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Abstract

Brain-Computer Interface P300 speller aims at helping patients unable to activate muscles

to spell words by means of their brain signal activities. Associated to this BCI paradigm,

there is the problem of classifying electroencephalogram signals related to responses to some

visual stimuli. This paper addresses the problem of signal responses variability within a

single subject in such Brain-Computer Interface. We propose a method that copes with such

variabilities through an ensemble of classifiers approach. Each classifier is composed of a

linear Support Vector Machine trained on a small part of the available data and for which a

channel selection procedure has been performed. Performances of our algorithm have been

evaluated on dataset II of the BCI Competition III and has yielded the best performance of

the competition.

1 Introduction

Some people who suffer neurological diseases can be highly paralyzed and incapable of any

motor functions but still have some cognitive abilities. Their only way to communicate with

their environment is by using their brain activities. Brain-Computer interfaces (BCI) research

aims at developing systems that help those disabled people communicating through the use of

computers and their brain waves.
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Research on BCI is a fast growing field and several electroencephalogram (EEG) based

techniques have been proposed for realizing BCI. The BCI framework that interests us is based

on P300 Event Related Potentials (ERP) which are natural responses of the brain to some

specific external stimuli. Such a BCI produces an appropriate stimulus for which the patient is

expected to respond. The core principle underlying such a BCI system is then the ability of the

system to correctly recognize ERP that are responses to stimuli. In other words, such a BCI

system is wrapped around a classification technique. Within the context of P300 based BCI,

several classification methods, like support vector machines or linear discriminant analysis, have

proven their efficiency [8, 4, 17].

Since few years now, several BCI competitions have been organized in order to promote the

development of BCI and the underlying data mining techniques. For instance, a more detailed

overview of the BCI competition II and III are described in the papers of Blankertz et al. [2, 3].

These competitions allow the community to benchmark several classification techniques in an

unbiased way. Indeed, development and test data are provided by BCI laboratories but the truth

about test data are not known by competitors. Such competitions are thus of great interest since

they give hints on classification approaches that “work well”.

This paper presents the algorithm that has provided the best classification performance on

the dataset produced by a P300 speller matrix during the BCI III competition. Naturally,

one drawback of such paper is that it provides only some offline analysis of the classification

algorithm and online capacity still has to be verified. Furthermore, BCI competition III has

only provided datasets from 2 different subjects although from different acquisition sessions.

Despite such limitations, we believe that this paper provides an interesting contribution in the

area of classifier for BCI especially because the results that we expose have been validated

in an unbiased way. Furthermore, in order to enhance the impact of our paper and for a

sake of reproducibility, the code of the algorithm has been made available at : http://asi.

insa-rouen.fr/~arakotom/code/bciindex.html

The paper is structured as follows : section 2 shortly describes the BCI data set provided

by the competition. In section 3, we detail the methodology that has been followed which is

based on an ensemble of SVMs and a channel selection procedure. Finally, section 4 presents
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the results we achieved and section 5 concludes the paper with comments and perspectives on

the work.

2 The data set

2.1 Description

For this competition, we have focused only on recorded brain signals produced by the BCI

P300 speller problem. The P300 speller is based on the so-called oddball paradigm which states

that rare expected stimuli produce a positive deflection in the EEG after about 300 ms. This

so-called P300 component is present in nearly every human. A P300 speller, based on this

paradigm, has been introduced by Farwell and Donchin [5] who developed a protocol whereby

a subject is presented a 6 × 6 character matrix as illustrated in Figure 1. For the spelling of a

single character, each of the 12 rows and columns of the matrix is then intensified according to a

random sequence (in the sequel, we denote as a sequence such a set of 12 intensifications). The

subject is asked to focus its attention on the character he wants to spell and then a P300 evoked

potentials appear in the EEG in response to the intensification of a row or column containing

the desired character. In order to make the spelling procedure more reliable, this sequence of

intensifications is repeated 15 times for each character to spell.

