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Abstract 

The interaction of a small molecule with a protein target depends on its ability to adopt a three-dimensional structure 
that is complementary. Therefore, complete and rapid prediction of the conformational space a small molecule can 
sample is critical for both structure- and ligand-based drug discovery algorithms such as small molecule docking or 
three-dimensional quantitative structure–activity relationships. Here we have derived a database of small molecule 
fragments frequently sampled in experimental structures within the Cambridge Structure Database and the Protein 
Data Bank. Likely conformations of these fragments are stored as ‘rotamers’ in analogy to amino acid side chain rota-
mer libraries used for rapid sampling of protein conformational space. Explicit fragments take into account correla-
tions between multiple torsion bonds and effect of substituents on torsional profiles. A conformational ensemble 
for small molecules can then be generated by recombining fragment rotamers with a Monte Carlo search strategy. 
BCL::CONF was benchmarked against other conformer generator methods including CONFGEN, MOE, OMEGA and RDKIT in 
its ability to recover experimentally determined protein bound conformations of small molecules, diversity of confor-
mational ensembles, and sampling rate. BCL::CONF recovers at least one conformation with a root mean square devia-
tion of 2 Å or better to the experimental structure for 99 % of the small molecules in the VERNALIS benchmark dataset. 
The ‘rotamer’ approach will allow integration of BCL::CONF into respective computational biology programs such as 
ROSETTA.
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Background
�e interactions between small molecules and proteins 
are important for receptors, transporters, or enzymes to 
recognize their substrates as well as for small molecule 
therapeutics to bind to their target protein. �e molec-
ular interaction and, hence, the biological function of a 
small molecule is related to its three-dimensional struc-
ture when interacting with the protein. In solution, small 
molecules are often flexible and exist as an ensemble of 
conformations in equilibrium with one another. �e bio-
logically active conformation may be a single conforma-
tion or a small subset from the conformations sampled 

in solution or a new conformation, induced by protein 
binding. A uniform sampling of all energetically acces-
sible small molecule conformations is essential for the 
success of protein small molecule docking simulations 
[1] for example in structure-based computer-aided drug 
discovery/design (CADD) [1–3]. However, also ligand-
based CADD applications such as three-dimensional 
quantitative structure activity relationships (3D-QSAR) 
predictions [4] or pharmacophore modeling [5] rely on 
the use of conformational ensembles of molecules that 
capture the bioactive conformation as one of a diverse set 
of energetically accessible conformations [6, 7].

Conformational sampling methods

Table 1 summarizes some of the existing conformational 
sampling methods. Conformation sampling methods can 
be characterized in several ways. First, the allowed search 
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space can be analyzed: some methods search the entire 
conformational space, i.e. bond length, angles and tor-
sions can be altered—for example a molecular dynamics 
simulation in Cartesian space. Other methods restrict the 
search space to torsion angles only holding bond length 
and angles fixed. Another approach involves using pre-
existing knowledge of small-molecule conformations 
to restrict the conformational search space even further 
to likely torsion angles or combinations thereof. Such 
knowledge-based methods derive torsion angle prefer-
ences from molecular mechanics or quantum chemical 
simulations of small molecules or structural databases 
like Cambridge Structure Database [8] (CSD) or Protein 
Data Bank [9] (PDB).

In addition, it is helpful to single out fragment-based 
approaches: �is search strategy splits a molecule of 
interest and samples conformations of smaller fragments 

independently. Candidate conformations of the entire 
molecule are computed by re-combining constituent 
fragment conformations. In fragment-based methods, 
fragments are reused during conformer generation which 
improves the time-efficiency of sampling. On the other 
hand, these methods operate on the assumption that all 
low energy conformations can be created by combina-
tions of low-energy fragments—an assumption that is not 
always fulfilled.

An alternative classification approach focuses on 
whether the search space is sampled systematically in its 
entirety or a search algorithm follows a trajectory that 
seeks to restrict the search space to low energy confor-
mations. If the conformational space is sufficiently small, 
systematic approaches can create all possible conforma-
tions iteratively and keep all low-energy conformations. 
An advantage is complete sampling of the entire search 

Table 1 Conformation sampling methods

Method Search space Search strategy Search method Scoring function

CAESAR [39] Incremental search of torsion 
angles combined with distance 
geometry for ring systems

Fragment based Systematic CHARMm force field

CATALYST [40] Incremental search of torsion 
angles with subsequent energy 
minimization

Non-fragment based Simulation (MD) CHARMm force field

CONAN [41] Incremental search of torsion 
angles

Fragment based Systematic –

CONFAB [42] Incremental search of torsion 
angles

Non-fragment based Systematic MMFF94

CONFGEN [31] Random walk on energy surface 
calculated using a truncated ver-
sion of OPLS_2001

Non-fragment based Simulation (MC) MMFFs/OPLs_2001

CORINA [43] Knowledge based rules derived 
from CSD

Non-fragment based Systematic Reduced force field for 
optimizing only ring 
systems

ENUMERATED TORSIONS (et) [18] Incremental search of rule-based 
torsion angles

Non-fragment based Systematic –

MIMUMBA [15] Incremental search of knowledge-
based torsion angles from CSD

Non-fragment based Systematic Relative frequency of 
experimentally observed 
conformations

