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Abstract 
RNA-seq analysis involves multiple steps, from processing raw 
sequencing data to identifying, organizing, annotating, and reporting 
differentially expressed genes. bcbio is an open source, community-
maintained framework providing automated and scalable RNA-seq 
methods for identifying gene abundance counts. We have developed 
bcbioRNASeq, a Bioconductor package that provides ready-to-render 
templates, objects and wrapper functions to post-process bcbio RNA 
sequencing output data. bcbioRNASeq helps automate the generation 
of high-level RNA-seq reports, facilitating the quality control analyses, 
identification of differentially expressed genes and functional 
enrichment analyses.
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Introduction
RNA sequencing (RNA-seq) analysis seeks to identify differential expression among groups of samples, provid-

ing insights into the underlying biology of a system under study1. Automating a full analysis from raw sequence 

data to functionally annotated gene results requires the coordination of multiple steps and tools. From the first data  

processing steps to quantify gene expression, to the data quality checks necessary for identification of differen-

tially expressed genes2 and functionally enriched categories, RNA-seq analysis involves the repetition of commands  

using various tools. This is done on a per-sample basis, and each step can require varying degrees of user inter-

vention. As a bioinformatics core facility that processes a large number of RNA-seq datasets, we have developed a  

Bioconductor (BioC)3 package called bcbioRNASeq to aggregate the outputs of tools for RNA-seq quality  

control (QC), differential expression and functional enrichment analysis as much as possible, while still retaining  

full, flexible control of critical parameters.

This package relies on the output of bcbio, a Python framework that implements best-practice pipelines for fully  

automated high-throughput sequencing analysis (including RNA-seq, variant discovery, and ChIP-seq). bcbio is a  

community driven resource that handles the data processing component of sequencing analysis, providing research-

ers with more time to focus on the downstream biology. For RNA-seq data, bcbio generates QC and gene abundance 

information compatible with multiple downstream BioC packages. We briefly describe some of the tools included 

in the bcbio RNA-seq pipeline to help our users understand the outputs of bcbio that are used in the bcbioRNASeq  

package.

To ensure that the library generation and sequencing quality are suitable for further analysis, tools like FastQC4  

examine the raw reads for quality issues. Cutadapt5 can optionally be used to trim reads for adapter sequences,  

along with other contaminant sequences such as polyA tails and low quality sequences with PHRED6,7 quality scores 

less than five. Salmon8 generates abundance estimates for known splice isoforms. In parallel, STAR9 aligns the  

reads to the specified reference genome, and featureCounts10 generates counts associated with known genes. 

bcbio assesses the complexity and quality of the RNA-seq data by quantifying ribosomal RNA (rRNA) content 

and the genomic context of alignments in known transcripts and introns using a combination of custom tools and  

Qualimap11. Finally, MultiQC12 generates an interactive HTML report in which the metrics from all tools used  

during the analysis are combined into a single dynamic file. bcbio handles these first stages of RNA-seq data process-

ing with little user intervention.

The next stages of an RNA-seq analysis include assessing read and alignment qualities, identifying outlier  

samples, clustering samples, assessing model fit, choosing cutoffs and finally, identifying differentially expressed 

genes. These steps often occur in multiple iterations, and require more active analyst involvement to integrate  

multiple tools that accept input data with incompatible formats and properties (see Use Case section). For example, 

      Amendments from Version 1

The new version of the article contains the following updates:

•    We have added a new figure (Figure 1) to describe in more detail the structure of the object the package uses. It 

has been adapted from the RangedSummarizeExperiment object and shows where the different count data and 

metadata are stored.

•    We have updated the package to use the GRanges structure to store the genomic position of genes. This should 

help to integrate gene expression with epigenetic information, such as ChIP-Seq data, when trying to find 

features close to genes using the already available methods for Granges object.

•    We have updated the name of some functions to match the Bioconductor style.

•    We have added a new section at the end, “Functional Analysis” that describes the first steps for functional 

analysis after using the two other templates the package generates (quality control and differential expression). 

This section focuses on how to work with the data generated from the other templates to complete a functional 

analysis. We have focused only on the first few steps as the functional analysis follows published workflows.

•    All figures and code lines have been updated to match the version of the package.

•    We have added a discussion section after the quality control section to give examples of possible interpretations 

of the figures the package produces. The intention is to provide guidelines to the user on how to act accordingly 

based on the information generated in the figures.

•    We have added a link to the session info from the computer used to run the code shown in the article.

See referee reports

REVISED
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the featureCounts gene counts from STAR-based alignments (a simple matrix) are useful for quality control,  

providing many more quality metrics than the quasi-alignments from Salmon. However, the quasi-alignments from 

Salmon (which are imported by tximport into a list of matrices) have been shown to be more accurate when testing 

for differential gene expression13,14. Managing these disparate data types and tools can make analyses unnecessarily  

time consuming, and increases the risk of inconsistency between analyses. Given the complexity of the analysis, it is 

essential to report the final parameters and associated results in a cohesive, reproducible manner.

bcbioRNASeq was developed to address these issues and ease the process of documentation and report generation.  

The package offers multiple R Markdown templates that are ready-to-render after configuration of a few parame-

ters and include example text and code for quality control metrics, differential expression, and functional enrichment  

analyses. Although other packages have been developed to solve similar issues, bcbioRNASeq allows for tight  

integration with the bcbio framework, and provides a unified package with objects, functions and pre-made templates 

for fast and simple RNA-seq analysis and reporting.

Methods
Reading data
As noted, bcbio runs a number of tools to generate QC metrics and compute gene counts from RNA-seq data.  

Additional information about the bcbio RNA-seq pipeline is available on readthedocs). At the end of a bcbio run, 

the most important files are stored in a separate directory specified by the user in the bcbio configuration YAML file  

under the “upload:” parameter; this directory is named “final” by default. Within this directory, there is a dated  

project directory containing quality metrics, provenance information, and data derived from the analysis that have 

been aggregated across all samples, e.g. count files. In addition, there is a directory corresponding to each sample that 

contains the binary alignment map (BAM) files and Salmon count data for that sample.

final/

    2018-01-01_illumina_rnaseq/

        annotated_combined.counts

        bcbio-nextgen-commands.log

        bcbio-nextgen.log

        combined.counts

        combined.dexseq

        combined.dexseq.ann

        data_versions.csv

        multiqc/

        programs.txt

        project-summary.yaml

        tx2gene.csv

    sample1/

        qc/

        salmon/

        sample1-ready.bam

        sample1-ready.bam.bai

        sample1-ready.counts

        sample1-transcriptome.bam

The final upload directory generated by bcbio is used as the input for bcbioRNASeq. Once the bcbio run is 

complete, you can open an R session and load the bcbioRNASeq package (source code is available at our GitHub  

repository). Use the bcbioRNASeq() constructor function (see example below) to create a structured  

S4 object that contains all of the necessary information for downstream analysis. The only required argument when 

creating this object is uploadDir, which specifies the path to the bcbio final upload directory. Note that  

bcbioRNASeq will transform all sample metadata column names to lowerCamelCase format without spaces, dashes, 

periods or underscores; therefore the interestingGroups argument should be specified in the same format. The 

values that can be used for interestingGroups are the same as the column names found in the CSV file used 

to bcbio_nextgen.py. Additionally, specifying the organism of the dataset is strongly recommended, and 

must use the full Latin name (e.g. Mus musculus); this enables automatic downloading of gene annotations from  

Ensembl. Once the S4 object is assigned, use the saveData() function to write the dataset to disk as an R Data 

file. Note that the following code block does not need to be run to reproduce the figures in this paper; its purpose is 

to describe how to load the data from a bcbio analysis into R using this package, facilitating use of the downstream 

functions.
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# Non-working example demonstrating how to load a bcbio run.

