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BCH Convolutional Codes
Joachim Rosenthal,Senior Member, IEEE, and Eric V. York,Member, IEEE

Abstract—Using a new parity-check matrix, a class of convo-
lutional codes with a designed free distance is introduced. This
new class of codes has many characteristics of BCH block codes,
therefore, we call these codes BCH convolutional codes.

Index Terms—BCH codes, convolutional codes, cyclotomic sets,
linear systems.

I. INTRODUCTION

CONVOLUTIONAL codes having a large free distance
and a low degree are often found by computer searches.

Several authors have extended constructions known for block
codes to convolutional codes. A survey of some of this work is
provided in the book of Piret [17, Sec. 3.5] where more com-
plete references can be found. Most of these constructions are
based on cyclic or quasi-cyclic constructions of block codes.
These techniques originate in work by Massey, Costello, and
Justesen [13] where it is shown how the free distance of
a convolutional code can be lower-bounded by the distance
of a related cyclic code. In [7] and [8] Justesen refines the
method and he constructs polynomial generator matrices of
convolutional codes directly from the generator polynomials of
cyclic codes. In these papers Justesen also presents a subfield
code construction.

The paper by Tanner [26] uses a quasi-cyclic code to
construct a polynomial parity-check matrix of a convolutional
code. This work generalizes the methods by Justesen and
further progress in this direction has recently been reported
by Esmaeiliet al. [1]. Also worth mentioning is the paper by
Piret [18] where he constructed convolutional codes having
a parity-check matrix of the form with
characteristics similar to those of a Reed–Solomon block code.
All the referenced constructions have in common that they
relate the polynomial representations of the cyclic codes with
the polynomial representations of the convolutional codes.

In [23], the authors of this paper jointly with J. M. Schu-
macher showed that state-space representations commonly
used in systems theory are very useful for the construction
of convolutional codes. In [23], a construction of a convolu-
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tional code with a designed free distance was presented. This
construction required that a controllability matrix associated
with the state-space system was the parity-check matrix of a
Reed–Solomon code. As in the construction of Reed–Solomon
codes, large-signal alphabets were required. In [27], York
showed how it is possible to do a subfield construction which
leads to binary convolutional codes with a designed free
distance.

In this paper, we will work systematically with linear
state-space descriptions and we will generalize the binary
construction presented in [27] to codes over arbitrary Galois
fields. The code construction which we present is similar to the
classical Bose–Chaudhuri–Hocquenghem (BCH) construction
for block codes and this explains our choice of title. There
is also some similarity to the work of Justesen [7], [8],
and Tanner [26] who derived BCH-type binary constructions
starting with the generator polynomial of a BCH block code.
The main difference is that the code constructions presented
below are much closer to the classical BCH code constructions.
There is another advantage of our approach. The nature of
the state-space description allows one to analyze the encoder
state at each time instance. This knowledge leads to an
algebraic decoding algorithm for convolutional codes which
is particularly well suited for the BCH convolutional codes
constructed in this paper. Details of this algorithm are given
in [21].

The paper is structured as follows. Our starting point will be
a state-space realization of arational andsystematic encoder.
Using some classical ideas from linear systems theory we
will analyze the algebraic structure of convolutional codes
in Section II. In this section we will also provide a review
of the relevant results from systems theory that will be used
throughout the paper. In Section III, we present a general code
construction technique which leads to convolutional codes
with a designed free distance. As an immediate application
of the derived results we obtain the Reed–Solomon-type
construction presented in [23]. We show that codes constructed
in this way have excellent free distance if the rate is high.
In Section IV, we provide the main results of this paper, a
detailed convolutional code construction similar to the BCH
block code construction.

II. DEFINITIONS AND BASIC PROPERTIES

In this section, we will describe convolutional codes with
the help of a classical systems theory approach. Let
be the Galois field of elements and consider the matrices

and A
rate convolutional code of degree can be described
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by the linear system governed by the equations

(2.1)

We call thestate vector, the information vec-
tor, theparity vector, and thecode vector,
each at time In the systems literature, representation (2.1) is
known as theinput state outputrepresentation. The integer
describes the McMillan degree of the linear system (2.1). The
McMillan degree is equal to the dimension of the state space

In terms of coding theory, (2.1) describes the state-space
realization of a rational and systematic convolutional encoder
and we will explain this in detail at the end of this section.

