuclear cross sections relevant to BBN. Following [6], we parameterise

the energy density of φ during BBN by r = nφ(T0)/nγ(T0), with T0 = 1012K = 86.2MeV

being an arbitrary reference temperature prior to BBN. In the non-relativistic limit, the

energy density of φ is simply given by ρφ(T ) = mφnφ(T ), which in turn can be obtained

– 9 –
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Figure 3. BBN bounds on non-relativistic decaying particles, valid for mφ & 10MeV. Here, rmφ

parameterises the energy density of φ prior to its decay (see text for details). The black and blue

curves are analogous to Fig. 2, while the solid purple curve shows the bound derived in [6] for

comparison.

from integrating the Boltzmann equation (3.1):

dρφ(T )

dT
− 3

1 + ∆∗s(T )

T
ρφ(T ) =

1 +∆∗s(T )

H(T )T

ρφ(T )

τφ
, ρφ(T0) = rmφ · nγ(T0) . (3.10)

Using nγ(T ) = 2ζ(3)T 3/π2, the solution to eq. (3.10) takes the form

ρφ(T ) = rmφ ·
2ζ(3)

π2
g∗s(T )T

3

g∗s(T0)
exp

(

−
1

τφ

∫ T0

T

1 + ∆∗s(λ)

H(λ)λ
dλ

)

. (3.11)

The energy density ρN (T ) of the decay products N follows from eq. (3.7) by setting

Tcd → ∞ and mφnφ(λ) = ρφ(λ).

We show the resulting upper limits on rmφ as a function of τφ in Fig. 3. It can be seen

that our BBN+ηCMB bound improves significantly over the one presented in [6], up to ≃ 1

order of magnitude in the limit of large lifetimes. Given that mφ & 10MeV for this analysis

to be valid, the plot in particular indicates that the number density of the extra particles

has to be suppressed compared to the one of photons, r ≪ 1, for lifetimes τφ & 1 s. It can

also be seen that our BBN only bound closely follows the exclusion limit of [6]. In fact, our

procedure of taking ηBBN as a free parameter is similar to the approach in [6] undertaken

prior to the precise CMB measurements of the baryon-to-photon ratio. However, let us

remark that the overall agreement between these results is partially accidental: while we

profit from much more precise measurements on the nuclear abundances, in contrast to [6]

we take into account theoretical uncertainties in the nuclear reaction rates as discussed in

section 2, leading again to weaker (but also more realistic) constraints.
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4 Implications for a model with dark matter self-interactions and late

kinetic decoupling

4.1 A model of dark matter coupled to a light mediator

So far, the discussion of BBN bounds on MeV-scale decaying particles was largely model-

independent, relying only on the assumptions specified at the beginning of section 3. In

this section, we now explore the implications of these general constraints on more specific

scenarios. We will be particularly interested in the case that the MeV-scale particle φ

couples to dark matter ψ, naturally leading to sizeable dark matter self-interactions. The

possibility of self-interacting dark matter has attracted an increasing amount of attention

lately, as it may solve some tensions within the collisionless cold dark matter paradigm

at small scales [25]. Due to rather strong constraints on the dark matter self-scattering

cross section in high velocity systems such as galaxy clusters [15, 26–31], a cross section

which increases towards smaller velocities is preferred. Such a velocity dependence is most

easily achieved with a light mediating particle [8–15]. In such a setup the dark matter can

naturally acquire its relic density via thermal freeze out with these mediators, ψψ̄ ↔ φφ.

These mediators on the other hand typically need to decay in order not to dominate the

energy density of the Universe. It has been noted however that if the DM annihilation

into the mediator is s-wave and the mediator decays into SM states, there are very strong

reionisation bounds from the CMB and the parameter space leading to interesting dark

matter self-scattering cross sections is excluded [32, 33]. A possibility to circumvent this

conclusion would be to have the mediator decay into light hidden sector states such as sterile

neutrinos, which do not lead to reionisation.7 Interestingly such a model has been proposed

as a solution to all small scale problems of the ΛCDM cosmology [13], because in addition

to DM self-interactions this model also allows for late kinetic decoupling, which suppresses

structure at small scales and can therefore address the missing satellite problem8.

