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BCL-2 family isoforms in apoptosis
and cancer
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Abstract
The BCl-2 family has long been identified for its role in apoptosis. Following the initial discovery of BCL-2 in the context
of B-cell lymphoma in the 1980s, a number of homologous proteins have since been identified. The members of the
Bcl-2 family are designated as such due to their BCL-2 homology (BH) domains and involvement in apoptosis
regulation. The BH domains facilitate the family members’ interactions with each other and can indicate pro- or anti-
apoptotic function. Traditionally, these proteins are categorised into one of the three subfamilies; anti-apoptotic, BH3-
only (pro-apoptotic), and pore-forming or ‘executioner’ (pro-apoptotic) proteins. Each of the BH3-only or anti-
apoptotic proteins has a distinct pattern of activation, localisation and response to cell death or survival stimuli. All of
these can vary across cell or stress types, or developmental stage, and this can cause the delineation of the roles of
BCL-2 family members. Added to this complexity is the presence of relatively uncharacterised isoforms of many of the
BCL-2 family members. There is a gap in our knowledge regarding the function of BCL-2 family isoforms. BH domain
status is not always predictive or indicative of protein function, and several other important sequences, which can
contribute to apoptotic activity have been identified. While therapeutic strategies targeting the BCL-2 family are
constantly under development, it is imperative that we understand the molecules, which we are attempting to target.
This review, discusses our current knowledge of anti-apoptotic BCL-2 family isoforms. With significant improvements in
the potential for splicing therapies, it is important that we begin to understand the distinctions of the BCL-2 family, not
limited to just the mechanisms of apoptosis control, but in their roles outside of apoptosis.

Facts

● BCL-2 family members play an integral role in
apoptosis, but also contribute to many other cellular
functions.

● Isoforms of almost all of the BCL-2 family members
have been identified and some are well characterised.

● Therapeutics targeting BCL-2 show great promise
for the treatment of cancer.

Open questions

● What is the functional role of uncharacterised BCL-2
family member isoforms in apoptosis and normal
cellular functions, in particular the BCL-2 isoform
BCL-2β?

● Is the presence and varied functional characteristics
of BCL-2 family isoforms being considered in the
development of therapeutics targeting BCL-2?

● Is there potential to target BCL-2 family member
isoforms that are expressed higher in cancer?

Introduction
The BCl-2 family has long been identified for its role in

apoptosis. Following the initial discovery of BCL-2 in the
context of B-cell lymphoma in the 1980s, a number of
homologous proteins have since been identified1–3. The
members of the Bcl-2 family are designated as such due to
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their BCL-2 homology (BH) domains and involvement in
apoptosis regulation. The BH domains facilitate the family
members’ interactions with each other, and can indicate
pro- or anti-apoptotic function4,5. Traditionally, these
proteins are categorised into one of three subfamilies;
anti-apoptotic, BH3-only (pro-apoptotic), and pore-
forming or ‘executioner’ (pro-apoptotic) proteins. Sub-
family categorization has been traditionally based on BH
and transmembrane domain and anti- or pro-apoptotic
function status, as well as pore-forming ability (as shown
in Table 1).
The role of the BCL-2 family in apoptotic regulation is

typically described as the anti-apoptotic and pro-
apoptotic BH3-only members existing in a state of
competitive flux to influence the activation of the pore-
forming executioners6,7. The ratio of pro- to anti-
apoptotic subfamily members present in a cell can be
altered by a number of signalling pathways, effectively
relaying information on cellular stress, such as available
nutrients, DNA damage, and protein processing8. Once
the executioners are activated, the molecules come
together to form pores in the outer mitochondrial
membrane (MOM) and thus trigger mitochondrial outer
membrane permeability (MOMP), and therefore apop-
tosis9–11.
The BH domains are considered central to subfamily

categorization as they facilitate the interaction of family
members. BH3 was initially highlighted as an important
domain as it was demonstrated to be vital for the inter-
action of the anti-apoptotic BCL-XL and the executioner
BAK, as well as for its apoptotic activity. The BH3 domain
is vital for the correct folding of a hydrophobic pocket,
within which BCL-2 members can interact12,13. Conse-
quently, point mutations or deletions of the BH3 domain
have been shown to significantly reduce the pro-apoptotic
activity of a number of BH3-only proteins14. The BH4
domain is thought to be similarly significant for the anti-
apoptotic subfamily; deletion of the BH4 domain can
switch function to pro-apoptotic, while retention of the
BH4 domain alone is sufficient to block changes in
mitochondrial potential14.
Beyond this understanding of a competitive flux, there

