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BCL2 family in DNA damage and cell cycle control
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Abstract

Individual BCL2 family members couple apoptosis regulation
and cell cycle control in unique ways. Antiapoptotic BCL2 and
BCL-x, are antiproliferative by facilitating GO. BAX is
proapoptotic and accelerates S-phase progression. The dual
functions in apoptosis and cell cycle are coordinately regulated
by the multi-domain BCL2 family members (MCL-1) and
suggest that survival is maintained at the expense of
proliferation. The role of BH3-only molecules in cell cycle is
more variable. BAD antagonizes both the cell cycle and
antiapoptotic functions of BCL2 and BCL-x_ through BH3
binding. BID has biochemically separable functions in
apoptosis and S-phase checkpoint, determined by post-
translational modification. p53-induced PUMA is known
only to have apoptotic function. Inhibition of apoptosis is
oncogenic, whereas promotion of cell cycle arrest is tumor
suppressive. Paradoxically, selected BCL2 family members
can be both oncogenic and tumor suppressive. Which of the
dual functions predominates is lineage specific and context
dependent.
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Introduction

Connections between cell cycle and cell death have long been
noted. It has been generally accepted that cycling cells are

more susceptible to cell death, whereas quiescent cells are
relatively more resistant to killing. One principle of cancer
treatment has been to recruit more cells into the generally
small growth fraction of the tumor, so that they can be
susceptible to chemotherapeutic drugs. The retinoblastoma
protein pRB both checks cells in GO/G1 and protects them
against apoptosis. Cells undergoing apoptosis often exhibit
activation of cell cycle events, such as cdk activation and
abortive cell cycle progression.' Many oncogenes have dual
functions of positively regulating proliferation and apoptosis,
such as Myc and E2F, whereas tumor suppressors, such as
Rb and p53, inhibit cell cycle. BCL2 is an oncogene that
inhibits apoptosis but, paradoxically, it is also antiproliferative.

BCL2 enhances GO and delays GO to S
transition

BCL2’s antiapoptosis function was first linked to effects on
proliferation by the observation that when deprived of growth
factor, BCL2-overexpressing IL-3-dependent FDC-P1 cells
were smaller than cells in the presence of IL-3 and were
mostly arrested in GO/G1.2 The lack of Myc expression and
decreased nuclear size indicated that BCL2 cells arrested in
GO to maintain viability when deprived of growth factor. When
the HL60 promyelocytic leukemia cell line was treated with
DMSO, a differentiative stimulus that did not involve cell
death, cells overexpressing BCL2 decreased RNA content
more quickly than controls, suggesting that BCL2 expression
facilitated exit to GO.* These early experiments demonstrated
an effect of BCL2 on GO that appeared to be separate from its
antiapoptotic function.

A second observation of BCL2’s effect on proliferation was
that bone marrow-derived IL-3-dependent BAF3 cells expres-
sing BCL2 were arrested in G1 and protected from apoptosis
upon IL-3 removal.® These cells were refractory to cell cycle
re-entry upon IL-3 re-stimulation. A series of papers ensued,
including several from the group at the Walter and Eliza Hall
Institute, which examined the effect of BCL2 not only on GO/
G1 arrest but also on cell cycle progression. Primarily using
lymphocytes from BCL2 transgenic mice, these studies found
thatin T and B cells, and in certain thymocyte subpopulations,
BCL2 expression correlated with a higher GO/G1 fraction,
lower S-phase fraction, and decreased BrdU incorporation.®
During activation of quiescent T and B cells in culture and
serum stimulation of experimentally arrested NIH3T3 cells,
BCL2 expression delayed the onset of S phase, indicating
inhibition of GO to S progression. Indeed, expression of not
only BCL2, but also its homologs BCL-x,, BCL-w, and
E1B19K, similarly retarded progression to S phase, demon-
strating that this cell cycle effect of BCL2 is manifested in other
antiapoptotic molecules within the BCL2 family, and is not cell
type restricted.>°