Following [13] let us discuss an example model featuring a Dirac dark matter particle

ψ coupled to a vector mediator φµ which in turn couples to light sterile neutrinos N while

couplings to the SM are suppressed. We also assume that mixing with active neutrinos is

negligible. The relevant interaction terms are then given by

L = gψψ̄γ
µψφµ + gN N̄γ

µNφµ . (4.1)

Assuming mN ≪ mφ, the vector mediator will then decay into a pair of sterile neutrinos

with decay width

Γφ =
g2N
12π

mφ , implying a lifetime τφ ≃ 2.5 s ·

( gN
10−10

)−2
·

( mφ

MeV

)−1
. (4.2)

7Other possibilities to circumvent this conclusion include a stable mediator which annihilates effi-

ciently [34], freeze-in production [35], or more generally a sufficiently small dark sector temperature [32].

Scalar mediators lead to p-wave suppressed annihilation and are therefore unconstrained by CMB observa-

tions, but may suffer from a tension between direct detection experiments and constraints from BBN [36, 37],

although a comprehensive analysis of BBN constraints remains to be done [38]. Suppressing the scattering

cross section relevant for direct detection allows to have viable models also for scalar mediators [39, 40].
8See however [41] for a recent critical re-evaluation of the missing satellite problem.
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Figure 4. Comparison of the various annihilation rates Γ to the Hubble rate H for a value of gN
corresponding to the small (left panel) and large coupling regime (right panel). In the former case,

N is fully decoupled from the dark sector heat bath for all temperatures T , while in the latter case

N is in chemical equilibrium with the dark sector during dark matter freeze-out.

Throughout the rest of this work, we will fix the coupling gψ of dark matter to the mediator

by the requirement of reproducing the observed relic density (Ωh2)DM ≃ 0.12 via the

freeze-out processes ψψ̄ ↔ φφ and (for sizeable values of gN ) ψψ̄ ↔ NN̄ . Besides mψ,

mφ and gN , the value of gψ leading to the correct relic density depends on the initial

temperature ratio of the dark sector and the SM heat bath, which we denote as (TD/T )∞.

It is plausible to assume that at high energy scales additional interactions brought both

sectors into thermal contact, corresponding to the choice (TD/T )∞ = 1. While this indeed

will be our benchmark assumption, we will also discuss to what extent our results change

when allowing for different values of the initial temperature ratio. To proceed, we first

determine the dark sector temperature TD(T ) as a function of the photon temperature

T by demanding separate entropy conservation in the dark and visible sector, and then

employ the semi-analytical approach for hidden sector freeze-out presented in [42]9.

The cosmological evolution of the dark sector mainly depends on the coupling gN .

If it is small enough, the reaction rates for the annihilation processes ψψ̄ ↔ NN̄ and

φφ ↔ NN̄ are smaller than the Hubble rate for all relevant temperatures, implying that

N never thermalises with the other states in the dark sector. On the other hand, if gN
is sufficiently large, the process φφ ↔ NN̄ can lead to equilibration of φ and N even

after the freeze-out of dark matter, until T . mφ. Both scenarios are illustrated in Fig. 4

by comparing the relevant interaction rates Γ to the Hubble rate H(T ). In the following

section, we will separately discuss the calculation of ρφ(T ) and ρN (T ) in these two different

regimes of the coupling strength gN .