For this competition, the dataset, which is still available on the competition webpage [1],

has been recorded from two different subjects and 5 different spelling sessions. Each session is

composed of runs, and for each run, a subject is asked to spell a word. For a given acquisition

session, all EEG signals of a 64-channel scalp (see Figure 1) have been continuously collected.

Before digitization at a sample rate of 240 Hz, signals have been bandpass-filtered from 0.1− 60

Hz [13]. A more detailed description of the dataset can be found in the BCI competition paper

[3].

The classification problem we address is the following : given the 64-channel signals collected

after the intensification of a row or column, named a post-stimulus signal, we want to predict

if such signal contains or not a P300 ERP. This first part of the problem is then a binary

classification problem. Afterwards, according to the classification of each post-stimulus signal,
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Figure 1: Experimental set-up. left) Example of a 6 × 6 user display in P300 Speller. right)

Channel location and assignment numbers used for EEG acquisition [3].

our aim is to correctly predict the desired character using the fewest sequences as possible.

Hence, this second part of the problem deals with a 36-class classification problem since we

want to recognize a symbol from the 6 × 6 matrix as given in Figure 1. Recognition rate of

spelled characters is the evaluation criterion of the competition.

For solving this problem, we are provided a training set of signals for which the target

characters are known. Note that these characters come from the spelling of word, but they have

been scrambled so that spelling time chronology has been lost. For each subject, the training

set is made of 85 characters spelling which correspond to 15300 = 12 × 15 × 85 post-stimulus

labeled signals (each of them collected over 64 channels).

2.2 Data preprocessing and feature extraction

Since we are only interested in part of the EEG signals occurring after each intensification and

because we want to build some “high-level” features that can be fed to a classifier, these signals

have been preprocessed.

At first, for each channel, we extracted all data samples between 0 to 667 ms posterior to the

beginning of an intensification. According to the knowledge that the evoked potentials appear

about 300 ms after the stimulus, we postulate that this window is large enough to capture all
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required time features for an efficient classification. Afterwards, each extracted signal has been

filtered with an 8-order band-pass Chebyshev Type I filter which cut-off frequencies are 0.1

and 10 Hz and has been decimated according to the high cut-off frequency. At this point, an

extracted signal from a single channel is composed of 14 samples.

Figure 2 gives an example of the sample variations of positive (with P300) and negative

(without P300) signals after preprocessing. The left plot presents the mean signals (averaged

over all training signals) for the channel POz whether P300 ERPs are present or not. The right

plot illustrates all the difficulty of the classification problem. For this plot, the three panels

present the 7th and 8th variables for the channels Pz, PO7 and POz. Then, for each channel

and variables, we compare the left and right boxplots of positive and negatives examples after

normalization. Samples 7 and 8 of each channel have been plotted because we expect that they

are related to events occurring around 300 − 350 ms. As we can see, signals with P300 clearly

have, on average, larger values of samples 7 and 8. However, sample variabilities are also so

large to make the classification of a signal difficult.

After this preprocessing stage, a post-stimulus signal has been transformed into a vector

from the concatenation of the 14 samples of all the 64 channels. Thus, for a single subject, the

training set is composed of 15300 post-stimulus vectors xi of dimension 896 = 14× 64 for which

labels are yi = {1,−1}.

3 Methods

In this section, we present the methodology we followed for building our classifier. At first,

we describe our multiple classifier strategy for the binary classification problem. The second

subsection then deals with how all binary classification results are transformed into a decision

for the 36-class problem. The next 2 subsections then present the channel selection and the

model selection procedure used for each of the single classifier. Note that in our classification

strategy, a classifier for a given subject only uses training data generated by that subject.
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Figure 2: left) The 14-sample signal averages for the channel POz. Curve for positive signal

average (with P300) is depicted in solid line whereas curve for negative signal average (without

P300) is shown in dotted line. right) Boxplots of the 7th and 8th variables associated to channels

Pz, PO7 and POz. For each channel and variables, the left boxplot denotes the one of positive

examples while the right boxplot is related to negatives examples. Note that for building these

boxplots, all variables have been normalized to zero mean and unit variance. We can see that

on average, positive examples have a higher mean values than negatives ones for the considered

variables and channels.