Remark 2.1:The state-space realization (2.1) is different
from a realization often found in the coding literature. In the
coding literature, convolutional codes are usually represented
by a driving variable representation

(2.2)

with the message vectorand as
above. Representation (2.2) was used by Massey and Sain
[14, Theorem 1] and became the standard way in which
convolutional codes were presented in terms of linear systems.
(Compare with [15].) The difference of (2.1) compared to (2.2)
is best seen when the degree , which is the case when
the convolutional code is memoryless. For this denote by
the identity matrix. Equations (2.1) reduce
to the parity-check equation

(2.3)

In contrast to this, (2.2) reduces to

(2.4)

For the purpose of constructing convolutional codes we feel
that (2.1) is the better choice.

One of our design objectives will be the construction of
convolutional codes with a large free distance. In terms of
the state-space description (2.1) we immediately have the
characterization of the free distance through

(2.5)

where the minimum has to be taken over all possible nonzero
codewords and where denotes the Hamming weight.

The set of codewords are by definition equal to the set
of trajectories of the dynamical system (2.1). The
following Proposition characterizes those trajectories.

Proposition 2.2 (Local Description of Trajectories):Let
be positive integers with Assume that

the encoder is at state at time Then any code
sequence governed by the dynamical system (2.1)
must satisfy

...

...

...

...

. . .
...

. . .
. . .

...
. . .

. . .

...

...

Moreover, the evolution of the state vector is given over
time as

...

(2.6)

Proof: This follows easily by iterating the equations that
define the system.

In this paper we will construct codes with large free
distance. For algebraic reasons it will be desirable to restrict
ourselves to finite-weight codewords:

Definition 2.3: A sequence
represents afinite-weight codewordif

1) equation (2.1) is satisfied for all , where
denotes the set of positive integers;

2) there is an integer such that and
for

The definition implies that for and the
code sequence, therefore, has finite weight. For a finite-weight
codeword it is, therefore, required that both the input sequence
and the state sequence (and hence the output sequence) have
finite support. The set of finite-weight codewords can be char-
acterized through a natural parity-check matrix. This matrix
will be of central importance in the construction of codes of
this paper.

Proposition 2.4 (Global Description of Trajectories):
represents a finite-weight codeword
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if and only if

...
...

. . .
. . .

...

...

(2.7)

Proof: Setting in Proposition 2.2 gives the bottom
portion of the matrix. Since , the top part of the
matrix follows from (2.6) in Proposition 2.2.

Observe that the sequence of information symbols
in (2.7) is restricted by some algebraic constraints.

These constraints simply guarantee that the state vector

In what follows, we will use the local and global systems
theoretic properties described above to give code constructions
with designed free distance. These representations were also
crucial in the decoding algorithm [21].

The set of finite-weight codewords has a natural module
structure over the polynomial ring For this consider a
finite-weight codeword with corresponding state
sequence Define

and let

One immediately verifies that satisfy (2.1) if and
only if

(2.8)

Moreover, the set of polynomial vectors

which satisfy (2.8) for some polynomial vector
forms a -submodule of the free module By abuse
of notation we will denote this module by and
we will call this module thefinite-weight convolutional code
generated by the matrices The code
will be the main focus of our investigation. At the end of
this section we will relate the properties of this code with the

standard literature on convolutional codes [2], [5], [6], [15],
and [17].

Since is a principal ideal domain, is a
free module of rank (see [4. Ch. IV, Theorem 6.1]) and there
exists an polynomial matrix such that

We will call a polynomial encoderof the finite-weight
convolutional code The following lemma pro-
vides a way to compute a polynomial encoder .

Lemma 2.5:There exist polynomial matrices
and of size , , and , respectively,
such that

(2.9)

Moreover, the polynomial matrix

describes a polynomial encoder.
Proof: The matrix on the left-hand side of (2.9) has size

and it has full rank over the field of
rationals The kernel over the field has, therefore,
dimension This kernel has a minimal polynomial basis in
the sense of Forney [3]. Choosing such a minimal basis results
in the matrix on the right-hand side of (2.9).

If is a finite-weight codeword then there exists
a polynomial vector such that

In other words, is a polynomial encoder for the convo-
lutional code

Clearly, not every -tuple of matrices having
sizes , , , and , respectively, results
in a “desirable” finite-weight convolutional code. In addition,
the description (2.1) is in general not unique. The following
lemma addresses the nonuniqueness of the description (2.1).
We omit the simple proof.