4.2 Cosmological evolution of the energy densities in the dark sector

Let us start the discussion with the case of sufficiently small couplings gN , corresponding to

the case illustrated in the left panel of Fig. 4. More precisely, we define this small coupling

regime by the requirement that Γφφ↔NN̄ (T ) < H(T ) and Γψψ̄↔NN̄ (T ) < H(T ) for all

temperatures T . In that case, the thermal history of the dark sector can be summarised as

9Notice that in eq. (34) of [42], ξ3/2 should be replaced by ξ5/2.
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Figure 5. Temperature dependence of TD(T )/T in the large coupling regime for exemplary choices

of mψ and mφ, fixing (TD/T )∞ = 1. As indicated in the plot, the disappearance of particles from

the SM heat bath leads to a decrease of TD(T )/T , which is most notable during the QCD phase

transition. Similarly, the annihilations of ψ and φ heat up the dark sector relative to the photons,

leading to a slight increase of TD(T )/T at the corresponding temperatures.

follows: both dark matter and the mediator φ freeze out via ψψ̄ ↔ φφ at a temperature Tcd
corresponding roughly to TD(Tcd) ≃ mψ/25

10. At temperatures T < Tcd, the decoupled

mediator φ is only subject to the standard redshift evolution, until it decays efficiently into

NN̄ at times t & τφ. This situation corresponds precisely to the general setup discussed in

detail in section 3, which we then employ for obtaining the evolution of the energy densities

ρφ(T ) and ρN (T ).

In this discussion, we have implicitly assumed that the initial abundance of sterile neu-

trinos N prior to the decay of φ is negligible. However, there is one guaranteed additional

source of production of N , given by the freeze-in of sterile neutrinos via ψψ̄ → NN̄ . While

this contribution is only relevant for a rather narrow range of gN within the small coupling

regime, we nevertheless take it into account in our numerical computations. Details of the

freeze-in calculation can be found in appendix B.

Let us now turn to the case of sufficiently large couplings gN , illustrated in the right

panel of Fig. 4. This large coupling regime is defined by the requirement that φ and N are

in thermal equilibrium during the freeze-out of dark matter; more precisely, we demand

Γφφ↔NN̄ (Tref) > H(Tref) for Tref ≃ 3mψ/(TD/T )∞. As Γφφ↔NN̄ (T )/H(T ) is increasing

towards smaller values of T , this condition ensures chemical equilibrium in the dark sector

throughout the dark matter freeze-out process. As in the case of small couplings gN ,

the dark matter particle freezes out at TD(Tcd) ≃ mψ/25, however now the mediator

φ and the sterile neutrino N still follow an equilibrium distribution at T < Tcd with

a temperature TD(T ) determined by entropy conservation in the dark sector. Finally,

at temperatures T corresponding to TD(T ) . mφ, the equilibrium abundance of φ gets

10As outlined in the previous section, for our numerical calculation we use more precise estimates for the

freeze-out temperature following [42].
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exponentially suppressed and also the annihilation φφ ↔ NN̄ falls out of equilibrium.

We define the corresponding freeze-out temperature T φcd via Γφφ↔NN̄ (TD(T
φ
cd)) = H(T φcd),

where the Hubble rate H(T ) includes both the SM and dark sector energy densities, again

properly taking into account the different temperatures of the two sectors. In Fig. 5, we

show the evolution of TD(T )/T for some exemplary choices of mψ and mφ. Importantly,

for (TD/T )∞ = 1 the temperature ratio during BBN is typically ≃ 0.5− 0.7, leading to a

suppression of the additional energy density by roughly one order of magnitude compared

to a scenario in which the temperature ratio is ≃ 1 for T ≃ TBBN.

For the calculation of BBN constraints in the large coupling regime we need to de-

termine the energy densities of φ and N at T ≃ 0.01 − 10MeV, which, depending on the

mediator mass and the dark sector temperature ratio, can be either below or above T φcd.

For T > T φcd, the energy densities are simply given by the equilibrium values at the given

dark sector temperature TD(T ). When the conversion of φ and N becomes ineffective at

T φcd, φ can decay efficiently into a pair of sterile neutrinos as the inverse reactions are no

longer active. For couplings gN large enough to actually allow for initial equilibration of

N , the lifetime of φ is significantly shorter than t(T φcd); it is therefore an excellent approxi-

mation to assume that all mediators present at T = T φcd instantaneously decay into sterile

neutrinos. Taking into account the redshift of the freely propagating sterile neutrinos for