The physiologic relevance of the cell cycle inhibitory effects
of BCL2 was first demonstrated by Stan Korsmeyer's
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laboratory in a systematic study comparing bcl2-deficient, bcl2
heterozygous, wild-type, and transgenic BCL2T cells.'® The GO
state and the kinetics of cell cycle entry in response to T-cell
activation of these genotypes varied progressively from the least
to the most arrested. Cell size was largest in resting bcl2”~ T
cells and smallest in Ick-BCL2 transgenics. Onset of S phase
was quickest in activated bcl2™ ~ T cells and slowest in Ick-BCL2
cells. Bel2™~ T cells produced the most and Ick-BCL2 cells
produced the least IL-2. Recognizing that the T-cell pools from
these mice are not identical, in that the CD8 T-cell population of
bcl2~"~ mice is relatively smaller, and the Ick-BCL2 CD8 T-cell
population is relatively larger than wild-type controls, these
genotype comparisons nevertheless provided strong evidence
that at least in T cells, endogenous BCL2 plays a role in
regulating cell cycle entry. Despite initial BrdU- and thymidine-
labeling experiments suggesting BCL2 may be generally growth
inhibitory, growth rate measurements in conventional and
continuous chemostat cultures revealed that in cycling cells,
BCL2 does not significantly affect growth rates under optimal
conditions, but prolongs G1 in suboptimal conditions.”# %3 |t
became increasingly clear that the cell cycle delay effect of
BCL2 is selective for cell cycle re-entry from GO.

Is GO arrest distinct from delayed cell
cycle progression?

Are BCL2-mediated GO arrest and BCL2 inhibition of
progression to S phase two separate activities or manifesta-
tions of the same cell cycle function? The cdk inhibitor p27 is
normally upregulated in GO, and prevents the activation of G1
cyclins. Various groups showed that p27, as well as the pRB
relative p130, which binds E2F4 in quiescence, was elevated
significantly more than usual in BCL2 cells during arrest.'® 416
With stimulation of cell cycle, p27 levels decreased, but still
remained higher than in wild-type cells. Activation of cyclinE/
cdk2 and cyclinD/cdk4, which defines the restriction point in
normal G1 to S progression, was delayed and dampened in
BCL2 and BCL-x, cells, owing to persistently high p27 in the
cyclin/cdk complexes.'®'” That p27 is key in mediating the
cell cycle function of BCL2 and BCL-x, was supported by the
inability of BCL2 transgene to delay activation-induced
proliferation in p27~/~ mice and the failure of BCL-x, to delay
cell cycle in p27~~ MEFs."®'7 Interestingly, with cell cycle
stimulation of GO-arrested cells, early marker events of G1
entry, which include the induction of c-Fos, c-Jun, Myc, cyclin
D, all occurred at the same time in BCL2 or BCL-x,_ cells as in
controls cells.'®'” Thus, in BCL2 or BCL-x, cells, the early
signaling events initiating GO to G1 transition are intact, but
the critical step of transition into S phase, that is, cdk2/4
activation, is delayed.

Time-course measurements of cell size and cellular RNA
content indicated that BCL2 cells and BCL-x_ cells remain
small and do not initiate macromolecular synthesis despite the
induction of Myc and cyclin D."® Furthermore, cells sorted for
the same size, regardless of BCL2 or BCL-x_expression level,
entered cell cycle with similar kinetics, indicating that the main
function of BCL2 and BCL-x, is to drive cells into G0.'® Thus,
prolonged GO is mainly responsible for the observed delay in
reaching S phase, and the function of BCL2 and BCL-x, is
further focused as facilitating GO arrest (Figure 1).
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Figure 1  Ability of BCL2/BCL-x, to drive cells into enhanced GO arrest leads to

delay in G1 progression and G1/S transition

Antiapoptosis and cell cycle inhibition:
separate functions or one?