are several hypotheses regarding how the BCL-2 family
members interact, including direct and indirect interac-
tions amongst family members (summarised in Supple-
mentary Table 1). Each of the BH3-only or anti-apoptotic
proteins have patterns of activation, localisation and
response to specific death or survival stimuli. Binding
selectivity between members of the different classes of
BCL2 proteins also varies, for example, some BH3-only
proteins bind non-specifically to several BCL2 prosurvival
proteins while others tend to bind in a more specific
manner. Similarly, BCL2 prosurvival family members can
selectively bind to and limit activity of BAX or BAK. All of

these interactions can vary across cell or stress types, or
developmental stage, and this can cause the delineation of
the roles of BCL-2 family members. Added to this com-
plexity is the presence of relatively uncharacterised iso-
forms of many of the BCL-2 family members.

BCL-2 anti-apoptotic subfamily
This review focuses on the BCL-2 anti-apoptotic sub-

family and known isoforms. Traditionally, members of
this family are identified by their anti-apoptotic activity
as well as the presence of BH4 and transmembrane
domains for anchoring to cellular membranes15. Some
members of this anti-apoptotic subfamily lack some of
these physical features, have isoforms translated from
the same gene which actually have pro-apoptotic activity,
or can have their activity modulated by post-
translational modification, as reviewed below and sum-
marised in Table 2.

Table 1 BCL-2 subfamilies and members

Subfamily Activity BH Domain Status Members

Anti-

apoptotic

Anti-

apoptotic

Presence of BH4 domain BCL-2

BCL-XL
BCL-W

BCL-B

(BCL2L10)

MCL-1L

Absence of BH4 domain MCL-1

BFL-1/A1

BCL2L1213

Pore-

forming

executioners

Pro-

apoptotic

Multi-domain BAX

BAK104

BOK105

BH3-only Pro-

apoptotic

Activator–binds to pro-

apoptotic and anti-

apoptotic Bcl-2 multiregion

proteins13

BIM

BID

Puma

Mule13,106

Sensitizer–displaces

activator BH3-only proteins

from anti-apoptotic

proteins to promote

apoptosis13

BAD

Noxa

BIK./BLK

BMF

HRK/DP5

Beclin-1

Potential pro-apoptotic BCL-Rambo

(BCL2L13)107

BCL-G

(BCL2L14)107

MCL-1S108

MCL-1ES108
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Table 2 Roles within the anti-apoptotic Bcl-2 subfamily3,19,54,59,108–115

Name of gene/ 
role of isoform/level of 
endogenous expression 

Gene splice control mechanism / name of isoform /  
primary structure 

BCL-2 

Anti-apoptotic: highly 
expressed in B-cell 
lymphomas with t(14:18) 
translocation [3]  

Role unknown:  
Low expression in healthy 
cells compared to BCL2α; 
increased ratio of 
expression in blood and 
bone marrow of CML 
patients [109] 

BCL-2α

BCL-2β

BCL-X/BCL2L1 
Anti-apoptotic: confers 
survival when 
overexpressed in cell 
lines deprived of growth 
factor [19]. 
Overexpression in 
tumours can increase risk 
of metastasis [110]. 

Pro-apoptotic: inhibits 
BCL-2 from enhancing 
survival, generally 
expressed in cells with 
high turnover rate [19], 
can sensitise cells to 
chemotherapy agents 
[54]. 

BCL-XL 

BCL-XS 

MCL-1 

Anti-apoptotic: increases 
when cells are exposed to 
cell-survival inducing 
tumorigenic compounds, 
expressed in viable cells 
[108]. 