T < T φcd we thus finally arrive at

ρD(T ) = ρφ(T ) + ρN (T ) ≃



























ρ̄φ(TD(T )) + ρ̄N (TD(T )) for T > T φcd
(

ρ̄φ(TD(T
φ
cd)) + ρ̄N (TD(T

φ
cd))

)

×

(

g∗s(T )

g∗s(T
φ
cd)

)4/3(

T

Tφcd

)4

for T < T φcd

. (4.3)

The BBN bounds are driven by the amount of extra energy density in the dark sector,

which will depend on the coupling gN . For large values of gN , sterile neutrinos are present

in significant amounts in addition to the energy density of φ, whereas for very small gN ,

φ becomes non-relativistic before its decay which also increases the dark energy density

relative to the visible sector. Consequently, we expect strong bounds from BBN for both

very large and very small gN , while intermediate coupling strengths will be somewhat less

constrained. We will confirm this expectation quantitatively in the following section.

4.3 Resulting bounds from BBN

Following the discussion in section 2, we now compare the calculated nuclear abundances

for a given additional energy density ρD(T ) to the observed values to determine which

parts of the parameter space of the model discussed in this section are excluded by BBN at

a given confidence level. The results are shown in Fig. 6 in various slices of the parameter

space. In each case the vertical axis corresponds to the coupling gN of the vector mediator

to sterile neutrinos, which for a given value of mφ is in one-to-one correspondence to the

lifetime τφ used in the analogous panels in Fig. 2 (cf. eq. (4.2)).

In each of the panels of Fig. 6, the grey shaded region (I) separates the large and

small coupling regimes as defined in the previous section: for sufficiently large values
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Figure 6. BBN bounds on the model of dark matter interacting with a light vector mediator as

defined in eq. (4.1), for different slices in the parameter space. As in Fig. 2, the red regions enclosed

by the black solid, dashed and dotted curves correspond to the parts of parameter space excluded

by BBN observations at 5σ, 3σ and 2σ, fixing ηBBN = ηCMB. The grey shaded regions labelled

with I and II correspond to values of gN fulfilling neither the definition of the large nor of the small

coupling regime and hence require a dedicated analysis of the multiparticle Boltzmann equation

(see text for details). The black dash-dotted curves indicate contours of fixed lifetimes τφ = 10−12 s

and 104 s of the mediator φ.

of gN (typically gN & 10−4), the sterile neutrino is in chemical equilibrium during DM

freeze out, while for much smaller values it never thermalises within the dark sector. The

intermediate values of gN corresponding to region (I) indicate the range of parameters

which neither corresponds to the small nor to the large coupling regime: in this case, the

interaction between φ and N is not efficient enough to bring the sterile neutrinos into

equilibrium for all temperatures relevant to the dark matter freeze-out process, but it is

nevertheless sufficiently large such that ψψ̄ ↔ NN̄ leads to equilibration of N at least for

some temperatures. This part of the parameter space thus corresponds to the transition

between the freeze-in and freeze-out of N , and a detailed discussion is beyond the scope

of this work. Furthermore, in Fig. 6 we do not consider the region of parameter space

corresponding to
〈

Γφ→NN̄

〉

(Tcd)/H(Tcd) . 0.1, labeled by (II). In this case, the mediator

φ decays already before the decoupling of the dark matter particle; as for those ranges

of parameters φ is not in thermal contact with any other particle of the dark sector, the

abundance of the (decaying) particle φ does not follow an equilibrium distribution and

hence one cannot apply the standard freeze-out calculation. We leave a closer inspection
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of those regions of the parameter space for future work.

The BBN bounds in the small coupling regime in each panel of Fig. 6 directly map

onto the general results presented in section 3. More precisely, a given dark matter mass

mψ and an initial temperature ratio (TD/T )∞ correspond to exactly one pair of decoupling

temperatures Tcd and TD(Tcd), and vice versa. Hence, the dependence of the bounds in this

part of the parameter space on the various model parameters can be directly understood

from the discussion in section 3.3. In particular, BBN poses very stringent constraints once

the temperature ratio of the dark and visible sector is sufficiently large, or if the mediator

becomes non-relativistic prior to its decay at small gN and large mφ.