MOE (low mode MD) [44] Constant temperature MD Non-fragment based Simulation (MD) MMFF94

MOE (stochastic search) [22] Random perturbations of rotatable 
bonds in increments biased 
around 30°

Non-fragment based Simulation (MC) MMFF94

MOE (CONFIMPORT) [22] Pregenerated fragment conforma-
tions obtained from stochastic-
search

Fragment-based Simulation MMFF94

MOE (systematic) [32] Incremental search of torsion 
angles

Non-fragment based Systematic MMFF94

OMEGA [33] Knowledge based torsions from 
analysis of molecules in PDB and 
conformations generated by 
MMFF94

Fragment based Systematic MMFF94

RDKIT [34] Distance geometry Non-fragment based Simulation (distance 
geometry)

UFF
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space, one disadvantage is slowness. Trajectory-based 
methods use random or directed perturbations to alter 
a starting conformation and the resulting conformation 
is evaluated energetically. In a feed-back loop this energy 
and possibly derived forces determine the trajectory of 
the simulation. Molecular dynamics [10, 11], distance 
geometry [12], genetic algorithms [5], and Monte Carlo 
[11] (MC) are commonly used simulation methods for 
the conformational sampling of small molecules.

Scoring functions

Most methods score conformations using some form of 
molecular mechanics energy function. Force field based 
energy calculations use most frequently the Merck 
molecular force field (MMFF) [13] or the Chemistry at 
Harvard Molecular Mechanics (CHARMm) force field 
[14]. Some methods modify the default versions of these 
force fields by modifying individual scoring terms or 
using only a subset of the scoring terms. One alternative 
approach, as used in M [15], to scoring small 
molecule conformations can be derived from knowledge-
based scoring functions used in protein structure pre-
diction that analyze the frequency of geometric features 
observed in structural databases such as the PDB or CSD.

Knowledge based conformation sampling

Conformations of small molecules can be restricted in 
terms of commonly seen conformations of constituent 
fragments in structure databases like CSD. Brameld et al. 
[16] have shown that conformations of fragments sam-
pled in the CSD are an accurate representation of con-
formational space seen in drug-like molecules in complex 
with protein as observed in the PDB. Fragments occur in 
these structure databases in different chemical environ-
ments, leading to them being observed in different con-
formations. �e central hypothesis of this study is that 
while not all small molecules have been crystallized in 
all possible conformations, the conformational space 
accessible to sufficiently small fragments is adequately 
sampled.

Existing methods like C [17] derive torsion 
profiles for different dihedral bond types from structure 
databases. C treats dihedral bonds as uncorre-
lated and does not take into account substituent effects. 
A rule-based proprietary method, developed by Merck 
research laboratories for internal use, known as et for 
enumerated torsions uses correlated torsion angles 
to some extent for conformational sampling [18]. �e 
method overlaps multiple fragments containing topo-
logically adjacent rotatable bonds to extend these frag-
ments until they span the entire small molecule. In et a 
proprietary ‘atom typer’ is used to express molecular 
fragments as unambiguous patterns [19]. �e pattern 

along with associated data for observed torsion angles 
and frequency constitutes a rule. As of 2001, authors 
reported that 797 rules had been derived over a period of 
several years. However these patterns consider only the 
four atoms involved in a dihedral bond and do not take 
into account effect of substituents on torsional profile of 
bonds.

�e algorithm BCL::C described in the present 
study goes beyond previous work by using torsional pro-
file of multiple consecutive dihedral bonds and capturing 
effect of substituents on their torsion profiles. All frag-
ment conformations sampled frequently in the CSD and 
PDB are considered a knowledge-based ‘rule’ independ-
ent of size or number of rotatable bonds. �is fragment 
conformation approach allows BCL::C to capture 
correlations in torsion states for multiple consecutive 
dihedral bonds in contrast to other methods that treat 
likely torsion angle states for consecutive bonds in an 
uncorrelated way. Conformations observed frequently 
for one fragment are assumed to represent a local energy 
minimum and are collected in a database. �e use of con-
formations of fragments has also the advantage that these 
fragment conformations already reside in locally opti-
mal geometries so that only non-local interactions, i.e. 
clashes, need to be evaluated when fragments are recom-
bined. Lastly, as explicit fragments are used effects of 
substituents on torsional profiles of rotatable bonds are 
taken into account. Brameld et al. have shown the effect 
of substitution on the torsion distribution of common 
acyclic organic fragments [16].

We expect that the algorithm is therefore particularly 
tailored for ‘drug-like’ small molecules which are over-
represented in the CSD and PDB databases. BCL::C 
mimics the ‘rotamer’ libraries created to capture amino 
acid side chain conformations seen in protein structures 
within the PDB [20] which, ultimately, will ease its inte-
gration with protein modeling packages such as R 
[21]. BCL::C scoring includes a clash score that 
avoids atom overlap as well as a knowledge-based scoring 
function that scores conformations based on probabili-
ties of fragment conformations that it contains.