# Load the pre-saved object instead (See use case below).

library(bcbioRNASeq)

bcb <- bcbioRNASeq(

    uploadDir = file.path("gse65267", "final"),

    organism = "Mus musculus",

    interestingGroups = "day"

)

saveData(bcb)

This S4 object is unique to the bcbioRNASeq package, as it contains all of the necessary data from the bcbio 

run required for analysis. From here, you can use various functions in bcbioRNASeq to perform analyses, make  

figures, and generate data tables and results files as we describe in later sections. This object is also used as the input  

for the R Markdown templates for report generation. First, we begin by describing the object in more detail.

Object description
We have designed a new S4 class named bcbioRNASeq (Figure 1) that is an extension of RangedSumma-

rizedExperiment15. The assays() slot contains Salmon quasi-alignment data imported with tximport13, and  

automatically generated DESeq216 count transformations that provide support for quality control plots. To see all  

Figure 1. bcbioRNASeq S4 object structure. The bcbioRNASeq object is an S4 class extension of the 
RangedSummarizedExperiment container. The assays slot contains several matrices with sample IDs as column 
names and gene IDs as row names, including raw counts and various derivations of the raw counts, and can be 
accessed via the assays() function. Gene IDs tie these assays to additional information about the genes stored as a 
GRanges object, and can be accessed via the rowRanges() function. Similarly, sample IDs tie the assays to further 
sample information such as run metrics from bcbio and experimental factors also stored as a DataFrame, and can 
be accessed via the colData() function. Non-gene or sample specific metadata about the entire run such as tool 
versions and genome builds is stored as a list and can be accessed via the metadata() function.
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available assays in the bcbioRNASeq object listed by name, use assayNames(bcb). These matrices are  

described in more detail below:

• @assays: ShallowSimpleListAssays containing count matrices derived from Salmon quasi-

aligned counts imported with tximport and processed with DESeq2. Accessible with assays().

–    counts: raw counts, generated by salmon and imported with tximport. Also accessible with 

assay().

–   tpm: transcripts per million (TPM), calculated by tximport.

–   length: gene length matrix, calculated by tximport.

–   normalized: Normalized counts, with DESeq2 sizeFactors applied.

–   rlog: regularized log transformation, calculated by DESeq2.

–   vst: variance stabilizing transformation, calculated by DESeq2.

• @rowRanges: GRanges describing the rows (genes) of the count matrices slotted in assays(). 
When organism is specified in the bcbioRNASeq() function call, gene annotations will be down-

loaded from Ensembl using AnnotationHub and ensembldb. Accessible with rowRanges() and/or  

rowData(), which returns a DataFrame() instead of GRanges.

• @colData: DataFrame describing the columns (samples) of the count matrices slotted in assays(). 

Also contains sample quality metrics from bcbio analysis, generated from aligned counts produced by STAR 

and featureCounts. These aligned counts are not saved in the object. Accessible with colData().

• @metadata: list containing additional metadata relevant to the dataset and the information pertaining 

to/generated from previous steps in the workflow. Accessible with metadata().

–    version: Version of bcbioRNASeq package used to generate the object.

–   level: Whether counts are loaded at gene (default) or transcript level.

–   caller: Caller used to generate the counts. Defaults to salmon.

–    countsFromAbundance: Parameter used when reading transcript abundance with tximport.

–   uploadDir: Path to bcbio final upload directory.

–    sampleDirs: Paths of sample directories contained in bcbio upload directory.

–    sampleMetadataFile: Path to custom sample metadata file. Can be used to override the sample 

metadata saved in the bcbio run YAML, but is not normally needed.

–   projectDir: Path to project directory in bcbio upload.

–   template: Name of YAML file used to configure bcbio run.

–   runDate: Date of bcbio run completion.

–    interestingGroups: Groups of interest to use by default for quality control plot colors.

–   organism: Latin species name (e.g. “Homo sapiens”).

–   genomeBuild: Genome build (e.g. “GRCm38”).

–   ensemblRelease: Ensembl release version (e.g. 90).

–    rowRangesMetadata: Metadata describing the ensembldb package used with AnnotationHub to 

define the rowRanges.

–    gffFile: Transcript annotation file path, if used instead of Ensembl metadata.

–   tx2gene: Transcript-to-gene identifier mappings.

–   lanes: Number of flow cell lanes used during sequencing.

–    yaml: bcbio run YAML containing summary statistics and sample metadata saved during  

configuration.
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–    dataVersions: Genome versions used by bcbio.

–    programVersions: Program versions used by bcbio.

–   bcbioLog: bcbio run log.

–   bcbioCommandsLog: bcbio commands log.

–   allSamples: Whether the object contains all samples from the run.

–   call: bcbioRNASeq() function call used to create the S4 object.

–   date: Date the bcbio run was loaded into R with bcbioRNASeq().

–   wd: Working directory path.

–   utilsSessionInfo: utils::sessionInfo() output.

–   devtoolsSessionInfo: devtools::session_info() output.

Use case
To demonstrate the functionality and configuration of the package, we have used an experiment from the Gene  

Expression Omnibus (GEO) public repository of expression data as an example use case. The RNA-seq data is from 

a study of acute kidney injury in a mouse model (GSE65267)17. The study aims to identify differentially expressed  

genes in progressive kidney fibrosis and contains samples from mouse kidneys at several time points (n = 3, per  

time point) after folic acid treatment. From this dataset, we are using a subset of the samples for our use case:  

before folic acid treatment, and 1, 3, 7 days after treatment.

A pre-computed version of the example bcbioRNASeq object used in this workflow (bcb.rda) and the code for 

reproduction are available at the f1000v2 branch of our package repository on GitHub.

First, load the bcbioRNASeq object and a few other libraries to demonstrate how to access the different types of 

information contained in the object.

# Load the pre-saved object

library(bcbioRNASeq)

loadRemoteData("https://github.com/hbc/bcbioRNASeq/raw/f1000v2/data/bcb.rda")

The counts() function returns the abundance estimates generated by Salmon. Read counts for each sample in the 

dataset are aggregated into a matrix, in which columns correspond to samples and rows represent genes. Multiple nor-

malized counts matrices are saved in the bcbioRNASeq object, and are accessible with the normalized argument:

1.    Raw counts (normalized = FALSE).

2.    DESeq2 normalized counts, with sizeFactors applied (normalized = TRUE).

3.    Transcripts per million (normalized = "tpm").

4.    Trimmed mean of M-values normalization method (normalized = "tmm").

5.    Relative log expression (normalized = "rle").

6.    Regularized log transformation (normalized = "rlog").

7.    Variance stabilization transformation (normalized = "vst").

Exporting quantified data
The package contains multiple convenience functions to extract the expression abundances described above.  

Outlined below are the steps to save these counts external to the bcbioRNASeq object. These steps utilize functions 

from the DESeq2, edgeR and tximport packages both directly as well as within wrapper functions. For discussions 

on RNA-seq data normalization methods and count formats see 18; we typically save at least the DESeq2 normalized 

counts (library size adjusted) and transcripts per million counts (gene length adjusted) for further analyses.

raw <- counts(bcb, normalized = FALSE)

normalized <- counts(bcb, normalized = TRUE)
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tpm <- counts(bcb, normalized = "tpm")

rlog <- counts(bcb, normalized = "rlog")

vst <- counts(bcb, normalized = "vst")

saveData(raw, normalized, tpm, rlog, vst)

writeCounts(raw, normalized, tpm, rlog, vst)

Quality control steps
A typical RNA-seq analysis requires multiple quality control assessments at the read, alignment, sample and 

model level. Most of the data required to make these assessments is automatically generated by bcbio; the  

bcbioRNASeq package makes it easier for users to access it. For instance, the Qualimap tool runs as part 

of the bcbio pipeline and generates various metrics that can be used to assess the quality of the data and consist-

ency across samples. The output of Qualimap is stored in the bcbioRNASeq object, and the package has  

several functions to visualize this output in a graphical format. These plots can be used to check data quality. Visual 

thresholds appear in many plots to help the user to assess quality. For example, a vertical dashed line is used as a  

cutoff threshold, helping to identify samples that require additional inspection. These default suggested cutoff values 

are suitable for human/mouse RNA-seq data sets (based on our experience), but should be manually modified for  

other species. The package does not focus on automatically determining threshold values, but instead provides a 

mechanism by which to visually communicate the quality of the data. The default cutoffs for these thresholds can be 

changed using function arguments. The metrics() function allows the user to extract a data.frame containing 

all metrics information used by the QC report functions. In this way, custom figures can also be easily created using  

the same data but with user-preferred packages.