For values of gN above the grey bands in Fig. 6, i.e. in the large coupling regime,

the additional energy density associated to the thermalised sterile neutrinos N leads to

somewhat stronger constraints from BBN compared to intermediate coupling strenghts. In

particular, for an initial temperature ratio (TD/T )∞ = 1, all of the large coupling regime

is in tension with BBN observations at ∼ 2σ or more.

Lastly, let us discuss the impact of the freeze-in process ψψ̄ → NN̄ on the bounds

shown in Fig. 6. This production mechanism is only relevant for the largest values of

gN within the small coupling regime: in this case, the rate of production of N is still

too small in order to allow for equilibration, but already large enough such that it leads

to a population of sterile neutrinos which is comparable to the thermal abundance of φ.

This is clearly visible in all panels of Fig. 6: the bounds from BBN get stronger for gN
slightly below the intermediate region (I). In fact, the right upper panel suggests a smooth

transition between the small and large coupling regimes once the freeze-in contribution is

taken into account. It is hence reasonable to assume that the BBN bounds in this part of

parameter space approximately interpolate between the two different regimes; nevertheless,

we conservatively mask out these ranges of parameters in our analysis.

4.4 Confronting self-interactions and late kinetic decoupling with BBN bounds

As already mentioned previously, the model of dark matter coupled via an MeV-scale vector

mediator to sterile neutrinos naturally leads to strong self-interactions of dark matter.

We show in Fig. 7 the regions of parameter space spanned by mφ and mψ leading to a

momentum transfer cross section σT /mψ of 0.1−1 cm2/g (light blue band) and 1−10 cm2/g

(dark blue band) at dwarf scales, i.e. v ≃ 30 km/s. Here we have set the initial temperature

ratio (TD/T )∞ = 1, and again fixed gψ by the requirement of correctly reproducing the

observed amount of dark matter via thermal freeze-out11. We then superimpose the 2σ

bounds from BBN for fixed values of the lifetime τφ, concretely for τφ = 10−4, 1 and 104 s in

the left panel and for τφ = 10−8 and 10−12 s in the right panel. Clearly, depending on the

lifetime of the mediator (or equivalently the coupling gN ) BBN may or may not exclude

values of the dark matter and mediator mass leading to the desired self interaction cross

section. Furthermore, increasing (decreasing) the initial temperature ratio of the dark and

11In the calculation of σT /mψ we follow [40]; in particular, we fully take into account quantum indistin-

guishability in the scattering process and consequently adopt the definition of σT involving an integration

over dσ/dΩ weighted by 1− |cos θ|.
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Figure 7. 2σ exclusion limits from BBN in the parameter space spanned by mφ and mψ, for

various lifetimes τφ and an initial temperature ratio (TD/T )∞ = 1. In addition we show the regions

in parameter space for which the DM self scattering cross section σT /mψ is in the range 0.1 − 10

cm2/g, as required by solving the small-scale problems of standard cold dark matter. For better

visibility we show large lifetimes in the left panel and small lifetimes in the right panel.

visible sector would significantly strengthen (weaken) the bounds from BBN on this model

of self-interacting dark matter, as can be seen e.g. from the right upper panel in Fig. 6.

Finally, in Fig. 8 we confront the regions of parameter space leading to the desired

cutoff in the power spectrum of matter density perturbations with the bounds from BBN.

In the model discussed in this work, dark matter remains in kinetic equilibrium via the

scattering process ψN ↔ ψN , as discussed in more detail in e.g. [43–45]. This process falls

out of equilibrium at a photon temperature [43]

Tψkd ≃
62 eV

(gψgN )1/2
·

(

Tψkd

TD(T
ψ
kd)

)3/2

·

( mψ

TeV

)1/4
·
mφ

MeV
, (4.4)

leading to a cutoffMcut in the power spectrum of matter density perturbations given by [43]

Mcut ≃ 1.7 · 108M⊙ ·

(

Tψkd
keV

)−3

. (4.5)

The grey region in Fig. 8 then corresponds to the model parameters leading to interesting

cutoff masses [43] 109M⊙ . Mcut . 5 · 1010M⊙. As apparent from the plot, there is a

∼ 2σ tension between this solution of the missing satellite problem and the bounds on the

resulting extra energy density from BBN 12.