Pro-apoptotic [108]: Very 
low expression in oral 
cancer tissue compared 
to MCL-1 

Pro-apoptotic [59]: Very 
low expression in oral 
cancer tissue compared 
to MCL-1 [111]

MCL-1L 

MCL-1S 

MCL-1ES 
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BCL-X
The BCL-X or BCL2L1 (BCL2-like 1) gene has 44%

homology to BCL-2. It has two well-known isoforms,
BCL-XL and BCL-XS (Table 2), as well as a number of
other characterised isoforms16,17. The two major isoforms
arise from alternative splicing of BCL-X; splicing at the
distal end of the 5′ splice site within the first coding exon
for production of BCL-XL and at the proximal end for
BCL-XS. Interestingly, the two isoforms have a different
role in apoptosis. While BCL-XL is anti-apoptotic, BCL-
XS is pro-apoptotic. Overexpression of BCL-XL, but not
BCL-XS, confers survival in IL-3-dependent cells follow-
ing IL-3 deprivation18. Transfection of these IL-3-
dependent cells with BCL-XS reinstates their sensitivity
to IL-3 removal, regardless of levels of anti-apoptotic
BCL-219. This protective effect has been seen in several
cell types, in response to chemotherapeutic drug treat-
ment and growth factor removal20.
The BCL-XL protein is comprised of seven alpha-heli-

ces, where the two central hydrophobic helices (α5 and
α6) are surrounded by five amphipathic helices (α3, α6,
α1, α2, and α7). The BH1, BH2, and BH3 domains sit in
close proximity, and form a hydrophobic cleft for binding
other family members. The C-terminal transmembrane
domain extends from the α7 helix. The N-terminal helix

(α1) is essential for maintenance of structure stabilisation
as it forms extensive interactions with the other helices.
The BH3 domain is contained within the α2 helix, the
BH1 domain across the α4 and α5, and BH2 across α6 and
α721.
The protein structure of BCL-XS has not been com-

prehensively described, but the loss of both BH1 and BH2
domains would significantly alter the hydrophobic bind-
ing cleft22. While BCL-XL exerts its anti-apoptotic reg-
ulation by formation of heterodimers with both BAX and
BAK, the pro-apoptotic function of BCL-XS is derived
from its capacity to disrupt the BAK/VDAC complex
through its interaction with voltage-dependent anion
channel (VDAC), thus freeing BAK for activation23. This
highlights the difference in binding capacity between the
two isoforms.
Since this discovery of the alternate functions of the two

variants, the mechanisms of splicing control of the BCL-X
gene have been a matter of some interest. It has been
demonstrated that switching of splicing favour is induced
by cellular stress, specifically DNA damage24,25, protein
synthesis stalling26, and protein kinase C inhibition27,28.
The induction of generic cellular stress via treatment with
the drug ceramide as well as the combination of
epigallocatechin-3-gallate (EGCG) and non-steroidal anti-

BCL-W/BCL2L2 (BCL2-
like 2) 

Anti-apoptotic: increased 
expression confers 
resistance to multiple 
cytotoxic insults [112] 

Unknown. 

BCL-W (Isoform 1) 

BCL-W (Isoform 2) 

BFL-1/A1 

Anti-apoptotic: Confers 
survival advantage in 
monocytes [113], 
correlation between 
expression and stomach 
cancer development 
[114]. 

Anti-apoptotic: The 
protein is localised to the 
nucleus and has anti-
apoptotic activity [115]. 

BFL-1/A1 (Isoform 1) 

BFL-1/A1 (Isoform 2) 
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inflammatory (ibuprofen) have also been shown to shift
splice favour29,30.
Immunoprecipitation assays on known regulatory

regions have identified proteins essential to BCL-X splice
control, such as HNRNPK and PTBP131,32. In addition,
investigation of known pro-apoptotic transcription factor
targets (SC35 via E2F1)25, RNA binding proteins (SAM68,
SAP155)33,34, splice modulators (hnRNP F/H, SRp30c,
RBm25, Akt SUMO, TCERG1)35–39, and pathways
demonstrated to shift Bcl-Xs splicing favour (SB1 and
RBM25)24,37, have identified a number of other spliceo-
somal and RNA binding proteins which are involved in
BCL-X splicing regulation. As well as these proteins, a
lncRNA, RNA INXS, transcribed from the opposite strand
of BCL-X, and proto-oncogenes FBI-1 and FYN, are
capable of modulating SAM68 activity in favour of BCL-
XS splicing40,41.
BCL-XL is also known to be involved in calcium sig-

nalling regulation via IP3R and VDAC142,43, can regulate
Ca2+ homeostasis when localised at the endoplasmic
reticulum44 and reduce mitochondrial Ca2+ uptake45. The
RNA-binding protein HuR, a translational repressor of
BCL-XL, can also affect maintenance of mitochondrial
morphology, which regulates cellular apoptosis, through
translational control of BCL-XL expression