Below, we provide several examples of recommended QC steps for RNA-seq data with a short explanation 

outlining their utility. By default, normalized counts generated with the DESeq2 varianceStabiliz-

ingTransformation() function is used to plot gene expression. This can be changed using the option  

named normalized in each function used to plot expression values.

Read statistics
Total reads per sample and mapping rate are metrics that can help identify imbalances in sequencing depth 

or failures among the samples in a dataset (Figure 2A–B). Generally, we expect to see a similar sequencing 

depth across all samples in a dataset and mapping rates greater than 75%. Low genomic mapping rates are  

indicative of sample contamination, poor sequencing quality or other artifacts. Some figures show lines indicating  

the optimal minimum number for the quality metric.

plotTotalReads(bcb)

plotMappingRate(bcb)

Genomic context
For RNA-seq, the majority of reads should map to exons and not introns. Ideally, at least 60% of total reads should 

map to exons. High levels of intronic mapping may indicate high proportions of nuclear RNA or DNA contamination. 

Samples should also have rRNA contamination rates below 10% (not shown) (Figure 2C–D).

plotExonicMappingRate(bcb)

plotIntronicMappingRate(bcb)

Number of genes detected
Determining how many genes are detected relative to the number of mapped reads is another good way to assess 

the sample quality (Figure 2D–E). Ideally, all samples will have similar numbers for genes detected, and samples 

with higher number of mapped reads will have more genes detected. Large differences in gene detection  

numbers between samples can introduce biases and should be monitored at later steps for potential influence on  

sample clustering.

plotGenesDetected(bcb)

plotGeneSaturation(bcb)

Counts per gene
Comparing the distribution of normalized gene counts across samples is one way to assess sample similarity within 

a dataset. For this figure, normalized counts comes from the trimmed mean of M-values, calculated by edgeR. This 

is output is from the function cpm(normalized.lib.sizes = TRUE) after applying calcNormFactors 

to a DGEList object containing the raw counts. We would expect similar count distributions for all genes across the 
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samples unless the library sizes or total RNA expression are different (Figure 3). The plotCountsPerGene()  

and plotCountDensity() functions provide two ways to visualize this comparison. Zero counts are removed  

in these figures and the values are log2 scale.

plotCountsPerGene(bcb)

plotCountDensity(bcb)

Model fitting
It is important to explore the fit of the model for a given dataset before performing differential expression  

analysis. The normalized and transformed data can be used to assess the variance-expression level relation-

ship in the data, to identify which method is best at stabilizing the variance across the mean for downstream  

visualization. The plotMeanSD() function wraps the output of different variance stabilizing methods  

(including the varianceStabilizingTransformation() and rlog() transformations from the DESeq2 

Figure 2. Read, alignment, genomic context, and gene detection statistics. Sample classes, as defined by 
the interestingGroups argument, are represented by the different colors defined in the legend of each plot. 
Vertical dashed black lines indicate suggested cutoff values. The total reads plot (A) indicates the total number 
of reads sequenced per sample. There is some variability, but in all cases the coverage is higher than 20 million 
reads, which we consider as sufficient to give good quality gene quantification. (B) shows the percentage of reads 
mapping to the reference genome. Here, all samples are well within recommended ranges, having well over 25 
million reads and almost 90% of reads mapping. The exonic and intronic mapping rate plots (C and D) indicate the 
percentage of reads mapping to exons or introns, respectively. Here, all samples are within recommended ranges, 
with samples from day 3 and day 7 showing higher proportions of reads mapping to intronic versus exonic regions 
as compared to the day 1 and normal sample classes. The genes detected plot (E) indicates the total number of 
genes for each sample with at least one mapped read. Optimal minimum gene detection values will vary based on 
an organism’s transcriptome size. The gene detection saturation plot (F) shows the relationship between the number 
of reads mapped and the number of genes detected. If this trend is not linear, it indicates that the sequencing  
may have been saturated in terms of detecting gene expression. For this specific data, it shows no saturation yet for 
gene detection, meaning that more genes could be detected if coverage were increased for the samples with lower 
number of reads.
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package) and plots them with the vsn package’s meanSdplot() function20 (Figure 4). For the example data,  

the vst and rlog transformations work well with respect to reducing the noise of low expression genes,  

illustrated by a flatter distribution observed in these plots. The user may choose the desired transformation for  

their figures using the normalized argument.

plotMeanSD(bcb)

Dispersion
Another plot that is important to evaluate when performing QC on RNA-seq data is the plot of dispersion  

versus the mean of normalized counts. For a good dataset, we expect the dispersion to decrease as the mean of  

normalized counts increases for each gene. The plotDispEsts()function provides easy access to model  

information stored in the bcbioRNASeq object, using the plotting code provided in the DESeq2 package (Figure 5).

plotDispEsts(bcb)

Sample similarity within groups
The QC metrics assessed up to this point are performed to get a global assessment across the dataset and 

look for similar trends across all samples. However, often we have a dataset in which samples can be classi-

fied into groups and it is common to interrogate how similar replicates are to each other within those groups, and 

the relationship between groups. To this end, bcbioRNASeq provides functions to perform this level of QC with 

Inter-Correlation Analyses (ICA) and Principal Components Analyses (PCA) between samples. Furthermore,  

we can use the results of the PCA to identify covariates that correlate with principal components.

Since these analyses are based on variance measures, it is recommended that the variance stabilized (vst) or rlog 

transformed counts be used. Using these transformed counts minimizes large differences in sequencing depth 

and helps normalize all samples to a similar dynamic range. Simple logarithmic transformations of normal-

ized count values tend to generate a lot of noise for low expressed genes, which can consequently dominate the  

calculations in the similarity analysis. An rlog transformation will shrink the values of low counts towards the  

genes’ average across samples, without affecting the high expression genes.

Inter-correlation analysis and hierarchical clustering
Inter-correlation analysis allows us to look at how closely samples are related to each other by first computing 

pair-wise correlations between expression profiles of all samples in the dataset and then clustering based on those 

Figure 3. Gene count distributions. Normalized count distributions are displayed as box plots (A) and density 
plots (B). The log2 TMM-normalized counts per gene normalization method equates the overall expression levels of 
genes between samples under the assumption that a majority of them are not differentially expressed19. Therefore, by 
normalizing for total RNA expression by sample, we expect the spread of the log2 TMM-normalized counts per gene 
to be similar for every sample. Sample classes (as set with the interestingGroups argument) are highlighted in 
different colors. Here, there is high similarity among the samples. This plot shows how all the samples have very similar 
gene expression profile what makes them comparable for the differential expression analysis.
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Figure 4. Variance stabilizing transformations. Plots showing the standard deviation of normalized counts using 
log2() (top left), rlog() (top right), VST (varianceStabilizingTransformation()) (bottom left), and TMM 
(bottom right) transformations by rank(mean). The red line denotes the running median estimator. As these panels 
show, the rlog and VST transformations greatly reduce the standard deviation and variance across the mean.