To benchmark BCL::C we use a curated dataset 
containing drug-like ligands found in complex with pro-
teins in the PDB. �e “V generic compound set” 
[22] has been used in several studies to evaluate the per-
formance of conformational sampling methods enabling 
a direct comparison of BCL::C to other methods [23, 
24]. �e benchmark study tests for recovery of protein-
bound conformation of the ligand and also the ability of 
BCL::C to produce a diverse set of conformations. To 
remove any bias during benchmarking, the ligands found 
in the V dataset were removed from the PDB 
ligand library. Additionally, ligands were removed from 
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the PDB ligand library if bound to proteins or homo-
logues of proteins present in the V dataset.

Implementation
BCL::C uses fragments generated from decompos-
ing molecules found in CSD and PDB. For this purpose, 
non-ring bonds of each molecule are broken iteratively 
to generate all possible fragments. In a second step all 
occurrences of one fragment within the structure data-
bases are collected and clustered according to discrete 
dihedral angle bins. A conformer is then defined as a 
unique conformation represented as a set of integer 
numbers, one for each dihedral bond, identifying the bin. 
�is procedure is similar to the definition of ‘rotamers’ 
that are used to set likely amino acid side chain confor-
mations [20]. A conformer needs to be seen at least four 
times in the database to be considered a likely conforma-
tion of a fragment. It is then added to the rotamer library 
for sampling. �e flowchart for algorithm implemented 
in BCL::C is shown in Fig. 1.

Fragment library

Small organic molecules from the CSD and PDB were 
used for generating fragments. �e PDB ligands were 
obtained from the refined dataset in the PDB data-
base [25–27]. We removed any molecules for which BCL 
could not assign correct atom types, molecules with 
missing 3D coordinates and bad geometries in terms of 
unrealistic bond-lengths or bond-angles and non-planar 
aromatic rings or sp2–sp2 bonds. �is resulted in a data-
base containing 113,339 unique molecules. Molecules 
were broken iteratively at non-ring bonds which gener-
ated 56,818,272 unique fragments.

Rotamer library

�e rotamer library was generated for fragments that are 
seen frequently in same conformations. A unique frag-
ment rotamer/conformation is identified by a set of inte-
gers, one for each dihedral bond. �e dihedral bonds of 
a rotamer are represented as a set of integers depend-
ing on the angle measure as explained in Fig. 2. �e fre-
quency distribution of dihedral angle measures seen in 
CSD, shown in Fig. 2, suggests that local minima for dihe-
dral angles occur at canonical values of 0°, 60°, 120°, and 
180° and so on. In addition, for certain bond types such 
as aromatic-chain-aromatic or aromatic-chain-any angles 
of 90° and 270° are likely (Additional file 1: Figure S1A). 
Hence, while torsion angles of 90° and 270° are not local 
maxima when summing over all torsions, they are likely 
conformations for certain types of torsion angles. �ere-
fore, in order to assign as many likely torsion angles as 
possible unambiguously and close to a bin center, 12 bins 
each of which is 30° wide are created centered at 0°, 30°, 

60°, 90° and so on. Binning strategies using 30° produces 
closer to native conformations when 60° binning is used 
(see “Results and discussion”). All the bonds including the 
ones that are inside ring systems are described by an inte-
ger so that a rotamer can be described as a string of inte-
gers. �is string is called the bin-signature of a rotamer.

Determining dihedral angles

Since multiple dihedral angles can be measured at each 
torsion bond, a scheme is required to prioritize which 
dihedral angle to use and arrive at unambiguous bin-
signatures. �erefore a priority dihedral angle is defined. 
�is is accomplished using rules analogous to the Cahn–
Ingold–Prelog (CIP) system [28]. For example, as shown 
in Fig. 3a, 2-butanol has one torsion bond but two dihe-
dral bonds about the single rotatable bond. According 
to CIP rules, the O–C–C–C dihedral angle will have a 
higher priority over the C–C–C–C dihedral angle. If out 
of three possible dihedral angles, two dihedral angles of 
equally high priority exist, then the third dihedral angle 
with lowest priority is used. If ambiguity still exists in 
assigning unique dihedral bonds, for example in the case 
where all dihedral angles have the same priority, the one 
with the smallest angle measure is chosen. Priority dihe-
dral bonds in rings are defined in a special way in that all 
atoms constituting a priority bond are contained in the 
ring, as shown in Fig. 3b for cyclohexanol. �is ensures 
that for the same ring conformation, a substituted ring 
system has the same dihedral-signature as an un-substi-
tuted ring system. If a fused ring system is present, then 
priority dihedrals are determined using atom priorities 
and the assumption that all atoms of the ring system are 
part of one ring (Fig. 3c). BCL::C can identify differ-
ent ring conformations and use these in conformational 
sampling. Since dihedral angles are assigned in a unique 
way for a molecule of interest, a unique rotamer of the 
molecule has a unique dihedral bin signature. Table  2 
shows different rotamers for a fragment from the rota-
mer library and their bin signatures. 