3.1 Ensemble of classifiers strategy

If we make the hypothesis that signal variability is essentially related to spelling-unrelated EEG

signal components or other brain activities, then a way to reduce such a variability is to perform

signal averaging which is a classical method for enhancing signal-to-noise ratio. We will make

clear latter how we perform such an averaging.

Another way to reduce the influence of signal variability in this classification problem is

to use an ensemble of classifiers approach. Indeed, it is well known that techniques based on

classifier outputs averaging help to reduce classifier variability [6].

When using such an ensemble of classifiers system, each single classifier has its own training

data. Hence, we have to partition the 15300 examples of the training set in different subsets.

Ideally, it may be interesting to cluster the training signals in several partitions so that each

partition has “similar” noisy components. Consequently, we suggest separating the training
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signals into homogeneous groups and to train a classifier on each of these groups. To this end,

the notion of “homogeneous” has to be defined. The simplest approach is to consider that

the 180 post-stimulus signals related to the spelling of a single character present similar noisy

features since they have been acquired in a relatively short period of time. Indeed, during this

short time, we can suppose that brain activities and acquisition conditions have not changed

considerably. On another level, signals from the same acquisition run (coming from the spelling

of the same word) can also be considered as homogeneous.

For the dataset we have been provided, time chronology of spelled characters has been lost

because organizers decided to scramble them [3]. Hence, signals composing the training set can

not be naturally clustered together at a higher level than character spelling since all information

about runs and sessions have been lost.

Hence, we have decided to use the following naive partitioning. Single character spelling

corresponds to 180 post-stimulus signals. Each training partition is then composed of signals

associated to 5 characters, leading to 17 different partitions. Since time chronology of signals

have been lost, the 5 characters composing each partition are each 5 consecutive characters as

provided by organizers. According to this procedure, for each subject A or B, K = 17 different

partitions have been built. They are denoted as A1, A2, · · · , A17 and B1, B2, · · · , B17. Each

partition is then composed of 900 training examples of dimension 896.

In our strategy, we have designed a multiple classifier system for each single subject. Each

single classifier of the system is a linear support vector machine [14] trained on one of the 17

partitions. SVM has been used since it is a powerful approach for pattern recognition especially

for high-dimensional problems. Each single SVM training also involves a model selection pro-

cedure for setting its regularization parameter C. We will give details about this part in the

sequel. The decision function for an SVM trained on the k-th partition Pk, with Pk being either

Ak or Bk, is then :

fk(x) =
∑
i∈Pk

yiα
(k)
i 〈x, xi〉 + b(k) (1)

where the {α(k)
i }i and b(k) are parameters obtained after SVM training. Performance of each

classifier on a new post-stimulus signal x (also known as single trial classification) can be eval-
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uated by looking at the sign of fk(x).

3.2 Global classification scheme

We now explain how outputs of these classifiers are fused together in order to produce a single

predicted character. Thus, we are transforming the results of all binary classifiers into a single

result on the 36-class problem.

Our classification method is based on K = 17 classifiers for which each classifier has been

trained on a subset of the training data. Each classifier assigns a real-valued score fk(xr|c),

k = 1, · · · ,K to a post-stimulus vector xr|c associated to a given row or column. After a number

of sequences J , we consider that the most probable row and column is the one that maximizes

the score :

Sr|c =
1
J

1
K

J∑
j=1

K∑
k=1

fk(x
(j)
r|c) (2)

where x
(j)
r|c is the post-stimulus vector associated to a given row or column during the j-th

sequence and Sr|c is the score of that row or column. Expanding this equation shows that :

Sr|c =
1
K

∑
k=1

∑
i∈Pk

yiα
(k)
i

〈
1
J

J∑
j=1

x
(j)
r|c, xi

〉
+ b(k) (3)

which clearly exhibits the double averaging performed by our classifier. The first averaging is

applied in the data space : as sequences increase, signals from each row or column are averaged.