Figure 5. DESeq2 dispersion plot.
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correlation values. Samples that are similar to one another will be highly correlated and will cluster together. We 

expect samples from the same group to cluster together (Figure 6), although this is not always the case. We can 

also identify potential outlier samples using a correlation heatmap, if there are samples that show low correlation 

with all other samples in the dataset. For more control over the graphic parameters of the correlation heatmap,  

other packages can be used to generate these plots by using the normalized data, accessed with counts(bcb, 

normalized = "vst"), as input. One example is the pheatmap() function from the pheatmap package21,  

which underlies this plot.

plotCorrelationHeatmap(bcb)

Principal component analysis (PCA)
PCA is a multivariate technique that allows us to summarize the systematic patterns of variations in the 

data22. PCA takes the expression levels for genes and transforms them in principal component space, reduc-

ing each sample to a single point. It allows us to separate samples by expression variation, and identify poten-

tial sample outliers. The PCA plot is a valuable way to explore both inter- and intra-group clustering (Figure 7). 

As with the correlation heatmap plots, other packages can be used to generate these kinds of plots from the  

normalized data, which can be accessed with counts(bcb, normalized = "vst").

plotPCA(bcb, label = FALSE)

Figure 6. Sample correlations. All pairwise sample Pearson correlations are shown. Correlations are clustered by both 
row and column, with sample classes (as set with the interestingGroups argument) highlighted across the top of 
the heatmap. Here, the sample classes cluster well, with the normal and day 1 samples showing the highest intra-group 
correlations.
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Correlation of covariates with PCs
When there are multiple factors that can influence the results of a given experiment, it is useful to  

assess which of them is responsible for the most variance as determined by PCA (Figure 8). The  

plotPCACovariates() function passes transformed count data and metadata from the bcbioRNASeq object 

to the degCovariates() function of the DEGreport package23. This method adapts the method described  

by Daily et al. for which they integrated a method to correlate covariates with principal components values to  

determine the importance of each factor24 (Figure 8). For the example data, no covariate shows a strong  

correlation with the PCs with FDR < 0.05, indicating that there is no need for correction for any covariates during  

the differential expression analysis.

plotPCACovariates(bcb, fdr = 0.1)

QC discussion
With the QC figures, outlier samples can be identified and may be removed from the set of samples. For instance, 

in Figure 2B, if one samples shows a very low mapping rate (< 50%) compared to others, this could indi-

cate an issue with the RNA material or the library preparation. The same reasoning applies to Figure 2C, that 

shows exonic mapping rates. In this case, low mapping rates may indicate DNA contamination if the rate is very 

low, and should be removed if only a minority of samples are affected. Moreover, Figure 8 can reveal clustering  

of samples correlated to some covariates, providing guidance on which variables to add to the formula during  

differential expression analysis.

Figure 7. Principal component analysis. The first two principal components of the gene expression dataset are plotted 
here for each of the samples. Sample classes (as set with the interestingGroups argument) are highlighted in 
different colors. Alternatively, sample labels can be added with the "label = TRUE" argument (not shown) to identify 
individual samples, which is particularly useful for identifying outliers. Here, we see good clustering of the samples by 
group with no apparent outliers.
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Differential expression analysis using DESeq2
Once the QC is complete and the dataset looks good, the next step is to identify differentially expressed genes 

(DEG). For this part of the workflow, we follow instructions and guidelines from the DESeq2 vignette, using 

Salmon-derived abundance estimates imported with tximport. As previously noted, a Differential Expression  

R Markdown template is available with the bcbioRNASeq package for these steps.

The first step is to define the factors to include in the statistical analysis as a design formula. We chose to study 

the difference between the normal group and the day 7 group in our dataset. In our example, we have only one 

variable of interest; however, DESeq2 is able to model additional covariates. When additional variables are 

included, the last variable entered in the design formula should generally be the main condition of interest.  

More detailed instructions and examples are available in the DESeq2 vignette.

# DESeqDataSet

dds <- as(bcb, "DESeqDataSet")

design(dds) <- ∼day
dds <- DESeq(dds)

vst <- varianceStabilizingTransformation(dds)

saveData(dds, vst)

Alpha level (FDR) cutoffs
The results from DESeq2 include a column for the P values associated with each gene/test as well as a column  

containing P values that have been corrected for multiple testing (i.e. false discovery rate values). The multiple 

test correction method performed by default is the Benjamini Hochberg (BH) method25. Since it can be difficult to  

arbitrarily select an adjusted P value cutoff, the alphaSummary() function is useful for summarizing results  

for multiple adjusted P value or FDR cutoff values (Table 1).

Figure 8. Principal component covariate correlations. PCA is performed on transformed counts and  
correlations between principal components and the different metadata covariates are computed. Significant correlations 
(FDR < 0.1) are shaded from blue (anti-correlated) to orange (correlated), with non-significant correlations shaded 
in gray. Here, non of variables show a significant correlation with the any principal component of the data. Asterisks 
indicates p-value < 0.05.
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alphaSummary(

    object = dds,

    contrast = c(

        factor = "day",

        numerator = "7",

        denominator = "0"

    ),

    alpha = c(0.1, 0.05)

)

Differential expression analysis
Use the results() function to generate a DESeqResults object containing the output of the differen-

tial expression analysis. The desired BH-adjusted P value cutoff value is specified here with the alpha argument  

(< 0.05 shown).

res <- results(

    object = dds,

    name = "day_7_vs_0",

    alpha = 0.05

)

saveData(res)

Mean average (MA) plot
The plotMeanAverage() function plots the mean of the normalized counts versus the log2 fold changes for all 

genes tested (Figure 9).

plotMeanAverage(res)

Volcano plot
The plotVolcano() function produces a volcano plot comparing significance (here the BH-adjusted P value) 

for each gene against the fold change (here on a log2 scale) observed in the contrast of interest26 (Figure 10).  

This function requires an Internet connection to map Ensembl gene IDs to gene names (symbols).

plotVolcano(res)

Gene expression heatmap
The plotDEGHeatmap() function produces a gene expression heatmap for visualizing the expression of  

differentially expressed (DE) genes across samples. The heatmap shows only DE genes on a per-sample basis, 

using an additional log2 fold change cutoff. By default, this plot is scaled by row and uses the ward.D2 method 

for clustering27. The gene expression heatmap is a nice way to explore the consistency in expression across  

replicates or differences in expression between sample groups for each of the DE genes (Figure 11).

plotDEGHeatmap(results = res, counts = vst)

Specific genes plot
In addition to looking at the overall results from the differential expression analysis, it is useful to plot the expres-

sion differences for a handful of the top differentially expressed genes. This helps to check the quality of the  

analysis by validating the expression for genes that are identified as significant. It is also helpful to visualize 

trends in expression change across the various sample groups (Figure 12). As bcbioRNASeq is integrated with the  

DEGreport package23, we can use DEGreport’s degPlot() function to view the expression of individual DE genes.

Table 1. Differentially expressed genes at different 
adjusted P value cutoffs.

0.1 0.05

LFC > 0 (up) 1521, 4% 1102, 2.9%

LFC < 0 (down) 1694, 4.5% 1282, 3.4%

outliers 632, 1.7% 632, 1.7%

low_counts 12883, 34% 12883, 34%

cutoff (mean count < 5) (mean count < 5)
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Figure 10. Volcano plot. This plot compares the amount of gene expression change (not strictly interpretable here 
as these fold changes were derived from an LRT test) to the significance of that change (here plotted as the -log10 
transformation of the multiple test adjusted P value), with each point representing a single gene. Options are available to 
highlight top gene candidates by shading (here, genes in the green shaded areas are bounded by a minimal fold change 
and -log10 adjusted P value cutoffs) and by text labeling. The two (optional) marginal plots showing the distributions of 
the log2 fold changes and negative log10 adjusted P values are useful in assessing cutoff choices and trade-offs.