Lemma 2.6: If is an invertible matrix then

The transformation has no affect on the
degree Sometimes it is possible to describe the code

using matrices which are in
size smaller than the matrices If the matrices

have the smallest possible size we say (2.1) is
a minimal description for the code In order
to describe the class of matrices which describe
noncatastrophic convolutional encoders in a minimal way we
will have to recall some systems-theoretic concepts. We will
start with some notation which will be convenient throughout
the paper.
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Let be scalar matrices over of size , ,
and , respectively. Let be a positive integer and
define

(2.10)

...
(2.11)

The matrices and will be of central
importance in the rest of this paper. With this notation we
define (compare, e.g., with [9, p. 356])

Definition 2.7: Let be matrices of size and ,
respectively. Then is called acontrollable pair if

(2.12)

If is a controllable pair then we call the smallest
integer having the property that the
controllability index of

In a similar fashion we define:

Definition 2.8: Let be matrices of size and
, respectively. Then is called anobservable

pair if

(2.13)

If is an observable pair then we call the smallest
integer having the property that the
observability indexof

Let us now explain what happens if either is not a
controllable pair or is not an observable pair.

If is not a controllable pair then there is an integer
with One shows the existence of

an invertible matrix such that

(2.14)

where are matrices of size , , and
, respectively, and where forms a controllable

pair. The partitioning appearing in (2.14) is often referred to as
Kalman’s normal form and the existence of such partitioning
is easily established.

Theorem 2.9:Assume is not a controllable pair and
let be the Kalman normal form as in
(2.14). Then

Proof: By Lemma 2.6 we know that

The theorem now follows from the identity

(2.15)

The theorem simply states that if is not a controllable
pair then the finite-weight convolutional code is
not described in a minimal way. Because of this we will now
assume that forms a controllable pair. The following
theorem is due to Popov [19, Theorem 2].

Theorem 2.10:If forms a controllable pair then
there exist positive integers only dependent
on the equivalence class of having the following
properties.

1) the controllability index of

2) the size of the matrix

3) There exist polynomial matrices satis-
fying (2.9) and having the property that theth column
degree of

is equal to , and the th column degree of is
equal to for

The indices are often referred to as the
controllability indices of the pair . (See [9] for more
details.) In the coding literature [6, Sec. 2.5] the integers

are referred to as theconstraint indicesand is
called thememoryof the encoder We would like to
note that those indices are invariants of the column module

of and that they are, in general, different
from the minimal polynomial indices (in the sense of Forney
[3]) of the rational vector space spanned by the columns of

Details about those differences are given in [16].
Next we are interested in conditions on the matrices

which guarantee that the induced polynomial
encoder is noncatastrophic. First assume that
and are two polynomial encoders of the finite-weight
convolutional code Since the columns of

and the columns of both form a -basis of
the free module there exists a unimodular
matrix such that It follows that

describes a noncatastrophic encoder (i.e., is
right prime) if and only if describes a noncatastrophic
encoder. For finite-weight convolutional codes one therefore
has a notion of noncatastrophicity. In order to avoid any
confusion with the existing literature and in light of the next
lemma, we call an observable convolutional
code(compare with [27], [23]) if one and hence every encoder

of describes a noncatastrophic encoder.
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The following result identifies the observable convolutional
codes.

Lemma 2.11:Assume the matrices form a con-
trollable pair. The convolutional code defined
through (2.1) represents an observable convolutional code if
and only if forms a observable pair.

Proof: Notation as in Lemma 2.5. By [23, Lemma 3.2]
is right prime if and only if the matrix pencil (i.e.,

polynomial matrix of degree one)

is right prime and by the well-known Popov–Belevitch–Hautus
test [9, Theorem 6.2-6] this is the case if and only if
forms an observable pair.

An analogous result for the driving variable representation
does not exist.

Example 2.12 ([27]): Let be the rate convolutional
code over having a catastrophic generator matrix

The driving variable representation for this system is given by

Despite the fact that is catastrophic the matrix pair

forms a controllable pair and the pair

forms an observable pair.
More generally, one can show that any catastrophic poly-

nomial encoder has a driving variable representation
as described in (2.2) whose matrix pairs

and are both controllable and observable, respectively,
thus making it difficult to work with this representation of a
code. There is yet another peculiarity of the driving variable
representation. If is a polynomial encoder, then the
matrix appearing in the driving variable representation
(2.2) is necessarily nilpotent. For these reasons we feel it is
preferable to work with the input state output representation
(2.1) of a code.