12Notice that even in the large coupling regime ∆Neff(T ) has a non-trivial time dependence during BBN

(provided that mφ ∼ TBBN), even though it is typically less pronounced than for the example shown in

the right panel of Fig. 1. We fully take this into account in our derivation of the BBN bounds. Let us

also mention that for mediator masses mφ . 10−5 MeV the bound from BBN stays constant at the level of

≃ 2σ; however, this region of parameter space is anyway excluded for all relevant dark matter masses by

giving rise to too large self-interaction cross sections (cf. Fig. 7), and is hence omitted from the plot.
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Figure 8. BBN bounds in the part of parameter space potentially solving the missing satellite

problem via late kinetic decoupling of dark matter, choosing for definiteness mψ = 2TeV and

(TD/T )∞ = 1. The grey shaded region enclosed by the black solid curves corresponds to kinetic

decoupling temperatures Tkd leading to a small-scale cutoff Mcut in the power spectrum of matter

density perturbations which is in the right range in order to solve the missing satellite problem.

In Fig. 8, we have fixed the dark matter mass to mψ = 2TeV and the initial tem-

perature ratio (TD/T )∞ = 1, so let us briefly discuss the impact of those choices on our

conclusions. First, as shown in the lower panel of Fig. 6, the bounds from BBN are largely

independent of the dark matter mass as long as mψ & 20 ·ΛQCD ≃ 5GeV. As shown in [43]

(see in particular Fig. 2 therein), also the region in parameter space corresponding to the

interesting range for Mcut is rather insensitive to mψ. Consequently, the level of tension

of BBN with this solution of the missing satellite problem does not strongly vary with the

dark matter mass. On the other hand, we have discussed several times that the bounds

from BBN are significantly weakened for a smaller initial temperature ratio (TD/T )∞. In

that case also the region in parameter space leading to 109M⊙ .Mcut . 5 · 1010M⊙ would

shift to smaller values of mφ (cf. eqs. (4.4) and (4.5)), but as the bound from BBN is

not very sensitive to the mediator mass in the large coupling regime, the overall tension of

BBN with the explanation of the missing satellite problem within this model is significantly

reduced for (TD/T )∞ sufficiently smaller than one.

5 Conclusions

The remarkable agreement between the observed primordial abundances of light nuclei

and the predictions based on the Standard Model particle content puts severe constraints

on any additional energy density present at TBBN ≃ (0.01 − 10)MeV. This applies in

particular to a fully decoupled dark sector, i.e. a collection of particles which have no (or

highly suppressed) non-gravitational interactions with particles of the Standard Model.
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Such scenarios are notoriously difficult to constrain using laboratory experiments, so that

cosmological probes such as BBN remain the only hope to either constrain or give evidence

for models of this type.

This idea has been explored extensively in the two limits of a decaying particle which is

either non- or ultra-relativistic during BBN. Motivated by dark matter scenarios involving

a MeV-scale mediator φ (i.e. mφ ≃ TBBN), in the first part of this work we close this gap by

performing a largely model-independent study of BBN bounds on a particle with a mass

in the MeV range decaying into other light states of the dark sector. To this end, we first

study in detail the cosmological evolution of the energy densities in the dark sector fully

taking into account the finite mass of φ. We find that the corresponding ∆Neff(T ) can in

general have a strong temperature dependence during BBN, thus not allowing for a simple

comparison with a bound based on a constant number of additional neutrinos. Instead,

we employ the public code AlterBBN in order to derive the abundances of light elements

point-by-point in the parameter space spanned by the particle mass, lifetime and chemical

decoupling temperature, as well as the ratio of the temperatures in the dark and visible

sector. We then compare those to the latest measurements of primordial abundances.