The second averaging is done in the classification score space. This latter procedure leads to a

more robust classification scheme since a classifier that assigns a bad score to a test data can be

corrected by other classifiers.

Note that the idea of averaging SVM outputs over the sequences as in equation 2 has already

been successfully applied by Kaper et al. [8] (but without the ensemble of SVM) and they yielded

very interesting performances. However, since they use a non-linear classifier, a Gaussian kernel

SVM, their averaging does not boil down to signal averaging as in our approach (see equation

3) .
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3.3 Channel selection procedure

The dataset provided by the competition is based on a 64-channel scalp. However, in many

P300 BCI classification systems, it is frequent that only a limited number of channels is used.

For instance, Meinicke et al. use only 10 predefined channels to build their P300 BCI [10] while

Serby et al. use only 3 of them [16]. Although the need of reducing the number of channels is

clear, we advocate that such channels have to be selected adaptively with respects to the subject

and the mental task to be performed, hence the need of automatic channel selection algorithm.

Algorithms for channel selection can identify, among these 64 channels, the most efficient ones

for revealing presence of P300 ERP. Thus, channel selection can help at reducing the number of

electrodes needed for building each decision function while increasing recognition performance

by removing spurious channels.

The algorithm we use is based on a recursive channel elimination. In this algorithm, classifier

performances are frequently evaluated on a validation set according to the score:

Ccs =
tp

tp + fp + fn

where tp, fp, fn are respectively the number of true positive, false positive and false negative

classified post-stimulus signal composing the validation set. It is important to note that i) for

channel selection, classifier performances are evaluated on a single post-stimulus signal (binary

classification) and not on character recognition performance. ii) the score Ccs does not take into

account the number of true negative examples. This is important for unbalanced datasets since

this omission helps the channel selection procedure to focus on channels that give positive scores

to positive examples which are fewer than negative examples.

The algorithm we used is given by the following procedure. First, a linear SVM is trained

with all the 896 features provided by all channels. The performance of this classifier is evaluated

according to Ccs. Then, each single channel is temporarily removed, (suppose we remove channel

j,) that is to say all 14 features built from that channel are removed, and the score C
(−j)
cs (the

score when channel j is removed) is re-evaluated. Finally, the channel whose removal has

maximized the score C
(−j)
cs is definitely eliminated. The procedure is then continued until all

channels have been eliminated. In order to speed-up this elimination procedure, it is possible
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Algorithm 1 Algorithm for recursive channel elimination.
Initialization : RANKED= ∅; CHANNEL= [1, · · · ,NumberOfChannels]

while CHANNEL is not empty do

for all channel in CHANNEL do

Remove temporarily channel j in CHANNEL

Learn a linear SVM with the remaining channels

Compute ranking score C
−(j)
cs

end for

RANKCHAN= arg maxi C
−(j)
cs

Rank variable : RANKED = [ RANKCHAN RANKED ]

Remove variable RANKCHAN from the variable list CHANNEL

end while

to eliminate that several channels after each step. In our case, we have arbitrarily chosen to

remove four channels at a time. This channel elimination procedure is also a way for ranking the

channels according to the score Ccs, the first eliminated channel being the less important one and

the last removed being the most important one. However, note that this ranking procedure is

suboptimal since a channel that has been eliminated is never questioned again in the elimination

procedure. The algorithm for such recursive channel elimination is described in Algorithm 1.

More details on similar variable selection procedure can be found in [7, 11].