Despite indications that the cell cycle effects of BCL2 and
BCL-x, are not simply a result of apoptosis inhibition, mutation
analysis of BCL2 and BCL-x, could not consistently identify
separate domains for the cell cycle function and for cell
survival.>'® Mutation at residue Y28 in the BH4 domain was
reported to preserve the survival but not the cell cycle function
of BCL2.° Deletion of the non-conserved ‘loop’ region of BCL2
was also reported to facilitate cell proliferation while preser-
ving the antiapoptotic effect.’® However, others could not
reproduce the phenotypes of these mutants in cells or in
mice.'®2° |t is unclear whether the discrepancy is simply
owing to expression level and cell line differences, or other
indirect effects, and the divergent phenotypes of the Y28
mutation remain a curious question.

One hypothesis is that the cell cycle function of BCL2 and
BCL-x_ is dependent on an intact survival function. For
example, caspases are involved in cell cycle progression, and
BCL2 or BCL-x, may mediate arrest through the inhibition of
caspase activation. However, enhancing survival by caspase
inhibition does not result in the same cell cycle phenotype as
BCL2 and BCL-x,, suggesting that mechanisms in addition to
inhibition of the apoptosome are necessary'® (E Yang,
unpublished data). p27 has emerged as an essential down-
stream mediator of the antiproliferative function of BCL2 and
BCL-x.. Upregulation of p27 appears to be a direct effect of
BCL2 and BCL-x,, most likely at the post-translational level,
although the precise mechanism is still unknown. As the BCL2
family members are mitochondrial molecules regulating many
aspects of mitochondria physiology, including ATP genera-
tion, permeability transition pore, and mitochondrial potential,
it is likely that mitochondrial bioenergetics are involved. How
mitochondrial signals lead to p27 protein elevation is an
interesting circuit to unravel.

BCL2 cell cycle control and tumorigenesis

The role of BCL2’s antiproliferative function in lymphomagen-
esis is complex. Transgenic BCL2 expression in the lymphoid
compartment is clearly oncogenic, but lymphomas developed
only in a fraction of mice after long latencies.?'?2 The
coexistence of the cell cycle inhibitory function with the



antiapoptosis function may explain why BCL2 does not induce
tumors with higher penetrance. Half of the BCL2 lymphomas
were found to harbor Myc rearrangements, illustrating that
secondary genetic alterations, which counter the growth
inhibitory function of BCL2, are necessary for tumor develop-
ment.2" The marked synergy between BCL2 and Myc in
lymphomagenesis is classically attributed to the ability of
BCL2 to inhibit Myc-induced apoptosis, enabling Myc-induced
proliferation to proceed unchecked.232% However, cell culture
findings on the interaction of BCL2 and Myc were not always
consistent. Expression of BCL2 maintained survival of
Ep-Myc bone marrow cells in culture, but the cells proliferated
only slowly, suggesting that by arresting cells in GO, BCL2
inhibited Myc-induced proliferation as well as Myc-induced
apoptosis.® In Rat1 MycER cells, BCL2 inhibited the apoptotic
function of Myc, but had no effect on cell division when
measured by time-lapse microscopy.?* Yet, another group
found that both BCL2 and Myc were required for IL-2-
stimulated proliferation.?® These different results on the role
of BCL2 in Myc-induced proliferation may be due to
differences between animal models and cell culture, and
whether apoptosis or proliferation plays a dominant role in the
particular model system. In Myc-induced lymphoma forma-
tion, the antiapoptotic function of BCL2 is clearly dominant
over its antiproliferative function, perhaps owing to the strong
proliferative function of Myc.

In other tissues, the antiproliferative function of BCL2
translates into tumor suppression. In colon cancer cell lines,
BCL2 unexpectedly inhibited proliferation to the same extent
as p53, but in a p53-independent manner, and decreased
clonogenicity in soft agar.® In human colon cancer, multiple
studies showed that BCL2 expression is correlated with
favorable outcome.?” In multi-stage liver carcinogenesis
models, BCL2 expression inhibits the growth of early
proliferative foci and counteracts hepatic carcinogenesis
induced by TGFo and Myc.282° |n support of this, induction
of BCL2 also delays hepatocyte cell cycle entry in liver
regeneration.®® In WAP-TAg and carcinogen-driven mam-
mary tumor models, in which stages of initial proliferation and
progression are obvious, BCL2 expression reduces both
proliferation and apoptosis early in the process, but the
antiproliferative effect is lost as tumors progress to adeno-
carcinoma.®"®® Association of BCL2 with differentiated
phenotypes and better prognosis is borne out in human
breast cancer studies.®® In the classical two-stage skin
carcinogenesis model, BCL2 expression in basal epidermal
keratinocytes similarly increased the latency and reduced the
frequency of papillomas converting to malignant carcino-
mas.®* In contrast to Myc-induced lymphomas, these solid
tumors are characterized by a proliferative pretumor phase
during which BCL2’s antiproliferative effect could be more
consequential than its antiapoptosis activity. Therefore, the
balance between the antiapoptotic and the cell cycle effects of
BCL2 can be influenced by tumor physiology.