46. BCL-XL has
been linked to non-apoptotic cell death by binding the
tumour suppressor Beclin 1, subsequently inhibiting
autophagy47. The overexpression of BCL-XL has been
shown to protect endothelial cells from TNF-mediated
apoptosis and is involved in inflammatory response by
inhibiting the activation of NF-κB and thus the upregu-
lation of proinflammatory genes48. Interestingly, BCL-XL

has also been shown to have apoptosis-independent
function in metastasis in pancreatic neuroendocrine
tumour and breast cancer cell lines via nuclear promotion
of epithelial–mesenchymal transition, migration, invasion
and stemness49 and in chemoresistance via RAS interac-
tion and influence on EMT and regulation of cancer-
initiating cell (CICs)50.
Interestingly, despite the mass of research conducted on

BCL-XL and BCL-X splicing control, there is relatively
little known about BCL-XS. It is a BAK-dependent pro-
apoptotic protein23,51,52, but any roles outside of apoptosis
regulation have not yet been identified. Induction of an
increased ratio of BCL-XS to BCL-XL or overexpression of
BCL-XS in cancer cell lines have been shown to have a
pro-apoptotic effect20,53–55.

MCL-1
MCL-1 (myeloid leukemia sequence 1) was initially

discovered due to its upregulation in the MC-1 hemato-
poietic cell line during the differentiation from monocyte
to macrophage56. At the time of discovery, the MCL-1L
transcript was the only known transcript, and it was

rapidly designated as anti-apoptotic after overexpression
was observed to protect cells from heat shock57. However,
there are now three known isoforms of the gene; MCL-1L,
MCl-1S and MCL-1ES (Table 2). Similar to the BCL-X
isoforms, the three proteins have different roles in the
regulation of apoptosis; MCL-1L is anti-apoptotic, while
MCL-1S and MCL-1ES are both pro-apoptotic58,59.
The C-terminal domain of MCL-1L is 350 amino acids

long and has sequence homology with BCL-2. A central
hydrophobic helix (α5) is surrounded by a set of amphi-
pathic helices, which pack tightly against it (α1, α2, α3, α4,
α5, α6, α7), where α3 and α4 are less densely packed, and
BH1 is contained within α5 and α6. Helices α2, α3 and α4
form the characteristic hydrophobic binding groove and
contain the BH3 domain, where α5 and α8 form the base
of the groove60. MCL-1L also harbours a C-terminal
transmembrane domain58,60. Unlike other members of the
BCL-2 family, the MCL-1L N-terminus contains a PEST
sequence that is associated with rapidly degrading pro-
teins, as well as multiple sites for phosphorylation and
caspase cleavage sequences61. These post-translational
modifications can change protein stability and function,
and consequently, MCL-1L has a high rate of turnover
within the cell and its degradation can be modulated at
several points along the N-terminus58,62.
Alternatively, skipping of the second exon of the MCL-1

gene gives rise to the 271 amino acid MCL-1S (Table 2).
This variant retains the BH3, BH4 and PEST domains, but
not the BH1, BH2 and transmembrane domains. This
gives rise to an isoform with features characteristic of a
BH3-only protein, in which heterodimerization with anti-
apoptotic MCL-1L can block its pro-apoptotic activity. In
addition, MCL-1S is incapable of binding with BAX, BAK
and BIM, whereas BCL-XL interacts strongly with these
family members58. Besides this initial study that described
the key features of MCL-1S, there is relatively little known
about the protein.
A third isoform, MCL-1ES, has also been identified.

MCL-1ES occurs as a result of alternative splicing within
the first exon at a non-canonical donor-acceptor site. The
resultant protein is 197 amino acids long and lacks the
PEST sequence and BH4 domain present in the other
MCL-1 isoforms (Table 2). This isoform displays a pro-
apoptotic function, with overexpression of this isoform
resulting in decreased resting cell viability and mito-
chondrial integrity, all leading to cell death59. Interest-
ingly, the effects are amplified when MCL-1ES is co-
transfected with MCL-1L, an anti-apoptotic family
member59. Further work has demonstrated that MCL-1ES
localisation to the mitochondria and consequent pro-
apoptotic activity is dependent on its heterodimerization
with MCL-1L59,63. Interestingly, the effect of over-
expression on apoptosis is BAX/BAK-dependent, and
preliminary studies indicate that MCL-1ES can form the
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mitochondrial pores for the initiation of apoptosis by the
release of cytochrome c and activation of MOMP. This
activity is dependent on the BH3 domain of MCL-1ES63.
Although studies have been performed on splicing