3.4 Model selection

For each of the 17 linear SVM we train, a model selection procedure has been performed. In

our case, the model selection involves the choice of the classical SVM hyperparameter C and

the optimal number of channels to use. Hence for such model selection procedure, since each

classifier is trained on one of the 17 partitions, we have used as a validation set a subset of the

16 remaining dataset partitions (technical details on how validation sets have been built are

postponed to the appendix). Prior to training, all features from a given training set have been

normalized to zero mean and unit variance. Validation set has also been transformed according

to the resulting normalization parameter. For each SVM classifier, the classical margin-error
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Figure 3: Evolution of the channel selection score Ccs during channel elimination procedure for

two subjects and for two different classifier trained with different training set partitions. left)

Subject A. right) Subject B.

trade-off parameter C and the optimal number of channels have been chosen by running the

channel selection procedure for different values of C and then by selecting the pair (C-number

of channels) that maximizes the score Ccs. Since the validation set size is large enough (at least

6300 post-stimulus signals), we think that this strategy is sufficiently efficient especially if the

C values are finely sampled. In our case, we have tried C = [0.01, 0.05, 0.1, 0.5, 1].

4 Results

This section presents the results we achieved using the above methodology. At first, some results

about channel selection are presented. Then, we detail the classification performance we yielded

on the test data of the competition.

4.1 Channel selection results

For each single classifier of decision function fk(x), channel selection has been performed based

on the training set Ak or Bk and the related validation set. Then, we can expect that the

resulting channel ranking varies from one single classifier to another.

Figure 3 gives an example of Ccs evolution during the recursive elimination procedure for
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Classifier index k

Dec. Funct fk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Subject A 32 32 36 20 40 24 36 40 40 24 28 12 56 16 40 16 16

Subject B 12 8 16 16 12 12 4 12 16 16 8 8 8 4 8 12 4

Table 1: Optimal number of channels to use in the decision function fk(x) with respects to the

subject and the dataset partition k. For instance, f9 has been trained with the dataset partition

9 and the channel selection procedure has selected 40 channels and 16 channels respectively for

subject A and B. Note that channels have been eliminated 4 by 4 in order to speed-up the

elimination procedure, this explains why an optimal number of channels is always a multiple of

4.

two different dataset partitions of subject A and subject B. The plots show that there exists an

optimal number of channels for each dataset and this number may vary considerably. In this

figure, we can see for instance that the number of channels that maximize Ccs can vary from 4 to

24 depending on the training set and the subject. Table 1 summarizes the number of channels

that optimizes Ccs for each decision function fk and subject. We can see that on average, for

subject A, the relevant information on P300 are spread over more channels than for subject B.

Table 2 details the resulting channel ranking for subject A and B. We clearly note that

rankings are variable and only few channels (PO7 and PO8) are consistently top ranked. We

also see that some channels (P5, O1) are subject-dependent that is to say they have a high

ranking only for one subject. Another illustration of the channel selection dependency to the

subject is given in Figure 4. This figure shows the topographical histogram of the channel

ranking results. It depicts how many times a given channel has been ranked in the top 12. We

can remark that for subject A there are only three channels that are consistently ranked whereas

for subject B, six channels are frequently top-ranked.

These few examples of channel selection results clearly highlight the impact of the training

set variability and the need of adaptivity of a P300 classification algorithm to each subject.

Indeed, these results are consistent with other results in the literature [15] showing that channel
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Table 2: 12 top ranked channels given without any ordering for different partitions and subject

A and B .

Data 12 Top Ranked Channels

A1 FC1 C2 CP3 CPz Fz F4 F6 P5 Pz P8 PO7 PO8

A2 C1 CPz CP4 AF7 AFz Fz F8 P5 Pz PO7 POz PO8

A3 FC2 CP5 CP1 F1 Fz FT8 T7 P7 P5 Pz PO7 PO8

A4 C3 C1 FP1 F2 F4 F6 TP7 P7 P5 Pz PO7 PO8

A5 Cz CP5 CP2 F7 F8 P7 Pz P4 P8 PO7 PO4 PO8

B1 FC5 C5 Cz CPz CP6 AFz T9 P1 P2 PO7 PO8 O1

B2 FC1 C3 C1 Cz C4 CP3 CPz CP4 T9 P1 PO8 O1

B3 C1 CPz AFz T7 T9 P2 P6 PO7 POz PO8 O1 Iz

B4 FC3 FC2 CP5 F3 T9 P7 P2 PO7 PO3 POz PO8 O1

B5 FC2 C6 CPz CP4 CP6 T10 P3 P4 PO7 PO8 O1 Iz

selection should be performed on each single subject. And, even when prior knowledge about

the mental task to be performed by the subject are available, channel selection allows the system

to adapt to the mental activity of the subject, leading then to better performances [9].