Up to now we have concentrated our efforts on properties of
finite-weight convolutional codes of the form
In the coding literature [2], [5], [6], [15], [17] it is customary
to define a convolutional code as a-linear subspace of

, where represents either the field of rational functions
or the field of formal Laurent series If

is a polynomial encoder of then induces
a convolutional code by simply

defining as the -linear span of the columns of
Note that this definition is independent of the particular
convolutional encoder of

The free distance of the convolutional codeis defined [6],
[17] as the minimal value in (2.5), where the minimization
is taken over all possible nonzero codewords inThe next
lemma shows that for constructions of convolutional codes
with a certain designed distance it is sufficient to consider the
finite-weight convolutional code

Lemma 2.13:Let be a convolutional
code defined by the matrices Assume
forms an observable pair. If one minimizes (2.5) over all
nonzero codewords inside then the minimum value is
attained at a codeword inside the finite-weight convolutional
code

Proof: Let be a nonzero
code sequence which results in the minimal value in
(2.5). By definition, this sequence has finite weight As-
sume, by contradiction, that this sequence does not belong
to , i.e., the state sequence

does not have finite support. Under this condition,
there exists a positive integersuch that and
and for Since forms an observable pair
this contradicts the local description of the trajectories as given
in Proposition 2.2.

If does not form an observable pair then the min-
imization over the nonzero codewords in is,
in general, smaller than the minimization over the nonzero
codewords in For this, consider the parity-
check matrix appearing in (2.7). For each positive integer,
let be the distance of the block code defined by (2.7), then

is equal to the minimal weight of a nonzero trajectory of
length which starts from and returns to the zero state. The
integers form a nonincreasing sequence and they are related
but not equal to the th-order row distance of an encoder
[6, Sec. 3.1]. The limit is equal to the
minimal weight of a nonzero trajectory which starts from and
returns to the all-zero state. This integer is also equal to the
minimal value in (2.5) where the minimization is taken over
all possible nonzero codewords The book of
Lin and Costello [11, Sec. 10.3] defines as the free distance
of a convolutional encoder.

On the side of there is a second important distance
measure called theth-order column distance[6], [11], [17]
of , defined as

(2.16)

where the minimum has to be taken over all possible (trun-
cated) nonzero codewords of For any positive
integers and one has that
is equal to the minimal weight of a nonzero trajectory which
starts from the all-zero state, but does not necessarily return
to the all-zero state. This integer is also equal to the minimal
value in (2.5) where the minimization is taken over all
possible nonzero codewords The books of
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Johannesson and Zigangirov [6, Ch. 3] and Piret [17, p. 67]
define as the free distance of the convolutional By
Lemma 2.13 (compare also with [6, Theorem 3.6]) one has
the equality when the code is observable.

Our last result of this section will show that the state-space
description (2.1) describes in a natural way the dynamics of a
rational and systematic encoder. For this, recall that a rational
function is called proper if
A matrix with entries in is called a proper transfer
function if each entry of is a proper rational function.

Lemma 2.14:Notation as in Lemma 2.5. The matrices
appearing in (2.9) form a state-space realization of

the transfer function , i.e., one has the relation:

(2.17)

In particular, describes a proper transfer function.
Proof: Equation (2.9) is equivalent to the equations

and

which, in turn, is equivalent to (2.17). Using Cramer’s rule it
follows from (2.17) that is proper.

Remark 2.15:If the polynomial matrices have
the property that describes a proper transfer
function then there always exist matrices satisfying
(2.17). The dynamical system (2.1) is then called astate-space
realization of the transfer function If is
either not invertible or if is not proper then a
more general state-space description such as the “ ”
description [23, Theorem 3.1] will be needed. A particular
simple algorithm for computing both traditional
realizations as well as more general realizations was recently
given in [22].