control between MCL-1L and MCL-1S, the mechanisms
of MCL-1ES splicing control are still unknown. Much of
the work in delineating MCL-1 splicing regulators was
performed in parallel with BCL-X investigations. For
example, treatment of prostate cancer cell lines with
EGCG/ibuprofen switched splicing favour to the pro-
apoptotic variant for both MCL-1 and BCL-X in a protein
phosphatase 1 (PP1)-dependent manner30. In addition, a
study by Moore et al. (2010) identified that the splicing
regulator ASF/SF2, and protein kinases PLK1 and WEE1,
can shift splicing in favour of MCL-1S64. The same study
identified SAP155 as a driver for transcription of pro-
apoptotic splice variants for both MCL-1 and BCL-X, and
this result has since been validated by other studies64,65.
These data indicate that MCL-1 splicing regulation is
associated with cell cycle control.
Of the three isoforms, only MCL-1L has been found to

have roles outside of apoptosis. Like BCL-2 and BCL-XL,
MCL-1L can regulate autophagy, mitochondrial mor-
phology, and calcium signalling via its interaction with
IP3R66, and is involved in cell cycle control61 and lipid
metabolism67.

BCL-2
BCL-2 was the first member of the family to be iden-

tified, due to its role in B-cell lymphoma. A chromosomal
translocation between chromosomes 14 and 18 in this
disease, t(14:18), causes enhancement of BCL-2

transcription, which confers a survival advantage to the
cancerous cells1–3. The BCL-2 gene is comprised of three
exons; the first two exons encode the four BH domains,
whereas the exon 3 encodes the transmembrane domain
that anchors the protein to intracellular membranes68,69

(Fig. 1). There are two isoforms of BCL-2; BCL-2α and
BCL-2β. While BCL-2α is anti-apoptotic3,70–72, BCL-2β is
yet to be fully characterised. It lacks exon 3 and thus the
transmembrane-anchoring domain, but otherwise shares
the same BH domains and general structure of BCL-2α
(Fig. 1). BCL-2β also has an isoform-specific 9-amino acid
stretch at its C-terminal domain73 (Table 2).

Roles of BCL-2α
The structure of the BCL-2α protein is similar to BCL-

XL, with two central hydrophobic helices (α1 and α2)
surrounded by five α-helices, and a C-terminal trans-
membrane domain. Like BCL-XL, this characteristic
hydrophobic groove is comprised of helices 3, 4, 5 and 6.
The structure of the BCL-2β protein is yet to be ascer-
tained, but is known to lack the transmembrane domain,
although the significance of this is unclear. While sev-
eral studies have concluded that a C-truncated BCL-2α
is incapable of localising to appropriate organelles, bind
target proteins or regulate apoptosis74–78, others
have disputed the significance of a transmembrane
domain79–81. However, it is important to note that all
these studies have been performed on truncated BCL-2α
but not on wildtype BCL-2β.
BCL-2α binds to BAX via its BH1 and BH2 domains,

and this interaction is central to its role in apoptosis
regulation, as demonstrated in cell lines in response to

Fig. 1 Schematic diagram of BCL-2. Comprised of three exons, with the first two exons encoding the four BH domains and exon 3 encoding the
transmembrane domain, with BCL-2β lacking the transmembrane domain
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cellular stress5. However, in several models of stress, such
as gamma irradiation, IL-3 deprivation of dependent cells,
glucocorticoid and cytotoxic drug treatment, and heat
shock, it has been shown that, where BCL-2 is upregu-
lated and capable of binding BAX, the capacity of cells to
undergo apoptosis is reduced3,70–72. These investigations
have emphasised the significance of the BH domains.
Like MCL-1L and BCL-XL, BCL-2α is the most exten-

sively studied isoform and is involved in autophagy via
interaction with Beclin 1, as well as calcium signalling,
and has roles outside of apoptosis regulation82,83. Inter-
estingly, the interaction between BCL-2 and Beclin 1
occurs at the same site as BH3-only proteins and so
competition for the site exists between these proteins84. It
has also been implicated in DNA repair, including
nucleotide excision repair, base excision repair, mismatch
repair and double-strand break repair82,85–87. In addition,

BCL-2α can regulate a number of major transcription
factors, including p5388, NF-κB, AP1, CRE and NFAT77.
The different roles of BCL-2α are summarised in Table 3.