Searching rotamers

In building the rotamer library, all instances of every 
fragment are collected in the molecular database using 
a graph isomorphism search [29]. For each fragment, 
all unique rotamers are identified using dihedral bin 
signatures. �en statistics is gathered for each rotamer 
including rotamer counts, i.e. the number of times a 
rotamer is seen in the database, and dihedral angle sta-
tistics, i.e. the average angle measure and standard devi-
ation of dihedral bonds within each bin. A representative 
structure for a fragment is obtained by clustering all 
instances of the most frequently observed rotamer in 
the structure database on the basis of root mean square 
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deviation (RMSD) after superposition. In addition, if 
a fragment contains a ring in different conformations, 
explicit coordinates are stored for each rotamer. A con-
former is added to the rotamer library of a fragment if 
it is seen at least four times in the structure databases 
(combined CSD and PDB), i.e. it can be considered a 
likely conformation for that fragment. A total of 231,049 
fragments are observed that have at least one con-
former which is seen at least four times in the molecu-
lar database and hence these fragments are retained in 
the rotamer library. Table  3 shows the rotatable bond 

distribution and rotamer distribution of fragments in the 
rotamer library.

Search fragments from the rotamer library that are 

contained in the molecule of interest

Conformational sampling begins with searching frag-
ments contained in a molecule of interest. �is involves 
substructure searches to identify all suitable fragments 
in the rotamer library. A hierarchical search has been 
implemented to minimize the number of substructure 
searches. �e rotamer library is represented as multiple 

Fig. 1 General scheme for BCL::CONF conformation generator. a Scheme for generating the rotamer library. b Flowchart depicting conformation 
sampling process. See text for a detailed description
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rooted graphs where each node is a unique constitution. 
�e root nodes are not contained in any other fragments. 
Child nodes are such that the parent node is an imme-
diate substructure. Figure  4 illustrates a rooted graph 
with benzene as root. Benzene is an immediate substruc-
ture of its child nodes i.e. toluene-like fragment which 
is an immediate substructure of cyclohexylbenzene-like 
fragment.

�e fragment searching begins at the root node of 
graphs. If the root node is contained in the query mol-
ecule, all its immediate child nodes will be searched to 
determine if they are contained within the molecule of 
interest. For all child nodes contained, their immedi-
ate child notes are considered and so on. In Fig. 4 frag-
ments that are part of molecule are colored in blue—i.e. 
a successful substructure search. Fragments colored 
red indicate that a substructure search was performed 
but unsuccessful. �is terminates further searches in 
this branch of the tree. Fragments colored in black are 
not considered for a substructure search, because their 

parent fragments were not contained within the mol-
ecule of interest (colored red). �e edges in the graph are 
directed from parent to child nodes and represent search 
paths that can be taken to find all constituent fragments 
in a query molecule. Paths in blue color are actual paths 
that are taken to identify all the fragments contained 
in the molecule interest while the paths in red or black 
are never explored. Search paths in black originate from 
fragments that are not contained with the molecule. Red 
paths represent redundant searches in the tree. �is hier-
archical tree structure of the data enables fast and effi-
cient searching of all the fragments contained within a 
molecule of interest.

Generation of initial 3D structure from minimum set 

of fragments with most likely conformation

An initial 3D conformation is necessary for using the con-
former sampler implemented in BCL::C. �e BCL soft-
ware suite accepts molecules in the MDL [30] format. A 
3D structure generator has been implemented to generate 

Fig. 2 Scheme for torsion angle binning. a The line graph shows the distribution of dihedral angle measurements of all dihedral bonds over all 
the molecules in the CSD. b Torsional angles are binned into 12 uniform parts with each bin represented as an integer. For example −135 to −165 
belongs to bin number 7. Rotamers can thus be represented by a unique key of integers representing each dihedral angle bin
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an initial 3D structure if coordinates are not provided. 
BCL::C can generate starting coordinates from con-
nectivity information provided in the MDL format. When 
coordinates or 3D structure is not available, BCL::C first 
searches for all fragments from the rotamer library that are 
contained in a molecule of interest. �e algorithm identifies 
the minimum number of fragments that can be connected 
to generate molecule of interest. �e most likely conformers 
of fragments are then connected to assemble the molecules 
of interest and generate an initial 3D structure which may or 
may not have clashes between atoms. As this conformation 
only serves as a starting point with the objective to place all 
torsion angles into a locally reasonable conformation and is 
not necessarily part of the output ensemble of conforma-
tions, atom clashes are not a problem.

Monte-Carlo Metropolis sampling for e�cient search 

of conformational space for likely non-clashing 

conformations

Conformational sampling begins by identifying frag-
ments from the rotamer library that are contained in the 
molecule of interest whose conformations need to be 
sampled. From the fragments contained in the molecule 
of interest, a random one is selected and one of its rota-
mers is applied to change the conformation of the mol-
ecule. �e rotamer is selected based on probability of 
its occurence in the structure database (Fig.  1b). If the 
chosen fragment rotamer contains a different ring con-
formation, then the whole molecule is reassembled by 
using the chosen conformer as the starting fragment. By 
default only a subset of rotamers that are observed most 
frequently are used in sampling. �e cutoff value is speci-
fied at half of the probability of the most likely rotamer. If 
more sampling is desired, an option to use the full rota-
mer set can be specified at the command line.