Figure 9. MA plot. Each point represents one gene, with mean expression levels across all samples plotted on the x-axis 
and the log2 fold change observed in the contrast of interest on the y-axis. Significant differentially expressed genes 
(with an adjusted P value less than the adjusted cutoff P value we chose earlier) are colored red28.
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Figure 11. Differentially Expressed Gene Heatmap. The heatmap shows only DE genes on a per-sample basis, 
using an additional log2 fold change cutoff. By default, this plot is scaled by row (centered and scaled) and uses the 
ward.D2 method for clustering27. Results are clustered by both row and column, with sample classes (as set with the 
interestingGroups parameter) highlighted across the top of the heatmap. Heatmaps are drawn internally with the 
pheatmap() function of the pheatmap package21.

Figure 12. Individual gene expression patterns. Gene expression patterns are shown for the top 3 (as selected in the 
function options) differentially expressed genes (by BH-adjusted P value). Normalized, transformed counts are shown 
for each replicate from each sample group; groups are set within the function options. Interestingly, even though our 
analysis compared day 7 to normal, all 3 genes show their greatest increases in gene expression at day 3, with some 
leveling off or relative decreases in expression at day 7.
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degPlot(

    bcb,

    res = res,

    n = 3,

    slot = "vst",

    log = TRUE,

    ann = c("geneID", "geneName"),

    xs = "day"

)

Detecting patterns
The full set of example data is from a time course experiment, as described previously. Up to this point, we have 

only compared gene expression between two time points (normal and day 7), but we can also analyze the whole 

dataset to identify genes that show any change in expression across the different time points. As recommended 

by DESeq2, the best approach for this type of experimental design is to perform a likelihood ratio test (LRT) to 

test for differences in gene expression between any of the sample groups in the context of the time course. More 

information about time-course experiments and LRT is available in the DESeq2 vignette. This approach will yield 

a list of differentially expressed genes, but will not report how the expression is changing. Visualizing patterns of 

expression change amongst the significant genes is helpful in identifying groups of genes that have similar trends, 

which in turn can help determine a biological reason for the changes we observe (Figure 13). The DEGreport  

package includes the degPatterns() function, which is designed to extract and plot genes that have a simi-

lar trend across the various time points. More information about this function can be found in the DEGreport  

package23. Note that this function works only with significant genes; significants() returns the significant  

genes based on log2FoldChange and padj values (0 and 0.05 respectively, by default).

dds_lrt <- DESeq(dds, test = "LRT", reduced = ˜1)

res_lrt <- results(dds_lrt)

ma <- counts(bcb, "vst")[significants(res, fc = 2), ] 

res_patterns <- degPatterns(

    ma = ma,

    metadata = colData(bcb),

    time = "day",

    minc = 60

)

saveData(dds_lrt, res_lrt, res_patterns)

res_patterns[["plot"]]

The output of the degPatterns() function is the plot, as well as a list object that contains a data.frame 

with two columns – the “genes” and the corresponding “cluster” number. To extract genes from a specific cluster  

for further analysis, the base function subset() can be utilized as follows to obtain the list of genes from  

cluster 3:

subset(res_patterns[["df"]], cluster == 3, select = "genes")

Summarize analysis
Finally, at the end of the analysis, a results table can be extracted containing the DE genes at a specified log fold change 

threshold. These results can be written to files in the specified output folder. In addition to the DE genes, a detailed  

summary and description of results and the output files are generated along with the cutoffs used to identify the  

significant genes. This function requires an Internet connection to map Ensembl gene IDs to gene names (symbols).

res_tbl <- resultsTables(res, lfc = 1)

Top tables
Once the results table object is ready, the top up- and down-regulated genes can now be displayed. Here, we  

output the top 5 DE genes in each direction (Table 2).

topTables(res_tbl, n = 5)

Page 18 of 35

F1000Research 2018, 6:1976 Last updated: 18 JUL 2022

https://www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#time-series-experiments
http://bioconductor.org/packages/devel/bioc/html/DEGreport.html


Figure 13. Clustered expression patterns. Clustered and scaled expression patterns for the top 500 differentially 
expressed genes. Each group represents a gene expression pattern shared among different DE genes, with the number 
of groups determined by the expression correlation patterns of the groups. Box plots are shown for the expression 
patterns of each gene within the group to give a better idea of how well the groupings fit the expression data (DEGreport_
1.14.1 used for this plot.)

Table 2. Top differentially expressed genes.

ensgene baseMean log2FoldChange padj

ENSMUSG00000024164 
ENSMUSG00000029304 
ENSMUSG00000027962 
ENSMUSG00000040405 
ENSMUSG00000022037

16284 
199735 
2744 
20543 
7752

8.21 
5.14 
5.23 
3.44 
3.21

1.96e-185 
4.25e-68 
1.92e-30 
4.18e-29 
3.80e-28

ensgene baseMean log2FoldChange padj

ENSMUSG00000049152 
ENSMUSG00000011179 
ENSMUSG00000060002 
ENSMUSG00000062908 
ENSMUSG00000064370

13001 
3090 
23614 
2594 
183932

-2.30 
-2.74 
-2.14 
-2.09 
-1.87

1.23e-25 
8.15e-21 
4.43e-19 
6.97e-19 
7.14e-19

File outputs
Output files from this use case include the following gene counts files (output at the count normalization step):

•    normalized_counts.csv.gz: Use to evaluate individual genes and/or generate plots. These counts  

are normalized for the variation in sequencing depth across samples.

•   tpm.csv.gz: Transcripts per million, scaled by length and also suitable for plotting.

•    raw_counts.csv.gz: Only use to perform a new differential expression analysis. These counts will vary 

across samples due to differences in sequencing depth, and have not been normalized. Do not use this file for 

plotting genes.
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If desired, variance stabilized counts (e.g. rlog, vst) can also be included for future use in variance based plotting 

methods such as PCA. DEG tables containing the differential expression results from the analysis summary step  

are sorted by BH-adjusted P value, and contain the following columns:

•   geneID: Ensembl gene identifier.

•   baseMean: Mean of the normalized counts per gene for all samples.

•   log2FoldChange: log2 fold change.

•   pvalue: Wald test P value.

•   padj: BH-adjusted Wald test P value (corrected for multiple comparisons; false discovery rate).

Functional analysis
To gain greater biological insight into the list of DE genes, it is helpful to perform functional analysis. We  

provide the Functional Analysis R Markdown template, which contains code from the clusterProfiler  

package29. The functional analysis includes over-representation analysis to identify significantly enriched  

biological processes among a list of DE genes, and gene set enrichment analysis (GSEA) to identify pathways  

significantly enriched for genes with larger fold changes. The functional analysis results suggest genes/path-

ways that may be involved with the condition of interest; however, the results are not conclusive and all identified  

processes/pathways require experimental validation.

For over-representation analysis, clusterProfiler requires a vector of background genes tested for differential 

expression, a vector of significant DE genes, and a named vector of fold changes associated with each DE gene.

# Generate the gene IDs for the DE list of genes and the background list of 

genes

library(clusterProfiler)

all_genes <- rownames(res) %>%

    .[!is.na(res[["padj"]])] %>%

    as.character()

sig_genes <- significants(

    object = res,

    fc = 1,

    padj = 0.05

)

# Generate fold change values for significant results

sig_results <- as.data.frame(res)[sig_genes, ]

fold_changes <- sig_results$log2FoldChange

names(fold_changes) <- rownames(sig_results)

The enrichGO() function takes the significant gene list, the background gene list, and the ontology to test as  

input to perform statistical enrichment analysis of gene ontology (GO) terms using hypergeometric testing.