We can view the transfer function in two ways.
In the coding literature it is customary to consider the code

, the -linear subspace spanned by the
columns of As an encoder over , is equivalent
to the systematic encoder

and one can view the encoding as a linear map

Under this point of view there are no restrictions on
Alternatively, describes a module homomor-

phism from the column module of to the column
module of From this point of view, the information
vector is assumed to be in the column module of
and this restriction will guarantee that the sequence of state
vectors reaches the all-zero state in finite time.
(Compare with Proposition 2.4.)

The major reason we have developed a theory for finite-
weight convolutional codes (i.e., modules) of the form

is Proposition 2.4 together with the convenient

parity-check matrix appearing in (2.7). This matrix gives a
nice algebraic criterion for characterizing the distanceas
defined in (2.5) and it is also very useful if one is interested in
algebraic methods for decoding convolutional codes [21]. At
the same time, there seems to exist little engineering reason
why infinite-weight codewords have to be part of the theory.
In fact, McEliece [15, Sec. 2] points out that finite-weight
codewords are the only ones that can occur in engineering
practice. From a more mathematical point of view there are
some other beneficial points. The set of all submodules of

is in one-to-one correspondence with the the set of all
linear, shift-invariant, and complete behavior of by
a categorical duality. (See [23, Theorem 2.6].) This allows
one to simply carry over the representations from systems
theory to convolutional coding theory and we have done this
in this section. Finally, we would like to mention that the set
of all rank submodules of degree at most has
in a natural way the structure of a smooth projective variety

[20]. The set of -dimensional subspaces of
degree at most corresponds to the observable finite-weight
convolutional codes and inside the variety this subset
forms a proper Zariski open set. The “missing points” inside
the closure of are the nonobservable convolutional codes.

In the next section, we will use the algebraic description
of Proposition 2.4 to construct observable convolutional codes
of the form having a fixed rate and degree.
Because of this proposition we will work with finite-weight
codewords and the free distance that we compute corresponds
to the smallest possible weight of a codeword whose state
starts and terminates in the all-zero state. Because of Lemmas
2.11 and 2.13, the distance bounds for these codes also hold
if one prefers to consider infinite sequences whose state does
not terminate in the all-zero state.

III. A G ENERAL CODE CONSTRUCTION TECHNIQUE

AND REED–SOLOMON-TYPE CONVOLUTIONAL CODES

How do we go about choosing and matrices to
obtain observable convolutional codes with large free distance?
We showed in Lemma 2.11 that a code is observable as
soon as the matrix pair forms an observable pair. The
code description is only in a minimal form if forms
a controllable pair. Hence, two obvious conditions for the
matrices chosen are that

and

What are some other conditions? Propositions 2.2 and 2.4 tell
us that the part of the trajectories depends locally on

, while the part depends globally on
Using this insight, we show that by choosing and
properly, we can control the trajectories enough to give a lower
bound on the free distance of the corresponding code. Note
that we have complete freedom in choosing the matrixand
there is no concern about the nilpotency of the matrixThe
following theorem is in essence [27, Theorem 6.2.1].

Theorem 3.1:Let be an observable, rate , degree ,
convolutional code defined through the matrices and

Let be the observability index of the pair and
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suppose that there exists such that forms
the parity-check matrix of a block code of distanceThen
the free distance of is greater than or equal to

Proof: Let and suppose that
Without loss of generality we assume that If
then, by Proposition 2.4 and our assumption on ,
we obtain , which implies that
Suppose now that and that
(note that if we would be done). By
the pigeonhole principle, there must be at least length

sequences of all-zero input vectors occurring before time
Let

be one such sequence.
We claim that To see this, note that if ,

then we could choose for all and we would obtain
a trajectory with Proposition 2.4
implies with

which contradicts our choice of in the statement
of the theorem. Hence, Using Proposition
2.2, and the fact that we see that

Since there are at least
such sequences, we obtain

which implies that

According to this theorem one way to construct convolu-
tional codes having rate , degree , and designed distance

is to ensure that the matrix defines a parity-check
matrix for a “good block code.” This was accomplished in [23]
when the finite field had sufficiently many elements.

Corollary 3.2: Let and let be
a primitive of the field , i.e., a generator of the cyclic
group Assume and let

Let

...
...

...
. . .

. . .

...
...

...
...

...
...

...

...
...

...

Then the convolutional code defined by the matrices
is an observable, rate convolutional code

with degree and free distance

(3.1)

Proof: The observability index in this situation is
The size of the finite field guarantees that

forms the parity-check matrix of a maximum-
distance separable (MDS) code, in particular the distance of
this block code is Because of Theorem 3.1, the free
distance of the convolutional code is, therefore,
at least This establishes the claim in the case when the
convolutional code has a “high rate.”