Starting with the input structure of the molecule of 
interest, new conformations are created in a continuous 

MC trajectory. A MC step is accepted or rejected based 
on the Metropolis criterion. �e energy or score used is a 
combination of atom clashes and propensity of observing 
constituent fragment rotamers in structure database. �e 
atom clash score is calculated by evaluating non-bonded 
atom pairs for clashes using Eq. 1.

where dist
def
=  distance between non-bonded atoms i and 

j, cov
def
=  sum of covalent radii of atoms i and j.

Rotamer propensity score (Eq.  2) leverages the statis-
tics on the rotamer of a particular fragment to estimate 
the likelihood of a particular conformation. �e hypoth-
esis is that there is a correlation between frequency of 
occurrence and free energy of a fragment conformation. 
For a given molecular conformation, the observed rota-
mer of each of the constituent fragments is determined. 
�e observed rotamer propensity for a fragment is cal-
culated by dividing observed rotamer count by aver-
age rotamer counts. �e overall conformation score is 
obtained by summing up observed rotamer propensities 
of all the constituent fragments. If, for a fragment none 
of the rotamers are seen in a given conformation, then a 
pseudo rotamer count equal to half of the least common 
rotamer count is used instead. �e propensity score is 
normalized by dividing it by absolute value of maximum 
possible propensity score for the molecule of interest.

(1)

Atom Clash Score =

∑

i>j 2 ∗ scoreatomj

{

0, dist ≥ cov
1, dist ≤ cov

Number of atoms in the molecule

(2)

Propensity Score

=

N
∑

i=0

(

−ln
Ri × FiRj
∑

j FiRj

)/

N
∑

i=0

(

ln
Ri × FiRmax

∑

j FiRj

)

Fig. 3 Determination of priority dihedral bonds in molecules. Bond priorities are determined using rules analogous to Cahn–Ingold–Prelog (CIP) 
rules. In the figure priority dihedral bonds are colored in grey. a The priority dihedral angle of 2-butanol is c4–c3–c2–O. b Priority dihedral bonds 
in cyclohexanol are defined such that all atoms that define priority dihedral angles are in the ring. Thus for bond C1–C2, C3–C2–C1–C6 is the priority 
dihedral angle instead of C3–C2–C1–O. c For multiple ring systems like 1,2,3,4-tetrahydro-1,8-naphthyridine, priority angles are determined by atom 
priority using the assumption that all atoms in the multiple ring system are part of one ring. Thus C2–N1–C8a–N8 is the priority dihedral angle instead 
of C2–N1–C8a–C4a as N8 is counted to be in the same ring system as the N1–C2 bond of interest
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where N
def
=

 number of fragments that are part of the 
molecule of interest, Fi

def
=  ith fragment of molecule, Ri

def
=  

number of rotamers of the ith fragment, Rmax

def
=  counts 

of the most common rotamer, FiRj
def
=  counts of jth rota-

mer of the ith fragment.

Results and discussion
We assess the performance of BCL::C (BCL) with 
curated generic ligand dataset known as the V 
dataset [22], in comparison with C [31], M 
(Confimport) [32], O [33] and RDK [24, 34]. �e 
first metric defined as the completeness criteria is the 
fraction of molecules for which any conformation was 
generated. �e second comparison is the ability of the 
method to produce ligand conformations within a speci-
fied RMSD value to the native conformation of ligands 
in protein–ligand complexes. �is analysis is reported 
as the percentage of molecules whose conformations 
are recovered within a given threshold RMSD value. �e 
third criteria for comparison is diversity, that is how simi-
lar or different are the generated conformations. Finally 
a comparison of the methods on computational speed is 
provided. We also report results for different flavors of 
BCL that use different schemes for rotamer library gen-
eration—(a) using a 60° torsion binning (BCL_60), (b) 
rotamer library derived from only the CSD (BCL_CSD), 
(c) rotamer library containing only single dihedral bond 
torsion profiles (BCL_D).

Table 2 The rotamers of a fragment from the rotamer library

Five rotatable dihedral bonds are labeled in the �gure and for each rotamer, the dihedral bins are shown

Rotamer # Bond1 Bond2 Bond3 Bond3 Bond4 Bond5

1 6 5 6 12 2 6

2 6 3 6 12 5 6

3 6 1 6 12 2 6

4 6 5 6 12 4 6

5 6 1 6 12 5 6

6 6 5 6 12 5 6

7 6 4 6 12 2 6

8 6 1 6 12 1 6

9 6 5 6 12 1 6

Table 3 (a) Rotatable bond distribution in  the rotamer 

library, (b) conformation statistics in the rotamer library

Number of rotatable bonds Number of fragments

0 47,205

1 38,616

2 31,225

3 20,500

4 15,221

5 13,665

6 14,014

7 14,693

8 14,435

9 13,492

≥10 10,064

Number of rotamers Number of fragments

1–5 219,684

6–10 10,840

11–15 1768

16–20 488

21–25 209

26–30 82

31–35 47

36–40 18

41–45 8

46–50 1

>50 3
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Conformational sampling with different methods was 
performed to yield a symmetry corrected RMSD diver-
sity of 0.25 Å—i.e. no two conformations have a RMSD 
smaller than 0.25 Å—and a maximum of 100 conformers 
per molecule.