Current evidence for a role of BCL2β
Despite the accumulation of evidence for the many roles

of BCL-2α, there has been very little investigation into the
role of BCL-2β. Functional protein studies on BCL-2
primarily focuses on the wildtype BCL-2α. Where the
BCL-2β isoform is addressed, a recombinant version of a
C-terminal-truncated BCL-2α is used for characterisation
studies and it has been assumed this structure shares the
same function as BCL-2β, as both lack the transmem-
brane domain73. Characterisation studies on the BCL-2β
isoform have so far been limited to cloned versions of the
genes, which do not accurately reflect the naturally-
occurring sequence74,76,78,89.

Table 3 Alternative roles for BCL-2α, other than apoptosis

Cellular process Description of feature Role of Bcl-2

Autophagy Autophagy is a survival mechanism resorted to during

starvation, wherein intracellular contents can be

recycled for nutritional value.

BCL-2α is capable of inhibiting autophagy via its

interaction with Beclin-1, although only when localised

at the ER membrane116

Apoptosis via p53 p53 is a major tumour suppressor. BCL-2α can prevent p53 from up regulating pro-

apoptotic genes. Interestingly, p53 can also negatively

regulate the BCL-2 protein88,117

Transcription factor control Transcription factors regulate gene expression. BCL-2 can regulate the transcription factors NF-κB, AP1,

CRE and NFAT by blocking them from entering the

nucleus

Regulation of Ca2+ at the

endoplasmic reticulum

The ER is the central storage centre for Ca2+, a major

cellular signalling molecule.

BCL-2 is capable of modulating the activity of IP3R

(a Ca2+ channel)42

Nucleotide excision repair (NER) NER repairs bulky, helix distorting DNA damage

induced by UV irradiation.

Overexpression of BCL-2 attenuates cyclobutane

pyrimidine dimer (CPD) removal and the stalling of DNA

replication following exposure to UV light82

Base excision Repair (BER) BER occurs throughout the cell cycle to repair non-helix

distorting lesions, such as mismatched or damaged

single bases.

Overexpression of BCL-2 downregulates BER via APE1

blockage85,118,119

Mismatch repair (MMR) MMR repairs bases which have been mis-incorporated

during DNA replication and recombination.

BCL-2 can inhibit MMR via its direct interaction with

MSH286,120

Double-strand break repair (DSBR)

and non-homologous end joining

(NHEJ)

NHEJ is a mechanism of DSBR that rejoins short DNA

overhangs (microhomologies) on the ends of either

strand of the broken DNA.

Cells with higher expression of BCL-2 had lower levels of

end joining and vice versa. This was thought to be due

to the ability of BCL-2 to interact with KU proteins, which

form a molecular scaffold for the DSBR machinery87,121.

BCL-2 can also regulate DSBR via its interaction with

BRCA189

DSBR and single-strand break

repair (SSBR) via PARP1

PARP1 is involved in SSBR and DSBR. BCL-2 can relocate to sites on the chromatin, where it

can directly interact with and inhibit PARP1. This

interaction can be disrupted by BH3-only BCL-2 family

members (and BH3 mimetic drugs)122
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Studies that have assessed the significance of the
transmembrane domain on the capacity for BCL-2 to
regulate apoptosis and p53 and to interact with BAX and
BRCA1 concluded that the domain was vital for the effi-
ciency of BCL-2 in these roles74,76,78,90. In contrast, stu-
dies that have concluded that the transmembrane domain
is not essential for function were focused on the separate
steps of apoptosis activation and/or apoptosis across dif-
ferent cell types79,80. Despite these inconsistencies in the
literature, it is important to note that C-terminal-
truncated BCL-2α does not accurately represent BCL-
2β, due to the isoform’s specific 9-amino acid C-terminal
sequence (see Fig. 2).

Targeting the BCL2 family for therapeutic purposes
As the BCL-X and BCL-2 families have essential roles in

apoptotic regulation and were initially discovered in the
cancer setting, they have garnered interest as therapeutic
targets. Several studies have tried to regulate apoptosis
using retroviral systems91, alteration of localisation
apparatus92, activity-blocking antibodies93, RNAi94 and
miRNAs95. However, the most successful method so far
for targeting the BCL-2 family has been through BH3-
mimetic molecules.