When (i.e., the code has
low rate) one can improve on the free distance estimate. One
observes that the matrix defines the
parity-check matrix of an MDS block code. The weight of the
code component , therefore, has to be at least
The weight of is therefore at least . This completes
the proof.

It is in general straightforward to compute a generator
matrix from the -tuple of matrices as given in
Corollary 3.2 and this is the case even if the free distance is
fairly large. The following example was given in [27, Example
6.3.4].

Example 3.3: Let
and Then Let be defined as in
Corollary 3.2. Using the identity (2.9) one readily computes
the generator matrix having entries

defines a rate convolutional code whose free distance
is at least . The memory of this code is and the degree
is .
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In general, the computation of the generator matrix requires
the solution of a system of linear equations having fewer than

unknowns. For this, observe that the computation
of the kernel in (2.9) is a linear problem in the coefficients
of the polynomial matrices By Popov’s
Theorem 2.10 we know that theth-column degree of
is The number of coefficients in is, therefore,

Similarly, the number of coefficients in
is

If one writes down the linear system that the coefficients
of do satisfy, one observes that this system
is in a fairly sparse form. Because of this, one can compute
generator matrices with a designed free distance of over.
Of course, codes with such a large free distance will require
very large finite fields and we will explain in the next section
how to overcome this obstacle.

In the remainder of this section we analyze how the free
distance of the presented codes does compare with the best
possible free distance among all codes with the same rate and
the same degree.

Let us first discuss Example 3.3: A rate code of
memory and degree can have a distance of at most

Lin and Costello [11, Table 11.1] give the
best rate binary codes with degree For example,
the best binary code of degree has a distance
of Since these results were obtained by computer
search, no comparable results for higher degree and larger
field sizes are available in [11].

In general, we know from (3.1) that for the code described
in Corollary 3.2 the following estimate holds:

It follows that the presented codes are “asymptotically good”
in the sense that

(3.2)

How are they compared to the “best possible codes?” For this
we first derive a simple bound for a convolutional code having
a certain rate and a certain degree:

Lemma 3.4: Suppose that is a rate code with degree
Then

(3.3)

Proof: The smallest column degree of a generator matrix
is given by The weight of the corresponding

column vector is, therefore, at most

Inequality (3.3) in particular implies that
Using these estimates we obtain for the codes constructed

above

Hence, for very high rates, the codes constructed above
are near-maximal. However, we note that very large fields
are needed in order to construct these codes. For low rates
some constructions were provided by the first author and

Smarandache [24] which result in better free distances than
For the rate Justesen [8] constructed codes with

maximal possible free distance All of these
constructions require large field sizes.

It is interesting to observe that the construction that we pro-
vided in Theorem 3.1 is near-optimal for high rates whereas the
construction of Justesen [7], [8] and the extensions of Tanner
[26] are best for low rates. In [25], Smarandache together with
the first author showed how the result of Justesen [8] can be
obtained by choosing the matrices as in Corollary 3.2
and adding in a clever way a matrix different from the one
provided in Corollary 3.2. Unfortunately, this method works at
this point only for rate and the construction of a matrix
resulting in better distances seems to be difficult in general.

We conclude the section with an example which explains
the properties of the provided codes.

Example 3.5: Let be the generator matrix of a rate
convolutional code of degree The smallest

controllability index (compare with Theorem 2.10) of
is then at most and the free distance is hence at most

Corollary 3.2 shows that there exists
a rate code of distance .

IV. BCH-TYPE CONVOLUTIONAL CODES

In this section, we will give techniques for constructions
over arbitrary finite fields

The generalization of the Reed–Solomon codes in the theory
of block codes are the Bose–Chaudhuri–Hocquenghem (BCH)
codes (see [12]). In the sequel, we explain how the construc-
tion of the last section can be generalized to arrive at a BCH
type of convolutional code over arbitrary finite fields The
case where was first presented in [27]. First, we review
some of the ingredients of the BCH construction for block
codes.

Definition 4.1: Let be an arbitrary finite field, let
be positive integers, let satisfy , and let be a
primitive th root of unity. Let be the splitting field of

, i.e., The BCH code over of design
distance is defined as the kernel of the matrix

...
...