Ligand dataset

V dataset is used here to compare BCL::C to 
other existing methods in the field. �e V Dataset 
(Additional file 2), compound set introduced by Chen and 
Foloppe [22–24], contains 253 ligands derived from high-
resolution protein–ligand complexes found in the PDB and 
includes the Bostrom [35, 36] ligand set and Perola [37] 
ligand set. �e V Dataset has been used in previ-
ous benchmark studies to compare M, C and 
C methods for conformation sampling [22–24].

Conformer generation methods

BCL::C (BCL): Conformation sampling was carried 
out by providing ligands in the MDL format with all atom 
coordinates set to zero to remove any initial conforma-
tion bias. �e rotamer library uses the 30° torsion binning 
scheme to determine dihedral keys. It is derived from the 
CSD and the refined set of PDB database minus the 
V dataset ligands to remove any bias. Conform-
ers were generated in 200 iterations of MC fragment 
sampling at a temperature of 3.0 such that they were at 
least 0.25  Å away from each other. Table S2 (see Addi-
tional file  1, Additional file  3) shows parameter optimi-
zation for native conformer recovery in terms of RMSD 
with different temperature and iteration values. �e row 
shaded in gray corresponds to parameters used for com-
paring to other methods.

Fig. 4 Graph database for storing rotamer library for fast searching. The figure illustrates a rooted graph layout of fragments where each node is a 
unique constitution. The child nodes originating from the root are such that the root (in this case, benzene fragment) is their immediate substruc-
ture among all the fragments shown in the graph. Fragments contained in the molecule of interest are colored in blue while those that are not are 
in red or black. For fragments in black no substructure search is performed because their parent fragments were not found in the molecule of inter-
est. The edges represent all possible search paths for finding fragments contained in the molecule of interest. Paths in blue are the actual searches 
that were performed for finding fragments for the query molecule. Paths in red and black are never taken during the search. Red colored paths are 
redundant search paths that have already been covered in a previous search
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BCL_60: Conformations were sampled using the same 
settings as described for BCL::C except that 60° 
torsion binning was used instead of 30°. �is experi-
ment tests the effect of 60° binning on conformation 
sampling.

BCL_CSD: Same parameters as used for BCL:C 
with the only difference being that the rotamer library 
was sourced from only the CSD. �is experiment shows 
the effect of adding PDB fragment conformations.

BCL_D: Conformation sampling was performed by 
using torsion angle statistics for single dihedral bonds 
derived from molecules in the CSD and PDB data-
bases. Fragments containing only four atoms and a sin-
gle dihedral bond from the rotamer library were used 
for this experiment—i.e. the smallest possible fragments. 
�is experiment tests the impact of the addition of larger 
fragments that sample the correlation between multiple 
torsion angles. Initial conformation bias in benchmark 
dataset molecules was removed by perturbing all dihe-
dral angles to random values. �e conformers were gen-
erated using the same set of parameters as that for BCL.

C: C systematically samples rotatable 
bonds, ring conformations, nitrogen atom inversions 
and amide bond conformations. Force field OPLS_2001 
is used for calculating potential for rotating about each 
rotatable bond [31]. In the present study, conformer 
generation was done starting from SMILES string of 
ligands in the V dataset. SMILES string were 
generated using Maestro from the dataset ligands in 
MDL format. C has been reported to reproduce 
93  % of molecules within 1.5  Å in the comprehensive 
mode [31]. 250 conformers were generated with C-
 in the comprehensive mode by keeping RMSD 
cutoff at 0.25  Å, energy cutoff at 104.6  kJ/mol (default 
value). 100 conformations were saved per ligand for 
comparison.

M-conformation_import (M): Conformational 
import is a high-throughput conformer generation 
method in Molecular Operating Environment (M). 
Molecule of interest is divided into overlapping frag-
ments and these are searched in a pregenerated library of 
fragment conformations. If a fragment is not found, con-
formations are generated using a stochastic conformation 
search algorithm available in M. For this study, the 
V dataset was provided such that all atom coor-
dinates were set to zero. �e default parameters speci-
fied with M have been determined to perform best 
in previously reported benchmark studies [22–24]. �e 
MMFF94x force field and Generalized Born solvation 
model was during ligand conformation generation. Frag-
ment conformation energy cutoff was kept at a default 
of 4 kcal/mol. �e program was constrained to maintain 

stereochemistry of the input structures but allowed to 
sample ring conformations. �e stochastic search pro-
tocol that conformation import uses for creating confor-
mations of fragments missing in database was modified 
to generate fragment conformers that were 0.25 Å apart 
in RMSD. Fragment conformations that were within 
15 kcal/mol window of the lowest energy conformer were 
retained for the stochastic search.

O: O is a systematic knowledge based con-
former generator developed by O Scientific Soft-
ware. It exhaustively enumerates all rotatable torsions 
using a knowledge-based list of angles which are then 
sampled by geometric and energy criteria [33]. �e tor-
sion library is derived from analysis of a set of experi-
mental crystal structures from the PDB and from energy 
scans of torsions against MMFF94. Default parameter 
values were used except RMSD and MaxConfs which was 
set to 0.25 and 100 respectively to specify custom con-
formation diversity level and limit the number of output 
conformations.