4.2 Results on the test set of BCI III competition

Test sets have been processed similarly to the training set and then are fed to our ensemble

of classifiers. For the competition, performances have been evaluated based on the correctness

of predicted characters in the test sets. Hence, we are considering the 36-class classification

problem, and each predicted character has been obtained according to the method described in

section 3.2. Table 3 depicts the performance results we achieved on the test sets with respect to

the number of sequences.

Based on the competition evaluation criteria, we achieve a correct classification performance

of 73.5% and 96.5% for respectively 5 and 15 sequences. Remember that this performance has

been evaluated on a test set composed of 200 spelling characters.
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Figure 4: Topographical histogram of channels ranking for (left) Subject A. (right) Subject B.

Each channel has been contoured with a circle. The gray scale denotes the number of times,

given in each circle below the scalp, a channel has been ranked in the top 12. For instance, for

subject A, channel Pz has been ranked 16 times out of the 17 classifiers in the top 12 channels.

For subject B, channel P2 has been ranked 10 of the 17 classifiers in the top 12 channels.

The main advantage of a classification algorithm competition is to provide an unbiased

comparison of different algorithm performances on the same dataset. Hence, we present on

Table 4 the results of other competitor algorithms. These results have been obtained from the

BCI competition website [1].

Interestingly, the runner-up competitors have proposed an algorithm similar to ours. Indeed,

they use a multiple classifier strategy where each single classifier is a SVM. However, instead

of summing the score of each single classifier, they use a voting strategy. We believe that this

is a key difference since using the sum instead of the vote keeps trace of the confidence of

one classifier in the score Sr|c and thus in the final decision. Their algorithm also differs in

the channel selection procedure. They have decided to use a fixed number of channels, chosen

in a ad-hoc way. These channels are different for each subject. Although somewhat similar,

their algorithm and ours provide significantly different performances especially when only 5

sequences are considered (up to 18%). The other competitors use different approaches which
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Table 3: Classification performance in % of correctly recognized characters for the 2 subjects

and for increasing number of sequences.

Nb of sequences

Subject 1 2 3 4 5 10 13 15

A 16 32 52 60 72 83 94 97

B 35 53 62 68 75 91 96 96

Mean 25.5 42.5 57.0 64.0 73.5 87.0 95.0 96.5

Table 4: Average classification performance in % of the 3 best algorithms of the competition.

Nb of sequences

Algorithms 5 15

Our algorithm 73.5 96.5

2nd ranked algorithm 55.0 90.5

3rd ranked algorithm 59.5 90

lead to performances of about 55% and 90% recognition rate for 5 and 15 sequences.

4.3 Analysis and improvements of this winning strategy

The approach we proposed has been the winning strategy. Here, we present a short analysis on

the reasons of such good performances.

As we stated in previous sections, two issues arise in this classification problem. Because of

the low signal-to-noise ratio of the signals, we have proposed an averaging strategy. Ensemble

averaging is a common method for enhancing event-related potentials signal-to-noise ratio. In

our classification method, two forms of averaging are performed, one with respects to the se-

quences, on the other one with respects to the different classifier scores. The averaging according

to sequences is usual for BCI P300 speller and has already been proposed by Kaper et al. [8, 10].