...
...

(4.1)

We will denote this code by BCH
Note that BCH is a linear subspace of If

, i.e., if is a primitive of the splitting field
, the code BCH is often referred to as aprimitive

BCH code and if then one speaks of anarrow-sense
BCH code.

The following result is well known (see, e.g., [12, Ch.7,
Sec. 6, Theorem 10]) and easy to verify.

Theorem 4.2:BCH is a cyclic code and
it has designed distance at leastand dimension at least
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For the BCH construction which will follow it will be
of importance that we determine the exact dimension of
BCH This will be established in the sequel.

We can identify the BCH code BCH
with the set of polynomials of degree

and having the property that has roots
at Let be the minimal
polynomial of The generator polynomial of the cyclic code
BCH is then equal to (see, e.g., [12, Ch.7, Sec. 6])

The following theorem describes now the dimension of
BCH .

Theorem 4.3:

BCH

Moreover, there exist integers
such that

Proof: The dimension formula is given in [12, Ch. 7,
Sec. 3, Theorem 1]. The selection of the indices is
accomplished by omitting any repetition among the irreducible
factors of

Let be roots of respec-
tively. Define

...
...

...
...

(4.2)

is obtained from by omitting a set of rows. The
kernel of is equal to the kernel of by construction.
It is also clear that no further rows can be omitted from
without changing the kernel.

For the BCH construction of this section it will be necessary
to show that we can write the parity-check matrix as a
controllability matrix:

Lemma 4.4: Let be a positive integer, let be
as above, and let

...
...

...
. . .

. . .

...
...

...
...

Then forms a controllable pair and for any positive
integer with one has that the kernel of

forms a block code of length with designed distance

Proof: Direct consequence from the fact that
coincides with the first columns of

At this point, the matrices are still defined over
and what we really need are matrices defined over the base
field As is well known, we can identify the field with
the vector space and in this way we will have a way
of rewriting the matrices as enlarged matrices over
Unfortunately, the situation is not so easy since we will lose in
general the controllability of this “blown-up matrix pair”

If one does the process of field extension carefully and
takes into consideration the degrees of the minimal poly-
nomials of each element it is
possible to arrive at a controllable pair defined over

whose controllability matrix has designed distance
For reasons of readability we choose not to work in this
full generality and we prefer to make certain restrictions
which will ultimately guarantee that all irreducible polyno-
mials have degree

Assume is a primitive of It is well known that if
is a root of some polynomial then

(4.3)

are roots as well. The set is often
referred to as acyclotomic coset. The cardinality of the set
of roots given in (4.3) is simply the degree of the minimal
polynomial and in general it is not true that this degree
is The following Lemma provides a simple sufficient
condition. This Lemma is a straightforward generalization of
[12, Ch. 9, Sect. 3].

Lemma 4.5:Assume that

Then the numbers of described in (4.3) are pairwise-
different.

Proof: Write the integer to the base as

In this way we can identify the integerwith the -vector
The multiplication by modulo cor-

responds then to a cyclic left shift of the vector. Under the
assumption of the integerwe know that the first com-
ponents of the corresponding-vector are zero. Therefore,
there will be cyclic shifts needed until the vector repeats
itself for the first time.

This lemma will allow us to determine the dimension of
BCH more exactly under certain technical conditions.

Lemma 4.6:Consider the BCH code defined by (4.1). If

then the irreducible polynomials all
have degree In particular, the dimension

BCH
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Remark 4.7:The Lemma is a generalization of [12, Ch. 9,
Sec. 3, Corollary 8].

Proof: Because of Lemma 4.5 each irreducible factor
must have degree Since the generator polynomial of
BCH is equal to the
claimed dimension formula is established.

For narrow-sense BCH codes we can give a more exact
dimension estimate:

Lemma 4.8: Consider the BCH code defined by (4.1) hav-
ing If

then the dimension

BCH

Proof: The indices generating the differ-
ent cyclotomic cosets are in this case given by

By assumption they are all different and have
cardinality

With this preparation we will now be able to assume that
under certain conditions all minimal polynomials have
cardinality As is done in the classical BCH construction, we
can identify with the vector space For this note that

and that forms a -basis. We
will identify this -basis with the standard basis of , i.e.,
we make the identification with the following column vectors:

...

...
...

...