Other antiapoptotic BCL2 family members

Two other antiapoptotic BCL2 family members, BCL-w and
myeloid cell leukemia-1 (MCL-1), also have antiproliferative
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effects, but they are much less studied. In earlier experiments,
BCL-w behaved like BCL2 and BCL-x_ in delaying cell cycle
entry.® This inhibitory activity on cell cycle was revisited in the
developing testis and spermatogenesis.®® Transgenic ex-
pression of BCL-w driven by the chicken f-actin promoter
resulted in decreased germ cell number and male sterility,
which correlated with reduced number of BrdU-positive
spermatogonia in the first postnatal week. This single finding
is consistent with inhibition of cell cycle reentry or G1 to S
transition by BCL-w overexpression, but the physiological
significance of this was not substantiated in bel-w~’~ mice.3¢

MCL-1 was originally identified as an upregulated gene in a
human myeloblastic leukemia cell line induced to differentiate
in the monocyte lineage.®” Overexpression of this gene in cell
lines caused decreased BrdU uptake and slower doubling
rate.®339 In one study, the antiproliferative function of MCL-1
was clearly linked to its ability to bind proliferating cell nuclear
antigen (PCNA), but distinct from its antiapoptotic activity.®
Another report identified a short form of MCL-1 in the nucleus
(snMCL-1) that binds and negatively regulates cdk1 activity,3°
but its function in cell survival is unclear. In both cases, MCL-
1’s cell cycle function is in S and G2 phases, not in GO.
Although it is also antiproliferative, MCL-1’s cell cycle function
is very different from BCL2 or BCL-x,. It is interesting to
speculate that the cell cycle function of MCL-1 may be
responsible for MCL-1’s role in implantation, but there are no
data to support this.

To date, no role in cell cycle has been identified for A1. In
fact, A1 was shown specifically not to have a cell cycle
inhibitory effect when expressed as a transgene driven by the
Ick distal promoter, in that more A1l-expressing T cells
accumulated in culture after activation than BCL2-expressing
T cells.*° It was suggested that this is because A1 rescued T
cells from activation-induced cell death and allowed them to
cycle, whereas BCL2 saved the cells from apoptosis but also
inhibited their proliferation.

Although most of the antiapoptotic BCL2 family members
are antiproliferative, all do not have the same activity in cell
cycle. BCL2 and BCL-x, clearly have a GO function. BCL-w
may be similar to BCL2 and BCL-x,, but MCL-1’s cell cycle
activity is in S or G2, whereas A1 has no known cell cycle
function.

BAX and the multi-domain proapoptotic
molecules

Whereas transgenic BCL2 T cells are delayed in activation-
induced cell cycle entry, transgenic BAX T cells enter S phase
faster than wild-type counterparts. CD2-BAX and Ick-BAX
thymi have higher fractions of cells in S phase and exhibit
increased BrdU uptake.'**! Resting transgenic BAX T cells
are larger and their activation is associated with increased p27
degradation and increased cdk2 activation, exactly the
opposite of transgenic BCL2 T cells.2*? Whereas BCL2 is
prosurvival and antiprolifeative, BAX is proapoptotic and
proliferative, suggesting that the cell cycle functions of the
multi-domain BCL2 family members are directly linked to life
or death decisions. Although bax~’~ cells do not have an
obvious cell cycle phenotype and transgenic BCL2 on bax™"~
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background still delays cell cycle entry, bax/~bak™~ double
knockout mice have increased hematopoietic progenitors and
mature lymphocytes. bax’~bak /" lymphocytes are smaller,
reminiscent of BCL2 cells, indicating that the absence of Bax
and Bak may promote G0.*® It would be of great interest to
examine the ability of BCL2 to regulate cell growth in
bax~'~bak "~ doubly deficient cells, which should settle the
question whether BCL2 exerts its cell cycle effects through
BAX and BAK, or whether the effectors for BCL2’s cell cycle
functions are different from those involved in BCL2’s
antiapoptosis function.