# Run GO enrichment analysis

ego <- enrichGO(

    gene = sig_genes,

    OrgDb = "org.Mm.eg.db",

    keyType = "ENSEMBL",

    ont = "BP"

    universe = all_genes,

    qvalueCutoff = 0.05,

    readable = TRUE

)
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The GO enrichment analysis output is an S4 class object named enrichResult. The results can be extracted  

from this object using the slot() accessor function:

ego_summary <- slot(ego, "result") %>%

    as_tibble() %>%

    camel()

The results table contains the following columns:

•   id: GO identifier.

•   description: GO process.

•   geneRatio: number of DE genes associated with GO process / total number of DE genes.

•   bgRatio: number of background genes associated with GO process / total number of background genes.

•   pvalue: hypergeometric test P value.

•   padj: BH-adjusted hypergeometric test P value (corrected for multiple comparisons; false discovery rate).

•    qvalue: FDR-adjusted hypergeometric test P value (corrected for multiple comparisons; positive false dis-

covery rate).

•   geneID: gene symbols of all DE genes associated with GO process.

There are a variety of plots that can be used to explore the enriched processes using the enrichResult object, 

including the dot plot, enrichment GO plot, and category netplot.

The dot plot shows the number of DE genes associated with the top 25 GO terms (size) and the P-adjusted values 

for these terms. The order of GO terms is based on the gene ratio (number of significant genes associated with the  

GO term / total number of significant genes) (Figure 14).

# Dotplot of top 25

dotplot(ego, showCategory = 25)

The enrichment GO plot shows the relationship between the top 25 most significantly enriched GO terms, by  

grouping similar terms together (Figure 15).

# Enrichment plot of top 25

enrichMap(ego, n = 25, vertex.label.cex = 0.5)

The category netplot shows the relationships between the genes associated with the top five most significant GO 

terms and the fold changes of the significant genes associated with these terms (color) (Figure 16). The size of  

the GO terms reflects the P values of the terms, with the more significant terms being larger.

# Cnet plot for top 5 most significant GO processes

cnetplot(

    x = ego,

    showCategory = 5,

    foldChange = fold_changes,

    vertex.label.cex = 0.5

) 

The Functional Analysis template also includes code for performing over-representation analysis with GO terms 

and code to perform GSEA analysis using KEGG and GO terms. The final step in the template is the visualization  

of the genes and corresponding fold changes associated with the GSEA enriched pathways using the pathview  

package.

R Markdown Templates
To facilitate analyses and compile results into a report format, we have created easy-to-use R Markdown tem-

plates that are accessible in RStudio30,31. Once the bcbioRNASeq package has been installed, you can find these  

templates under FILE -> NEW FILE -> R MARKDOWN... -> FROM TEMPLATE. There are three main templates for RNA-seq: 

(1) Quality Control, (2) Differential Expression, and (3) Functional Analysis. You may need to restart RStudio 

to see the templates. It is recommended that users run the reports in the order described above, as there may be 
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Figure 14. Enriched GO terms: dot plot. The 25 GO processes with the largest gene ratios are plotted in order of gene 
ratio. The size of the dots represent the number of genes in the significant DE gene list associated with the GO term and 
the color of the dots represent the P-adjusted values (BH).

Figure 15. Enriched GO terms: enrichment GO plot. The top 25 most significantly enriched GO terms (by P-adjusted 
values) are shown with similar terms grouped together. The color represents the P values relative to the other displayed 
terms (brighter red is more significant) and the size of the terms represents the number of genes that are significant from 
the significant genes list.
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functions that depend on data generated from the previous report. If you are not using RStudio, you can create new  

documents based on the templates using the rmarkdown::draft() function:

library(rmarkdown)

draft(

    file = "quality_control.Rmd",

    template = "quality_control",

    package = "bcbioRNASeq"

)

draft(

    file = "differential_expression.Rmd",

    template = "differential_expression",

    package = "bcbioRNASeq"

)

draft(

    file = "functional_analysis.Rmd",

    template = "functional_analysis",

    package = "bcbioRNASeq"

)

Figure 16. Enriched GO terms: category netplot. The top five most significant GO terms (P-adjusted values) are 
plotted and connected with lines to associated DE genes. The fold changes of the significant genes associated with 
these terms are represented by color. The size of the GO terms reflects the P values of the terms, with the more 
significant terms being larger.
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The instructions above will create an R Markdown file from each of the templates. Each file begins with a YAML 

header, followed by sub-sections containing code chunks and some relevant text and/or a sub-heading to describe 

that step of the analysis. Each R Markdown file takes as input the bcbioRNASeq object, such that various  

functions from the package can be run on the data stored within the object to output figures, tables and carefully  

formatted results.

Note you can add more text, headings and code chunks to the body of the R Markdown files to customize the 

reports as desired. Before rendering the file into a report you will want to run the prepareRNASeqTemplate()  

function in order to obtain the accessory files necessary for a fully working template.

library(bcbioRNASeq)

prepareRNASeqTemplate()

Finally, the main analysis parameters need to be specified in the YAML section on the top part of each document. 

For this example we assume R objects are stored in a data subdirectory. Edit the following parameters in the  

Quality Control template:

params:

    bcb_file: "data/bcb.rda"

    data_dir: "data"

    results_dir: "results/quality_control"

bcb.rda refers to the bcbioRNASeq object.

In the YAML section on the top of the Differential Expression template, modify the following parameters:

params:

     bcb_file: "data/bcb.rda"

     design: !r formula(~day)

     contrast: !r c("day", "7", "0")

     alpha: 0.05

     lfc_threshold: 0

     data_dir: "data"

     results_dir: "results/differential_expression"

     dropbox_dir: "NULL"

In the YAML section on the top of the Functional Analysis template, modify the following parameters (note that  

clusterProfiler and pathview must be installed):

params:

    dds_file: "data/dds.rda"

    res_file: data/res.rda

    organism: "Mus musculus"

    go_class: "BP"

    alpha: 0.05

    lfc_threshold: 0

    data_dir: "data"

    results_dir: "results/functional_analysis"

res.rda refers to a DESeqResults object from the DESeq2 package.

The downloaded accessory files will be saved to your current working directory and should be kept together with 

your main analysis R Markdown files that were generated from the templates. These accessory files include: 

a) _output.yaml, to specify the R Markdown render format; b) _header.Rmd and c) _footer.Rmd, 

to add header/footer sections to the report; d) _setup.R, to fill in some of the parameters related to figures and  

rendering format; and e) bibliography.bib, BibTex file for citations.
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Conclusions
Here we describe bcbioRNASeq, a Bioconductor package that provides functionality for quality assessment 

and differential expression analysis of RNA-seq experiments. This package supplements the bcbio community 

project, as it takes the output from automated bcbio RNA-seq runs as input, allowing for the data to be stored in 

a special S4 object that can easily be accessed for various steps of the RNA-seq workflow downstream of bcbio. 

Built as an open source project, bcbio is a well-supported and documented platform for effectively using  

current state-of-the-art RNA-seq methods. Taken together, bcbio and bcbioRNASeq provide a full framework 

for rapidly and accurately processing RNA-seq data. The package also provides a set of configurable templates to  

generate comprehensive HTML reports suitable for biological researchers. With the use of R Markdown, all steps  

of the analysis are fully configurable and traceable.

We provide a full set of instructions for using bcbioRNASeq, including an example use case that demonstrate all 

of the main functionality. Quality control (pre- and post-quantification), model fitting, differential expression, and  

functional analysis provide a comprehensive set of metrics for evaluating the robustness of the RNA-seq results. 

Methods such as hierarchical clustering, principal components analysis, and time point analysis allow for an  

interactive examination of the data’s structure. Collectively, the workflow we describe can help researchers to  

identify true biological signal from technical noise and batch effects when analyzing RNA-seq experiments.