RDK: RDK uses distance geometry algorithm 
described by Blaney et al. for sampling ligand conforma-
tions [38]. A distance bound matrix is calculated for a 
molecule of interest based on connection table and a set 
of rules. �e matrix is smoothed using a triangle-bounds 
smoothing algorithm. Random distance matrices that sat-
isfy the bounds matrix are generated followed by embed-
ding in 3D dimension to generate conformations. In a 
final step, embedded coordinates are cleaned up using a 
crude force field and the bound matrix [23]. In this study, 
ligand conformations generated using RDK were mini-
mized using the Universal Force Field ‘uff’ as suggested 
by Ebejer et  al. [24]. 100 conformations were generated 
followed by minimization and pruning to remove con-
formations that measure less than 0.25 Å away from each 
other in RMSD.

BCL::CONF generates conformations for all drug-like small 

molecules

While BCL, C, M and RDK are able to gen-
erate conformations for all the molecules of the V-
 dataset, O could not for 16 molecules due to 
missing fragments in its library.

Recovery of experimentally observed conformations

�e native conformation recovery by BCL, C, 
M, O and RDK is plotted in Fig. 5a. Figure 5a 
shows the percent recovery of native conformation of 
ligands at different RMSD cutoff values. BCL recovers 
native conformer for 11 % of ligands within 0.25 Å, 79 % 
within 1.0 Å and 99 % within 2.0 Å. Figure 5c shows the 
effect of rotamer library source (CSD; single dihedral 



Page 11 of 15Kothiwale et al. J Cheminform  (2015) 7:47 

torsion profiles; and CSD  +  PDB) and binning strat-
egy (30° or 60°) on conformation recovery. Conforma-
tion recovery is slightly lower when fragment rotamers 
observed in only the CSD are used suggesting unique 
rotamers or significant deviation from canonical values 
that are observed in ligands bound to proteins. Recovery 
is not effected significantly when 60° bins are used.

Figure  6 shows pairwise comparison of C, 
M, O, RDK, BCL_60, BCL_CSD and BCL_D 
to BCL in generating conformer closest to native. Each 
point corresponds to a molecule in a test set. �e coor-
dinates of a point corresponds to the RMSD of closest 

to native conformer generated by BCL (x-axis) and the 
method being compared (y-axis). Molecules for which 
closest to native conformation generated by the pair of 
methods is within 0.25 Å RMSD of each other are plot-
ted in shaded gray area. For points above the shaded 
region, BCL recovers lower RMSD conformer compared 
to the other method referenced. �e molecules for which 
O could not generate conformations are omitted 
from the graph and statistical analysis when comparing 
to BCL.

Figures  5 and 6 suggest that BCL is better than other 
methods and other flavors of BCL being compared. 

Fig. 5 Benchmarking results for the VERNALIS dataset. a The plot represents percentage of ligands (y-axis) for which different methods produce at 
least one conformer within an RMSD value less or equal to the RMSD value on the x-axis. b Quality of conformations sampled as the number of 
rotatable bonds increases. The average RMSD of conformers closest to native structure is plotted on the y-axis as the number of rotatable bonds 
increases (x-axis). c Same as a for different rotamer libraries used. “BCL” refers to recovery using 30° dihedral bins with rotamers derived from both 
the CSD and PDB. “BCL_CSD” leverages conformations from the CSD only. “BCL_D” refers to experiments in which instead of fragments containing 
multiple torsion angles, statistics on single dihedral angles were used for sampling conformations. “BCL_60” refers to a rotamer library that uses 60° 
dihedral bins are. d Quality of conformations sampled as the number of rotatable bonds increases for BCL, BCL_CSD, BCL_D, and BCL_60
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Fig. 6 Pair-wise comparison of BCL::CONF to other methods. a–g Plot the RMSD to native for the BCL on the x-axis, for other methods or flavors of 
the BCL on the y-axis. BCL::CONF samples closer to native conformations for points that lie above the diagonal. Conformations plotted within the 
shaded region differ by less than 0.25 Å
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Wilcoxon Matched-Pairs Signed-Ranks statistical test 
was performed to compare conformations generated by 
BCL to those produced by other methods for each mol-
ecule in the V dataset. �e statistics test was 
performed using R software package. BCL generated 
closer to native conformations compared to C, 
M, O and BCL_D at p value <0.01 over all the 
molecules. When compared to BCL_CSD, BCL generates 
more native like conformations at p value <0.05. Statisti-
cally there is no significant difference in native recovery 
between BCL, BCL_60 and RDK. However, 30° binning 
allows recapitulation of frequently observed 90° or 270° 
rotamers of dihedral bonds containing aromatic-single-
aromatic or aromatic-single-any (Additional file 1: Figure 
S1B).