The effect of BAX expression on tumorigenesis is para-
doxical. If BCL2 is oncogenic in the lymphoid lineage, then
BAX might be expected to be tumor suppressive. Yet, bax
deficiency alone or in combination with p53 deletion was not
oncogenic, perhaps because p53 loss already largely
abrogated apoptosis.*' In the presence of oncogenes provid-
ing strong proliferative drive associated with apoptosis,
including T antigen and E1A, bax deficiency did enhance
transformation, presumably by blocking apoptosis, resulting in
further enhancement of proliferation.**#® A tumor suppres-
sive role for the multi-domain proapoptotic molecules was
further demonstrated by the cooperation of bax and bak
deficiency with p53 inactivation in E1A-mediated tumor
formation.*® Surprisingly, lymphomagenesis owing to p53
deficiency was potentiated by Ick-BAX. Here, the proliferative
effect of BAX was presumably dominant over its proapoptotic
activity. Thus, the proapoptotic function of BAX is tumor
suppressive and its proliferative function is oncogenic. The
relative contribution of each function to the overall effect
appears to be influenced by the choice of its oncogene
partners.

Overexpression of the BH3-only molecule BAD renders the
cell unable to arrest in GO and persistently activate cdk2. 847
This effect is completely dependent on BAD binding to BCL-x,
and BCL2; therefore, it is not surprising that deficiency of BAD
itself is only minimally oncogenic.*®

Proapoptotic BID

Proapoptotic BID was cloned through interaction with BCL2
and BAX,*® and biochemically purified as a protein mediating
cytochrome c release from mitochondria following activation
of death receptors.®® In vitro studies of mitochondria and
recombinant truncated BID indicate that it activates the multi-
domain BCL2 family members BAX or BAK, resulting in
allosteric conformational change and release of cytochrome
¢.5"%2 The role of BID in normal development and cellular
homeostasis has been characterized using mice in which Bid
has been disrupted. These bid-deficient mice are viable and
execute developmental cell death normally.®®> When chal-
lenged with agonistic anti-fas antibody, bid-deficient mice are
resistant to the hepatocellular apoptosis that kills wild-type
mice, indicating a critical role for BID in this Fas-signaled
death. Aging bid-deficient mice spontaneously develop a
myeloproliferative disorder with elevated absolute neutrophil
counts, and over time, the mice progress to a fatal clonal
disorder resembling chronic myelomonocytic leukemia
(CMML).5* Myeloid progenitors from Bid-deficient mice exhibit
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resistance to death receptor-induced apoptosis, and demon-
strate a competitive advantage in vivo. These studies indicate
an essential role for BID in maintaining myeloid homeostasis
and suppressing leukemogenesis.

BID’s role in tumorigenesis may be cell type specific. Bid "~
mice demonstrate decreased tumor growth in the liver
following treatment with diethylnitrosamine (DEN) in a mouse
model of hepatocellular carcinoma.’® Bid~~ hepatocytes
display fewer cells in S phase by BrdU incorporation following
DEN treatment as well as partial hepatectomy, perhaps
suggesting a role for BID in regulating proliferation in the liver,
and its absence may slow tumor growth.