Taking into account both the observational errors as well as systematic uncertainties on

the nuclear cross sections we explore which part of the parameter space is excluded by

BBN at a given confidence level.

Our results imply strong bounds from BBN on such dark sector scenarios, provided

that (1) the temperature ratio of the dark and visible sector is of order unity or larger,

and/or (2) the particle φ is non-relativistic for a sufficiently long time before it decays,

and thus has an increased energy density compared to the (radiation dominated) Standard

Model contribution. We refer to Fig. 2 for a more detailed summary of our results in

various slices of the parameter space. As a limiting case of our approach, we furthermore

update and improve the bounds on fully non-relativistic particles decaying into dark sector

states as presented in [6].

In the second part of this work, we apply our general discussion of BBN bounds to a

specific model involving a dark matter candidate ψ interacting with light fermionic states

N via a vector mediator φµ with a mass in the MeV range. Such a setup generically leads to

a significant self-interaction cross section of dark matter as well as late kinetic decoupling,

leading to a cutoff in the power spectrum of matter density fluctuations. It has therefore

been proposed as a solution to all small scale structure problems of the collisionless cold

dark matter paradigm on small scales, including the missing satellite problem. Carefully

taking into account the cosmological evolution of the dark sector in different regimes of

the coupling strength we derive bounds on the model from BBN observations. We find

viable regions in parameter space which lead to the relevant dark matter self-interactions,

while regions which address the missing satellite problem with a cutoff in the matter power

spectrum are in ∼ 2σ tension with BBN.
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A Impact of kinetic decoupling

In section 3 we have assumed that after chemical decoupling φ is also kinetically decoupled

from the dark sector heat bath, i.e. Tcd = Tkd. The actual value of Tkd is model-dependent;

however, we show in this appendix that it is largely irrelevant for the temperature evolution

of the energy density ρφ and hence for the constraints imposed on the scenario by BBN.

After chemical decoupling the Boltzmann equation for φ in general is given by

H(T )
√

m2
φ + p2

(

T

1 + ∆∗s(T )

∂

∂T
+ p

∂

∂p

)

fφ(T, p) =
mφ

τφ
fφ(T, p)− Celastic[fφ] (A.1)

with Celastic[fφ] being the collision operator associated to any elastic (i.e. not number-

changing) scattering process of φ. As long as the bosonic mediator is in kinetic equilibrium

with a heat bath of temperature TD(T ), its phase space density is given by

fφ(E, T )
∣

∣

T>T (kd) =

[

exp

(

E − µφ(T )

TD(T )

)

− 1

]−1

. (A.2)

Consequently, calculating fφ(E, T ) is equivalent to finding the two unknown functions

µφ(T ) and TD(T ). For simplicity, let us consider the case of a stable mediator, i.e. in the

following we take the limit τφ → ∞. Integrating eq. (A.2) over all momenta and using
∫

d3pE−1Celastic[fφ] = 0 [24], we recover particle conservation in the form

dnφ(T )

dT
− 3

1 + ∆∗s(T )

T
nφ(T ) = 0 . (A.3)

Moreover, entropy conservation (in case of a stable mediator) in the dark sector implies

0 = TDdS = d(R3̺φ) + pφdR
3 − µφ(R

3nφ) , (A.4)

leading to
d̺φ(T )

dT
− 3

1 + ∆∗s(T )

T
(̺φ(T ) + pφ(T )) = 0 . (A.5)

Eqs. (A.3) and (A.5) form a set of integro-differential equations for the two functions

µ(T ) and TD(T ) which we solve numerically using the initial conditions µ(Tcd) = 0 and

TD(Tcd) = TD,cd.