BH3-mimetics
Initial proof-of-concept studies that highlighted the

potential of BH3-mimetics showed that small molecules
which bound to the hydrophobic groove of BCL-XL could
block anti-apoptotic function96. Since then, many differ-
ent BH3-mimetics have been developed, and these are
summarized in Table 4.
Several studies have highlighted the significance of low

MCL1 expression conferring sensitivity to BH3-mimetics
in cell lines97,98. MCL-1L is one of the most potent of the
BCL-2 family as it has a significantly high affinity with
pro-apoptotic members. Several molecules with the
potential for binding MCL-1L have been developed, A-
1210477 was an early molecule proposed to act directly on
MCL-1L to promote apoptosis in cell lines99,100. More
recently, S63845 a small molecule that binds with high
affinity to the BH3-binding groove of MCL1 has been
shown to kill MCL1-dependent cancer cells, including
multiple myeloma, leukaemia and lymphoma cells101.

Manipulation of splicing
Splicing alters the function of BCL-2 members, there-

fore there is potential to target this therapeutically by
manipulation of gene splicing to favour pro-apoptotic

Fig. 2 Primary protein structures of BCL-2α and BCL-2β. This figure is based on experiments on BCL-2 and the highly homologous BCL-XL. It
illustrates the similarities between the isoforms. BH1, BH2, and BH3 are required for heterodimerisation with BCL-2 family members5,21,123. Channels
are formed by α-helices 5 and 6124. Phosphorylation by MAPK8 (mitogen-activated kinase 8) at specific residues between BH4 and BH3 can modify
binding to Beclin-1125. Caspase-3 cleavage at amino acids 34–35 can abrogate protein function126. The two proteins are identical up to amino acid
196, where they start to differ, with BCL-2β lacking a transmembrane domain and having a specific C-terminal 9-amino acid sequence73. This figure
was adapted from Belka and Budach (2002)127
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transcripts. Introduction of splicing-switching oligonu-
cleotides that alter BCL-X splicing from BCL-XL to the
pro-apoptotic BCL-XS in melanoma cell culture and
tumour xenografts was shown to reduce tumour load102.
Additionally, the transcription factor FBI-1 has been
shown to have a role in alternative splicing by interacting
with splicing factor SAM68, thus reducing binding of
SAM68 to BCL-X and resulting in the preferential spli-
cing of anti-apoptotic BCL-XL

41. The silencing of FBI-1
expression restores the ability of SAM68 to induce spli-
cing of pro-apoptotic BCL-XS

41.
Another way to manipulate splicing is by targeting

SAP155, a splicing factor which acts on MCL-1 and BCL-
X. Inhibition of this protein by meaymycin B, and potent
inhibitor of SAP155, has been used to switch splicing in
favour of pro-apoptotic MCL-1s in cell culture65. Inter-
estingly, the combination of meaymycin B with BH3-
mimetic ABT-737 also induces apoptosis65. The activity
of SAP155 has also been successfully downregulated using
an anti-SAP155 antibody, which induced an increase in
the pro-apoptotic BCL-XS isoform compared to BCL-XL,
and this method can be used to prime the cell for
response to apoptosis-inducing treatment33.
Targeting splicing factors to favour the expression of

pro-apoptosis isoforms is appealing but the non-specific
nature of splicing factors will need to be addressed for this
to be a superior target than BH3 mimetics. A more tar-
geted approach to manipulating splicing is the use of

specific antisense oligonucleotides. Antisense oligonu-
cleotides designed to knock-down exon 2 in MCL-1 pre-
mRNA can shift splicing pattern from MCL-1L to MCL-
1S103. This increases the expression of pro-apoptotic
MCL-1S and reduces the level of anti-apoptotic MCL-1L,
and was shown to induce apoptosis in basal cell carci-
noma and gastric adenocarcinoma cell lines103. Manip-
ulation of splicing remains an area of interest that requires
further development to be a targeted as a treatment with
clinical potential.

Summary
The BCL-2 family is involved in the regulation of

apoptosis and therefore plays a vital role in protecting
against cancer. Targeting the apoptotic pathway directly is
a valid option for improving or developing new che-
motherapies, but it is imperative that we understand the
molecules, which we are attempting to modify, manip-
ulate or mimic. As demonstrated in this review, there are
gaps in knowledge regarding isoforms of anti-apoptotic
BCL-2 family isoforms. Further studies focusing on
understanding the variety of splice variants and isoforms
and their biological role in apoptosis is required for tar-
gets of this pathway to reach their full potential.
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