BID is unique among the BH3-only BCL2 family members in
interconnecting death receptors to the mitochondrial amplifi-
cation loop of the intrinsic pathway. BID’s potent proapoptotic
activity and broad expression patterns require that cells
carefully regulate its apoptotic activation. Subcellular localiza-
tion appears to play a role in directing BID’s proapoptotic
activity. Following death receptor stimulation, BID is activated
by caspase-8 cleavage and N-myristoylation to target
mitochondria where it activates BAX and BAK, or is
alternatively sequestered by antiapoptotic BCL2 members,
preventing death.®® Full-length BID is also capable of
translocation to the mitochondria in at least one case
facilitated by other proteins such as PACS2.577°° At the
mitochondria, full-length BID has been shown to potentiate
cell death following certain apoptotic signals, suggesting that
caspase cleavage is not an absolute requirement for activat-
ing BID’s proapoptotic function.®®:6°

Recent studies indicate that activation of BID’s prodeath
activity may be negatively regulated by phosphorylation.
Casein kinases have been implicated in BID phosphorylation,
and ATM has been shown to phosphorylate BID following
DNA damage.f'%% Phosphorylated BID is resistant to
caspase cleavage in in vitro assays, and MEFs harboring
phosphorylation-defective S78A BID are more sensitive to
etoposide-induced cell death. The above data are consistent
with a role for phosphorylation to inhibit activation of BID’s
proapoptotic function.6"®® How might BID be involved in
suppressing leukemogenesis? Although the loss of BID could
theoretically reset death susceptibility in both intrinsic and
extrinsic pathways, it is less obvious why the absence of BID
should prove so oncogenic. A striking feature of the bid-
deficient CMML is the frequent presence of chromosomal
instability, as evidenced by chromosomal translocations seen
on spectral karyotype analysis.>* Wild-type hematopoietic
cells have a marked propensity for apoptosis in response to
DNA damage; yet, in the absence of BID, myeloid cells
accumulate mutations, resist apoptosis, and display aspects
of unchecked proliferation.®? This suggests that BID itself may
play a role in DNA repair, in cell cycle checkpoint responses,
or in integrating apoptosis and the DNA repair response.

Consistent with the above hypothesis, bid~~ myeloid
progenitor cells and primary activated T cells manifest
increased chromosomal damage following mitomycin C
treatment, with tri- and quadriradial chromosomal figures
quantifiable by an increase in the number of chromosomal
breaks per cell.?? These abnormal chromosomal structures
represent ‘chromatid-type’ errors, resulting from improperly
repaired DNA damage accrued during S phase of the cell



cycle and are characteristic of cells with a defect in DNA
repair, such as those in Fanconi anemia, Bloom’s syndrome,
and the hereditary breast and ovarian cancer syndromes
involving BRCAT1. Following replicative stress, BID is localized
in the nucleus, positioning it to play a role in integrating the
apoptotic and DNA repair responses downstream of DNA
damage, or a direct role in DNA repair.? Bid~~ myeloid
progenitor cells and MEFs fail to properly execute the ionizing
radiation-induced intra-S-phase checkpoint.?2%® This S-
phase role is mediated through BID phosphorylation at
position 78 by the DNA damage kinase ATM, demonstrating
a direct link between BID and the DNA damage response.
These studies demonstrate that BID plays a novel role in
preserving genomic integrity that places BID at an early point
in the path to determine the fate of a cell (Figure 2).

The BCL2 family has been shown to play a role in myeloid
leukemogenesis. Leukemic cells from most human acute
myelogenous leukemias (AMLs) have been found to express
elevated levels of BCL2 relative to normal cellular counter-
parts.®* Transgenic mice overexpressing BCL2 in myeloid
cells develop a myeloproliferative disorder, and when crossed
with Jpr mice harboring a mutation in the Fas receptor, the
mice progress to AML, implicating a synergistic role for the
Fas pathway and BCL2 in tumor suppression in the myeloid
lineage.®® Deletion of BID in myeloid cells promotes myeloid
leukemogenesis, demonstrating that this single ‘BH3-only’
protein plays a critical role in maintenance of normal myeloid
homeostasis and tumor suppression. A mouse model in which
the endogenous BID gene has been replaced with a gene that
drives the expression of a BID protein carrying mutations in
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Figure2 Model for the dual function. Following death receptor suimulation, BID
initiates a proapoptotic program at the mitochondria. Following DNA damage,
BID is phosphorylated in the nucleus and plays a role in cell cycle checkpoint
control
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the ATM phosphorylation sites (BID%¢'#5784) should be
instructive in addressing the issues described above. The
ATM phosphorylation site at position 78 is conserved
in mouse and human BID.?%%% Given the importance of
the BCL2 family in human myeloid malignancies, and the
synergistic role of the Fas pathway in mouse models, a role
for BID in human disease, with close attention to phosphory-
lation status, warrants further study.