We illustrate the impact of Tkd on our results in Fig. 9. Here we show the temperature

evolution of ρφ(T ) for the example case of mφ = 100MeV, Tcd = 10GeV, TD(Tcd) =

5GeV. The black solid curve shows ρφ(T ) following from the formalism in section 3 under

the assumption that Tkd = Tcd, i.e. that all of the evolution after chemical decoupling
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Figure 9. Left panel: evolution of ρφ(T ) for two different choices of the kinetic decoupling temper-

ature Tkd (see text for details). Here we assume mφ = 100MeV, Tcd = 10GeV, TD(Tcd) = 5GeV

as well as a stable mediator. Right panel: relative difference of ρφ(T ) when assuming Tkd → 0 and

Tkd → ∞.

simply follows from red-shifting the momenta. On the other hand, the red dashed curve

corresponds to the other extreme where Tkd → 0, i.e. the mediator remains in kinetic

equilibrium for all temperatures of interest. The right panel in the same figure shows the

relative difference of the two energy densities. It follows that both for T ≫ mφ and T ≪ mφ

both assumptions lead to the same ρφ(T ), and that for T ∼ mφ the difference between the

two energy densities is below 1%.

This can be understood as follows: if Tkd = Tcd, all the evolution of the phase space

density of φ follows from redshifting the momenta according to p ∝ 1/R. For T ≫ mφ,

where φ is essentially massless, this simply amounts to set TD ∝ 1/R and µφ = 0. On the

other hand, if φ is in kinetic equilibrium during T ≫ mφ, the requirement that nφ ∝ 1/R3

and sφ ∝ 1/R3 leads to the same behaviour of TD and µφ, and thus to the same energy

density ρφ(T ). Moreover, for T ≪ mφ the energy density of the mediators is simply

given by ρφ(T ) ≃ mφnφ(T ), where nφ ∝ 1/R3 is fixed by particle-number conservation.

Hence, also in this regime the energy density of φ is independent of the kinetic decoupling

temperature.

Consequently, Tkd can only affect the evolution of ρφ(T ) in the semi-relativistic regime

where T ∼ mφ. Indeed, it is well-known that redshifting a thermal distribution of semi-

relativistic particles in general does not lead to a thermal distribution at later tempera-

tures [24], explaining the difference between the two cases considered in Fig. 9. However,

we find that for essentially all choices of parameters the difference in the regime T ∼ mφ is

below the percent level (see right panel of Fig. 9). Hence, we can safely neglect the impact

of Tkd on our BBN constraints, justifying our procedure to set Tkd = Tcd.

B Freeze-in of the sterile neutrinos

In this appendix we provide the details of our derivation of the abundance of sterile neu-

trinos N resulting from the freeze-in process ψψ̄ → NN̄ . For all parameters of interest in

this work, the freeze-in of N concludes before the freeze-out of φ and ψ at approximately
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TD ∼ mψ/10, i.e. long before the decay of the mediator. Hence, the mutual influence of

freeze-in and decay is negligible, implying that it is possible to write down an independent

Boltzmann equation for the freeze-in process given by

dρN (T )

dT
− 4

1 + ∆∗s(T )

T
ρN (T ) = −

1 + ∆∗s(T )

H(T )T

[〈

Eψψ̄σvMøl

〉

n̄2ψ
]

(TD(T )) , (B.1)

with ρN (T → ∞) = 0 and the thermal average [46]

[〈

Eψψ̄σvMøl

〉

n̄2ψ
]

(TD(T )) =
∫

2 d3p1
(2π)3

2 d3p2
(2π)3

(E1 + E2)
σψψ̄→NN̄F

E1E2
f̄ψ(TD(T ), p1)f̄ψ̄(TD(T ), p2) ,

(B.2)

where we defined Eψψ̄ ≡ E1+E2 and σvMøl = σψψ̄→NN̄F/E1E2. The solution to eq. (B.1)

is given by

ρN (T ) =
[

g∗s(T )
1/3T

]4
∫

∞

T

1
[

g∗s(λ)
1/3λ
]4 ·

[〈

Eψψ̄σvMøl

〉

n̄2ψ
]

(TD(λ)) ·
1 + ∆∗s(λ)

H(λ)λ
dλ .

(B.3)

As usual, TD(T ) follows from entropy conservation in the dark sector, while the product

of the cross section and the flux factor F is given by

σψψ̄→NN̄F =
g2ψg

2
N

12π

s+ 2m2
ψ

2s
. (B.4)
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