... (4.4)

If is a particular element then denote with the cor-
responding column vector in under above identification.
Clearly, addition inside corresponds to vector addition
inside What about multiplication by the element? For
this, note that multiplication by is a linear transformation
inside This suggests that there exists an invertible linear
transformation describing this multiplication.
The following lemma makes this precise.

Lemma 4.9: Let

be an irreducible monic polynomial of degree Let be a
root of , and let be the companion matrix for
defined by

...
...

...
...

...
. . .

. . .
...

(4.5)

Then multiplication by inside corresponds to left
multiplication by inside

Proof: It is enough to verify the statement for the basis
elements For these elements it is clear that
multiplication of by corresponds to multiplication of the
vector in (4.4) by

Remark 4.10:Since the assignment
extends to an isomorphism In this way, we
obtain a known embedding (compare with [10, Ch. 2.5]) of

into the matrix ring

Theorem 4.11:Consider the BCH code defined by (4.1). If
then the matrices

...
...

...
. ..

. . .

...
...

...
...

having sizes and , respectively, define a con-
trollable pair. Moreover, if the integer satisfies

then the block code defined by the parity-check matrix

has designed distance at least
Proof: Direct consequence of Theorem 4.2 and Lem-

ma 4.4.

As soon as we can exhibit an matrix such
that forms an observable pair we will have constructed
an observable convolutional code of designed distanceand
degree as we will show in a moment. We will
show first how to construct such a matrix

Let

...
...

...
...

Lemma 4.12:If then forms
a controllable pair, in particular, forms an observable
pair.

Proof: Let be an integer satisfying
Then the matrix appearing in Theorem 4.11 has
full rank We claim that every column of also
appears in for a sufficiently large integer This
would establish that forms a controllable pair and hence
the lemma.

If , the claim is trivially true. Otherwise,
the exponents of the first row of have the form

Although
some integers seem to be missing, we observe that “modulo
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” all integers of the top row of indeed
appear. For this, consider the factor ring

Under the condition it follows that

(4.6)

This establishes the claim.

The matrices and are similar and therefore an invert-
ible matrix exists such that Let

(4.7)

The main theorem then states.

Theorem 4.13:Let be fixed positive integers
with Choose such that and

and such that Let
and let be a primitive th root of unity. Let

be defined as in Theorem 4.11 and letbe defined as in
(4.7). Finally, let be any constant matrix. Then
the -tuple of matrices defines an observable
convolutional code of designed distance at leastand degree
at most

Proof: By Theorem 4.11, is a controllable pair.
Since , we have that forms
an observable pair. It follows that for every invertible matrix

also forms an observable pair,
in particular is an observable pair.

We will apply Theorem 3.1 to show that has
distance at least Since is an observable pair it follows
that the observability index of is at most , the size
of the matrix The matrix has

columns. By Theorem 4.11, defines the parity-
check matrix of a block code of distance at leastTherefore,
the theorem follows directly from Theorem 3.1.

For the particular construction of a convolutional code it is
important to compute a transformation matrixin an explicit
form. One way of doing this was shown in [27].

Again, the question of how good these codes are arises.
This requires that we be more specific about the degree of the
constructed code. Over the binary field we can do this in a
precise form:

Lemma 4.14:Assumptions as in Theorem 4.13 and
Then the code defined by has degree

Proof: Apply Lemma 4.6 in the situation

In contrast to the codes presented in Section III we cannot
say if the codes are asymptotically good in the sense of (3.2).
In case the codes have a distance of not much more than the

designed distance then it seems that

(4.8)

and, in analogy to the block code situation, the presented
BCH convolutional codes would be asymptotically bad. At
this point, however, we cannot prove such a result.

We conclude the paper with an illustrative example:

Example 4.15:Continuing with Example 3.5 we want to
design a code of rate and distance over the binary
field. We choose By Theorem 4.13 we have to find

such that and are both
satisfied. The smallest integer which satisfies these inequalities
is .

The numbers appearing in Theorem 4.11 are,
therefore, equal to and The calculated

-tuple of matrices , therefore, defines an observ-
able convolutional code of rate , designed distance and
degree The individual polynomial entries
are, therefore, in the range of degree which corresponds
to the memory.

The decoding algorithm as presented in [21] can be applied,
provided the Berlekamp–Massey algorithm for a BCH code
with 880 syndromes can be performed.
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