Software and data availability
Current source code: 

      https://github.com/hbc/bcbioRNASeq 

Archived source code (v0.2.4), as at time of publication:

      http://doi.org/10.5281/zenodo.125686132

Workflow code:

      https://github.com/hbc/bcbioRNASeq/tree/f1000v2

License: MIT

The data used in the use case can be accessed from NCBI GEO using accession GSE65267.
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© 2018 Risso D. This is an open access peer review report distributed under the terms of the Creative Commons 
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Davide Risso   
Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill 
Cornell Medicine,  New York, NY, USA 

The updated manuscript is well written and describe a very useful  R package for the quality 
control, exploration and statistical analysis of RNA-seq data. 
 
The changes in the new version make this a better resource, by adding a useful section on 
Functional Analysis and by fully leveraging the SummarizedExperiment and GRanges 
Bioconductor infrastructures. 
 
However, the following (mostly minor) issues are still outstanding and the authors need to 
address them for me to approve without reservations: 
 
1. As pointed out in my previous review and by the other reviewer, the authors refer to 
bcbioRNASeq as a Bioconductor package, when it is not part of the Bioconductor project. I again 
suggest that the authors submit their package to Bioconductor. Until then, this should be referred 
to as a R package. 
 
2. Although the authors addressed my comment on the description of the plots, some figures 
remain a bit opaque. For instance, what is the interpretation of Figure 2F? Similarly, the range of 
the x-axis in Figure 3A makes the plot hard to interpret. 
 
3. Figure 8 is not rendered correctly in the PDF and HTML versions of the article. 
 
4. There are some inconsistencies between the code in the article and the code in the Github 
repository. For instance in Figure 13 the code in the text says "vst", while in the repository it uses 
"rlog". It is unclear which is shown in the figure. In addition, when describing 
plotPCACovariates, in the text the authors say that the used FDR<0.05 but in the code they use 
0.1. Please double check all the code. 
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5. The function `enrichMap` is deprecated. The authors should use the function `emapplot`. In 
addition, it should be made clear that these functions are part of the DOSE package.
 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Jul 2018
Lorena Pantano Rubino, Harvard T.H. Chan School of Public Health, Boston, USA 

Thanks for the review statement. We appreciate the time to review our work and the 
comments that will make this article more reproducible and accurate. I’ll leave the first 
author to lead this round of reviewing to address all the comments you shared with us.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 29 June 2018

https://doi.org/10.5256/f1000research.16697.r35237

© 2018 Soneson C. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Charlotte Soneson   
Institute of Molecular Life Sciences, University of Zurich (UZH), Zürich, Switzerland 

The second version of this manuscript has been extended and now contains additional 
descriptions of the object class used by the bcbioRNASeq package as well as the functional 
analysis aspects. The text is well written and easy to follow, and the package is likely to be a 
welcome addition to the toolbox for users working with the bcbio pipeline to process their RNA-
seq data. However, I think there are still aspects that can be improved, in particular with respect to 
the reproducibility of the provided results and figures.  
 
The package is still referred to as a "Bioconductor package" in the Introduction, but as far as I can 
see, it is not submitted to Bioconductor. If the authors don't intend to submit it there, I would 
recommend describing it as an "R package" instead, as was previously pointed out.  
 
Judging from the session info provided in the GitHub repository, the code in the workflow was run 
with an old version of R (3.4.1) and Bioconductor. One of the used functions (enrichMap, from the 
DOSE package) is deprecated in the current Bioconductor release, and may be removed in the 
near future. Moreover, running the commands in the manuscript (or the ones provided in the 
workflow.R script in the GitHub repository) do not always generate the same figures as are being 
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shown in the article (and in addition, the code in the manuscript is different from the one in the 
workflow.R script). The differences are mostly minor, but this still reduces the reproducibility of 
the workflow. 
 
Minor points:

The "counts" assay is described as containing "raw counts, generated by salmon and 
imported with tximport". However, if I understand correctly this slot may also contain other 
types of "count-like" abundances generated by tximport (depending on the value used for 
countsFromAbundance). 
 

○

The legend of Figure 2B says that all samples "are well within recommended ranges, having 
[...] almost 90% of reads mapping". However, there are several samples with mapping rate 
below 70% in the figure.  
 

○

The legend of Figure 3 says that sample classes (defined by the interestingGroups 
argument) are indicated in different colors, but in the figure, each sample has a different 
color.  
 

○

In the "Genomic context" part of the QC section, the text suggests that the results of 
plotExonicMappingRate() and plotIntronicMappingRate() show the exonic and intronic 
mapping reads as a fraction of the total number of reads ("Ideally, at least 60% of total 
reads should map to exons"). However, I believe the plots show the fraction of the mapped 
reads that map to exons and introns, respectively. This could be clarified. 
 

○

In the "Number of genes detected" section, Figure 2D-E should be Figure 2E-F. 
 

○

In the "Correlation of covariates with PCs, the text says "PCs with FDR < 0.05" while the code 
uses fdr = 0.1.  
 

○

The code in the "Specific genes plot" requires a "library(DEGreport)" to run.  
 

○

The third code chunk in the "Functional analysis" section doesn't run (missing a comma 
after ont = "BP"), the fourth code chunk requires a "library(tibble)" to run, and the sixth code 
chunk similarly requires a "library(DOSE)". 
 

○

In the legends of Figures 14-16: P-adjusted values -> adjusted P-values.○

 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 03 Jul 2018
Lorena Pantano Rubino, Harvard T.H. Chan School of Public Health, Boston, USA 

Thanks for the excellent work at reviewing our work. We'll work on fix all minus issues and 

 
Page 29 of 35

F1000Research 2018, 6:1976 Last updated: 18 JUL 2022



decide a time for submitting a Bioconductor. We'll report back here with the comments. 
 
Thanks again for all your time.  

Competing Interests: No competing interests were disclosed.

Version 1

Reviewer Report 12 December 2017

https://doi.org/10.5256/f1000research.13084.r27759

© 2017 Risso D. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Davide Risso   
Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill 
Cornell Medicine,  New York, NY, USA 

The authors present bcbioRNASeq, an R package for the QC and differential expression analysis of 
RNA-seq data. The package takes as input the output of the bcbio software, not presented in this 
work. 
 
bcbio is a community driven resource that handles the data processing of several high-throughput 
sequencing applications, ranging from variant calling to ChIP-seq and RNA-seq analyses. The 
bcbioRNASeq package focuses on RNA-seq. 
 
Overall, I enjoyed the article and I think it represents a nice resource for practitioners looking to 
perform standardized RNA-seq analyses of several datasets and for bcbio users that want to 
perform high-level statistical analyses after RNA-seq preprocessing. 
 
The article is well written and provides a reproducible example that walks the reader through the 
proposed pipelines. I am glad to report that (except for some minor issues reported below) I was 
able to fully reproduce the analysis. The following points will hopefully help the authors improve 
the manuscript.

Currently, the package does not appear to be available through Bioconductor, but only 
through the authors' Github. Are the authors planning to submit it to Bioconductor? I 
definitely encourage them to do so, as a way to manage package versions and 
dependencies (see next point). If not, I would ask the authors to refer to bcbioRNASeq as an 
R package rather than a Bioconductor package. 
 

1. 

The authors do not specify the versions of the packages needed for their workflow to work. 
Although the DESCRIPTION file of the package provides such information, adding it to the 

2. 
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manuscript would allow readers to reproduce the workflow example. This would be 
automatically taken care of if the package was part of a Bioconductor release. In addition, at 
the beginning of the paper, the authors load the packages "DESeq2" and "DEGreport". 
Aren't these packages in the Import: field of the DESCRIPTION file of bcbioRNASeq? 
 