Such an averaging is one of the reasons why character recognition performance increases with
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Table 5: Comparison of the performances of some SVM composing 3 ensembles : using channel

selection, using all 64 channels and using 8 prefixed channels. Each SVM has been trained on a

particular partition of the dataset. The results we report are the performance of such a classifier

evaluated on the test set and after 5 and 15 sequences. We can see that our channel selection

procedure allows each single SVM to achieve consistently better performances than using either

all or 8 channels.

Performances after 5 and 15 sequences

Dataset Optimal channels 64 channels 8 channels

A1 26 66 22 55 24 60

A2 41 69 22 61 15 54

A3 28 64 19 59 5 27

A4 36 81 24 56 17 53

A5 39 75 27 69 23 52

B1 62 93 52 80 41 76

B2 61 90 49 73 31 54

B3 56 81 45 65 36 65

B4 57 89 49 81 47 65

B5 53 89 59 88 33 70

the number of sequences. From our point of view, the most important contribution of our clas-

sification approach is the ensemble classifier averaging. Interestingly several other competitors

have also proposed a classification method based on ensemble averaging classifiers. And we

think that this is a promising strategy.

We carried out some further analysis after the competition in order to get some more insights

on our method. For instance, we have measured the performance of the ensemble of SVM without

any channel selection, and using only 8 prefixed channels (Fz, Cz, Pz, C3, C4, P3, P4, Oz) .

These eight channels are among the ten ones used by Meinicke et al. [10]. For these ensembles

of classifiers, the regularization parameters have been set by the same validation procedure as
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described in section 3.4.

At first, we have compared in Table 5 the performance of some SVMs composing each

ensemble. We can see that using our channel selection procedure yields each single SVM to

better performance. The gain of performance can be of the order 20% for subject A and 15% for

subject B. This suggests that for each SVM trained on a small part of the training set, channel

selection should be carried out.

Performance results concerning these ensembles of SVM are given in Table 6. We see from

this table that without channel selection we achieve similar performance than with channel

selection. Hence, we can remark that the loss of performance of each SVM of the ensemble

when using 64 channels (see Table 5), has been compensated by the ensemble strategy, either

owing to the larger amount of data or owing to the output score averaging. However, we also

see that using a prefixed choice of channels leads to worse performance : the ensemble strategy

does not compensate for the loss of information due to the limited number of channels.

All these results suggest that, for this competition, one should have either used all channels

or performed channel selection. In this context, our channel selection procedure only acts as

a subject-dependent dimensionality reduction. Other experiments we carried out on BCI com-

petition 2003 datasets [2] and reported in Rakotomamonjy et al.[12] have also shown that the

channel selection procedure only slightly enhances performances .

Furthermore, we have tried to empirically analyze the contribution of the ensemble of SVM

compared to a single SVM trained on all examples. Performances of single SVM are also reported

on Table 6. For these results, we have tried different regularization parameters and reported

the best achieved performances on the test set. We see that when using all channels, a single

SVM gives similar results than our algorithm for 15 sequences. However, for only 5 sequences,

ensemble of SVM performs better, of the order of 5%, than a single SVM. Although disappointing

from the competition point of view , we think that for a real application perspective where high

classification rate using few sequences are desired, this is an interesting advantage. Again, results

on BCI competition 2003 datasets and reported in Rakotomamonjy et al.[12] have also shown

that differences between single and ensemble of SVM are more significant when considering only

a small number of sequences. We can also see that when only 8 fixed channels are used, the
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Table 6: Table of performances of our algorithm and other related algorithms. For instance,

we have the classification performance in % of an ensemble of SVM and a single using all 64

channels.

Nb of sequences

Algorithms 5 15

Our algorithm 73.5 96.5

Ensemble SVM without channel selection 74.5 95.5

Ensemble SVM with 8 prefixed channels 40.0 80.0

Single SVM without channel selection, C=0.01 69.5 96.5

Single SVM with 8 prefixed channels , C=1e-5 31.0 70.0

ensemble of SVM gives far better results than a single SVM.