E�ect of the number of rotatable bonds on native 

conformation recovery

Figure 5b, d show the average RMSD of closest to native 
conformation of molecules plotted against number of 
rotatable bonds. Figure S2 (Additional file  1) plots the 
average number of conformations generated by different 
methods for molecules of different rotatable bonds. BCL 
is better than other methods at producing closer to native 
conformers for molecules with greater than six rotatable 
bonds as suggested by Wilcoxon Paired test at p value 
<0.05. For molecules containing four to six rotatable 

bonds, BCL performs better than C and O 
respectively at p value <0.01. �ere is no significant dif-
ference between quality of conformations generated 
between BCL, M and RDK for molecules with up 
to six rotatable bonds. For different flavors of BCL, there 
is no significant difference between BCL and BCL_60 
in native conformation recovery based on rotatable 
bonds. However, statistical analysis clearly shows that 
using extended fragments improves native conformation 
recovery compared to using single dihedral bond statis-
tics (BCL_D) for molecules greater than three rotatable 
bonds at p value <0.01. BCL produces closer to native 
conformations compared to BCL_CSD for molecules 
with greater than 10 rotatable bonds.

Diversity of conformational space sampled

Diversity of ligand conformations is an important consid-
eration for ligand docking studies. A representative sam-
ple that covers ligand’s sample space is therefore desired. 
Figure 7a, b show the distribution of RMSDs of conform-
ers against the number of rotatable bonds. Box plots 
show the distribution of conformer RMSD with respect 
to native structure. �e upper and lower edges of box 
correspond to the first and third quartiles. �e whiskers 
extend from edge to highest/lowest value that is within 
1.5  ×  Inter-Quartile Range (IQR) of the box, where 
IQR is the distance between the first and third quartile. 

Fig. 7 The box plots show the diversity of generated molecular conformations depending on the number of rotatable bonds. The upper and lower 

edges of box correspond to the first and third quartiles. The horizontal dash in the box represents the median value. The whiskers extend from edge 
to highest/lowest value that is within 1.5 × Inter-Quartile (IQR) of the box, where IQR is the distance between the first and third quartile. a Confor-
mation diversity produced by different methods, b conformation diversity obtained by using different flavors of BCL
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�e data beyond whiskers are plotted as outliers. �e 
horizontal dash in the box represents the median value. 
Diversity of conformations generated by all the methods 
is comparable. C, M and RDK sample con-
formations more efficiently compared to BCL for mol-
ecules with up to three rotatable bonds (see Additional 
file  1: Figure S2). �e reason is that smaller fragments 
have large number of rotamers with similar energy pro-
files. Larger fragments on the other hand have fewer local 
minima allowing sampling of relevant conformations in 
fewer steps.

Comparison of CPU time requirements

�e computational run time for the different methods 
except O was compared on Intel Xenon model 26 
running at 3.2  GHz with 24  Gb of RAM. All the meth-
ods take less than 2 Gb of RAM. BCL generated confor-
mations for a single molecule in 1.6 s compared to 1.9 s 
taken by C, 5.1 s for M, 0.5 s for O and 
10.2 s for RDK. Computation time of when using only 
dihedral torsion profiles i.e. BCL_D is 0.7 s/molecule.

Conclusions
We have developed a conformational search method 
called the BCL::C and validated it against other 
methods in the field like C, M, O and 
RDK. �e method utilizes the conformational space 
seen in the structure databases, CSD and PDB, to sam-
ple conformations of small-molecules. BCL::C is 
compared to other methods in three measures which 
are critical in computational drug discovery process: 
(a) the ability to generate conformation close to experi-
mentally observed structure, (b) diversity of conforma-
tions indication coverage of sample space of molecules, 
(c) performance in terms of speed. �e benchmark study 
was performed using a curated dataset of high resolution 
X-ray crystal structures from the PDB, V data-
sets, containing 253 molecules.

BCL::C is capable of reproducing bioactive confor-
mations generating conformers that are structurally close 
to experimentally determined structures. Analysis of cov-
erage space shows that BCL::C generates a diverse 
set of conformers performing as well as M and RDK, 
however in much shorter time. BCL:C is better and 
more efficient in sampling molecules with greater than 
three rotatable bonds as indicated in Fig. 5b and Figure 
S4 (Additional file  1). Using extended fragments gives 
BCL:C a distinct advantage over other methods in 
sampling more flexible molecules efficiently. �e study 
shows utility of using explicit fragment conformations 
to recapitulate protein-bound ligand conformations. A 
slightly reduced performance is seen when using rotam-
ers derived from only the CSD (Fig.  5c). �e somewhat 

reduced accuracy could result from biases in the frag-
ment sets between CSB and PDB or biases in dihedral 
angles between ligands bound to proteins and ligands 
residing in a crystal. Nonetheless results reported in this 
paper suggest that fragment conformations obtained 
from the CSD seen in structure databases can be used to 
adequately model small molecule conformations bound 
to proteins.

BCL::C extends the idea of protein side-chain con-
former sampling to fragments of small molecules. �e 
method is novel as it takes into account torsion correla-
tions and substituents effects on fragment torsion pro-
files. It has been designed and developed to be integrated 
with RL which is part of the macromo-
lecular modeling suite R.

Availability and requirements
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  • Project home page: http://meilerlab.org/bclcommons
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  • License: Open source with restrictions, See http://
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  • Any restrictions to use by non-academics: commer-
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