S4 object. Is it really needed to store all the normalized data in the S4 object? This could lead 
to a huge object when the analysis is run on hundreds of samples. Since scaling 
normalization is very fast wouldn’t it be better to compute normalized data on the fly and 
only store the raw and tpm data computed by tximport and featureCounts? On a related 
note, wouldn’t it be better for the authors to store the featureCounts data in an additional 
element of the assays() slot and provide coercion methods from their object to the 
DESeqDataSet and tximport objects? Is it really needed to store both tximport results in the 
assays slot and in the bcbio slot? Overall, I have the feeling that the object is needlessly big 
and this could lead to a big memory footprint. 
 

3. 

Are the plots based on raw or normalized data? If the latter, which normalization / 
transformation is used by default? How does the user change it? 
 

4. 

Interpretation of the plots. Although the authors describe the plots in generic terms, it 
would be useful to explain them more specifically referring to the actual example analysis. 
For instance, which of the three transformation of Figure 3 is best for the example data? Is 
Figure 1F a typical pattern or does it uncover something unusual with the data? Same for 
Figure 7. 
 

5. 

A better metric to highlight the difference in distribution among samples (Figure 2) is the 
Relative Log Expression (RLE) plot. The authors might want to include such plot to their 
already excellent array of QC plots. 
 

6. 

What to do if the data fail the QC step? The authors present all their QC plots but then move 
on by simply stating "Once the QC is complete and the dataset looks good [...]". What if the 
data do not look good? It would be good to advice on what to do (just as a discussion 
perhaps). E.g., there could be outlying samples to be removed or batch effects to be 
accounted for in the model.

7. 

 
Minor issues:

The last sentence of the first paragraph of the Introduction seems to indicate that the R 
package actually runs the QC tools, while these are run in bcbio and the results are loaded 
in the R package for exploration.

○

First chunk of R code (page 4 of the PDF version of the paper): at my first read I was 
wondering how to get the data to run this command. It should be made clearer that this is 
only meant to show the syntax and is not part of the runnable example.

○

The link to the bcb.rda file is broken.○

`normalized <- counts(dds, "normalized") ` This line doesn’t work. Did the author mean 
normalized=TRUE?

○

`tpm <- tpm(txi) ` This line doesn’t work. Did the author mean `tpm <- 
counts(dds, normalized=“tpm”)`?

○

Please describe writeCounts().○
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Please consider removing the "+" in the R chunks (e.g., at page 13 of the PDF) so that 
readers could run the code by copying and pasting into an R session.

○

In statistics, ICA is often used to refer to Independent Component Analysis, so the authors 
may want to avoid this acronym for the correlation analysis to avoid confusion.

○

In my RStudio session the plotPCACovariates() plot did not work (I couldn't see any points 
but just a gray background).

○

YAML parameters for the Functional Analysis Rmarkdown: I believe that the line "res" 
should be "resFile".

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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© 2017 Soneson C. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
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Charlotte Soneson   
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This article describes bcbioRNASeq, an R package for analysis of RNA-seq data for which gene 
expression estimation and quality assessment have been done via the bcbio pipeline. The package 
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contains functions for generating plots and performing downstream analysis as well as 
Rmarkdown templates for generating stand-alone reports of the quality control, differential 
expression analysis and functional analysis steps.  
 
In general, I find the article well written and easy to follow. The included functionality covers the 
most important parts of a typical RNA-seq analysis, and the package is likely to be a useful tool for 
bcbio users. Also, the provided templates are easy to extend with additional analyses if necessary. 
Following are some suggestions for improvement of specific parts of the article. 
 
1. It would be good to indicate any dependencies on particular versions of R/Bioconductor/specific 
packages, and preferably also give the session info for the session with which the manuscript was 
generated. I ran the code with R v3.4.2 (Bioconductor v3.6, DESeq2 v1.18.1, bcbioRNASeq v0.1.2), 
and while most of the code executes correctly, there are some lines that do not. In particular:  
> normalized <- counts(dds, "normalized")   ## dds doesn't exist 
> tpm <- tpm(txi)   ## txi doesn't exist 
> writeCounts()(raw, normalized, rlog, tpm)   ## formatting error 
> resTbl <- resultsTables(res, lfc = 1, write = TRUE, dir = deDir)   ## deDir doesn't exist  
 
Other lines only execute properly with a functional internet connection, which could perhaps be 
indicated in the text: 
> plotVolcano(res) 
> resTbl <- resultsTables(res, lfc = 1, write = TRUE, dir = ".")  
 
Finally, in some places, executing the provided code does not seem to generate the same results 
as in the article. More precisely: 
> plotPCACovariates(bcb, fdr = 0.1)  
does not generate Figure 7 (the asterisks are missing). 
> alphaSummary(dds, contrast = c(factor = "group", numerator = "day7", denominator = "normal")) 
does not generate the numbers in Table 1. 
> resPatterns <- degPatterns(counts(bcb, "rlog")[significants(res, ], metadata = colData(bcb), time = 
"group", col = NULL) 
does not generate Figure 12. As a consequence, subsetting to cluster 8 also doesn't work. 
> topTables(resTbl, n = 5) 
does not generate the numbers in Table 2. 
 
2. If I read correctly, the "tximport" slot of the bcbio object contains length-scaled TPMs, not 
aggregated transcript counts from tximport. This should be made clearer in the article. Is there an 
explicit choice in the bcbio pipeline that determines the type of count-scale abundances that are 
generated?  
 
3. It would be useful to indicate in the beginning of the article where the metadata is stored in the 
output from bcbio. I.e., where should one look for the values available to supply to the 
"interestingGroups" argument of loadRNASeq()? 
 
4. In the object description, it would be worth explaining a bit more clearly how the values 
contained in the slot "-tmm: trimmed mean of M-values, calculated by edgeR" were calculated. 
 
5. In the object description, devtools::sessionInfo() should be devtools::session_info() 
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6. In the Use case, "Also accessible with tpm()" should presumably be under point 3. 
 
7. Regarding the visual thresholds in the plots (warning thresholds and optimal values), how are 
the default values determined? Are they fixed, or do they depend on some characteristics of the 
data? And are they particularly suitable for data generated under specific conditions, in specific 
organisms or with particular protocols? I am also wondering whether the use of the word 
"optimal" to designate one threshold may cause confusion. For example, if the "optimal" total 
number of reads is ~20M, and the "optimal" mapping rate is ~90%, it may not be immediately clear 
how one should interpret values exceeding (and potentially far away from) these "optimal" values. 
Finally, is there a reason for only having one line in the exonic and intronic mapping rate plots, but 
both lines in the other plots?  
 
8. In the "Model fitting" section, it is suggested that it is important to evaluate the variance 
stabilizing performance of different transformations before the differential expression analysis. 
However, the transformed data are never actually used for the DE analysis (which is performed 
with DESeq2). Thus, it should be clarified how the results obtained here are used to inform the 
downstream analysis.  
 
9. For the QC and differential expression analysis, the article outlines the analysis steps in detail. 
However, the functional analysis is only described through the existence of an Rmarkdown 
template. It would be nice to have at least part of the functional analysis also explained and 
written out in the article.  
 
10. In resPatterns[["plot"]], the x-axis labels are not centered under the respective boxplots.  
 
11. The package is referred to as a "Bioconductor package", but as far as I can see it is not (yet) in 
Bioconductor.   
 
12. It seems that zero counts are excluded from the plots in Figure 2. This could be clarified in the 
text.  
 
13. In some places, "library" is used in the place of "package". 
 
14. For the degPatterns() call, it is indicated that it is "CPU intensive". It might be useful to indicate 
approximately *how* CPU/time intensive, since all other steps in the workflow execute quickly. 
 
15. In the code blocks, it would be easier if non-code characters like > and + were removed, so that 
the code could be directly copied into an R session. 
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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