A similarity between our ensemble of SVM and a single SVM can also be noted. Indeed,

we know that a linear combination of linear classifiers (see equation 3 ) is just another linear

classifier. Explicitly, equation 3, which gives the score assigned by our ensemble of SVM to a

row or a column can be written as :

Sr|c =
∑

i

yiα̃i

〈
1
J

J∑
j=1

x
(j)
r|c, xi

〉
+ b̃ (4)

with

α̃i =


(

1
K

∑
k=1 α

(k)
i

)
if i ∈ Pk

0 otherwise
and b̃ =

1
K

∑
k=1

b(k)

Hence, we could have trained a single linear classifier with a particular, but unknown loss and

regularization functions and get the same classifier given by an ensemble of SVM.

From this similarity, we can understand that the main difference between our approach and

a single SVM (with the usual hinge loss) is the values of α̃i and b̃. In our ensemble of SVM,

the regularization parameter C of each SVM is selected by cross-validation and thus they may

be different from one SVM to another. From a single SVM point of view, this means that

each training example xi should have its own regularization parameter Ci. Typically, in our
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case, training examples coming from the same partition would have the same regularization

parameter. This implies that misclassified training examples (bounded support vectors) would

get different values of αi (which upper bound depends on Ci). Hence, compared to a single

SVM with a single parameter C, our ensemble of SVM differently weights misclassified support

vectors. Besides, since the support vector numbers are about 1/3 of the training examples for

both strategies, we can think that the main difference between these two approaches is these

adaptive weights given to bounded support vectors.

The algorithm described above is efficient but we think there is still room for improvements.

For instance, the following points can be investigated:

• the idea of using an ensemble of classifiers has been the keystone of our algorithm. However,

this idea relies on the dataset partitioning and thus on how the training set has been

clustered. Then, it would be interesting to investigate the importance of such a clustering.

For instance, the question that may arise is the following: is it better to train a classifier

on data from a small part of the data space or on data sampling all data space?

• the problem of inter-subject variability has not been addressed by our algorithm since

we have only used signals from the same subject for learning and testing. This issue of

inter-subject learning is important in order to make this BCI speller efficient with a new

patient and without the need of a training session. For instance, using the ensemble of

classifiers trained with EEG signals from subject A for classifying the test set of subject

B yields to a performance rate of only 26%.

5 Conclusion

This paper has presented the algorithm that achieved the best performance for the dataset II

of the BCI competition III 2005 [1]. The novelty in the approach is that the data sets have

been split in several partitions and a classifier has been trained on each of this partition. The

outputs of all classifiers are finally summed up to get a final decision. Results we achieved with

this classifier are rather good if we consider only 5 sequences.
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We are aware that results presented in this paper are somewhat limited because of the small

number of subjects and the small number of testing sets. However, the presented results have

been validated and compared in an unbiased way by the competition. Thus, it is very likely that

the methodology presented here should also perform well within an online BCI environment.

Our next research goes towards this direction. We plan to contact the dataset provider and to

perform a large-scale analysis of this algorithm using a larger amount of data.

Furthermore, if we want to enhance the bit rate transfer of this BCI P300 speller more works

have to be carried out. Our next objective is now to consistently achieve a recognition rate of

up to 90% with only 5 sequences and to efficiently address the intra-subject variability. This is

the subject of our present research.
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Appendix

Validation sets

For computational reasons, we have used for model selection a particular splits of the training

data. Remember that each spelled character generates 180 = 12 × 15 post-stimulus signals.

With all the 85 characters, we have built 17 partitions of 5 spelled characters, hence of 900

signals. Then for the model selection procedure, we have used the following splits. When a

SVM is trained on a partition k with k ∈ [1, · · · , 8], then its validation set is all partitions

from [1, · · · , 8] except k. A similar procedure is performed for a SVM trained with a partition

k ∈ [9, · · · , 17]. Hence, the validation set is composed of 6300 or 7200 post-stimulus signals. We

have considered that such an amount of data is sufficiently large for evaluating accurately each

SVM model.
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