p53 in DNA damage and apoptosis

p53 plays a pivotal role in the decision of whether the outcome
of DNA damage will be growth arrest or apoptosis. The
currently accepted model for this choice is based on the idea
that p53 is able to differentially transactivate promoters of
‘growth arrest’ and ‘apoptosis’ genes. This idea was built on
the suggestion that promoters of growth arrest genes
encompass high-affinity p53-binding sites (e.g., p21),
whereas the promoters of apoptotic genes contain low-affinity
p53-binding sites (e.g., BAX). Several proteins have been
identified that can discriminate in favor of the interaction of p53
with the promoters of apoptotic genes.®%®” Thus, the
presence or levels of such proteins in a given cell may dictate
the type of response that this cell will undertake following
activation of the p53 pathway. With respect to apoptosis,
many proapoptotic genes that carry a p53-responsive element
have been reported. The products of these may participate in
apoptosis in a number of ways. For example, proapoptotic
gene products such as the BH3-only PUMA and Noxa, BAX,
and p53AIP1 localize to the mitochondria and promote the
loss of mitochondrial membrane potential and cytochrome ¢
release.®® Studies have demonstrated that MEFs lacking
PUMA or Noxa are resistant to DNA damage-induced
apoptosis, a process known to be mediated by p53.5%~""
Another class of proapoptotic genes that can be regulated by
p53, such as Fas or DR5/KILLER, are components of the
apoptotic extrinsic pathway.”? Finally, genes that encode
redox-regulating enzymes such as the PIGs (p53-induced
genes), which are involved in reactive oxygen species
production, can damage the mitochondria, leading to apop-
tosis.”® A recent elegant paper demonstrated that Slug, a
transcriptional repressor, ‘saves’ hematopoietic progenitors
exposed to DNA damage by antagonizing the ability of p53 to
transcriptionally induce proapoptotic PUMA.”* Interestingly,
p53 also transcriptionally induces Slug. Thus, in certain cells,
such as hematopoietic progenitors, p53 circumvents its own
ability to induce apoptosis. As p53 transcriptionally induces
several proapoptotic proteins, it is likely that additional Slug-
like inhibitors exist that act to circumvent p53-induced
apoptosis in hematopoietic as well as in non-hematopoietic
cells.

Growing evidence suggests that the transcription activity of
p53 can be uncoupled from its apoptotic function. Moreover,
several recent reports demonstrate the direct localization of
p53 to the mitochondria following DNA damage, where p53
can directly interact with BCL2 family members, leading to
cytochrome ¢ release.”® A more recent study showed that,
after genotoxic stress, the antiapoptotic BCL-x_ protein
sequesters cytoplasmic p53, whereas nuclear p53 induces
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transcription of PUMA. PUMA then binds BCL-x. and
displaces p53, thereby allowing p53 to directly activate BAX
to induce mitochondrial permeabilization.”® p53 is not the only
unexpected factor released from the nucleus to induce
apoptosis at the mitochondria. Recent evidence revealed an
unexpected role also for the linker histone H1.2 in DNA
damage-induced apoptosis. Konishi et al”” demonstrated
that DNA double-strand breaks induce translocation of
nuclear H1.2 to the cytoplasm, where it promotes release of
cytochrome ¢ from mitochondria by activating proapoptotic
BAK.

Is there a functional connection between p53 and BID in the
DNA damage response? The p53 protein is a target of ATM
and ATR, and its activation by these kinases (which results in
its accumulation) can lead to either cell cycle arrest at the G1
phase or apoptosis. As both p53 and BID play a balancing act
between life and death, and both seem to act at the nucleus
and mitochondria, it is tempting to speculate that these two
proteins ‘communicate’ with each other following DNA
damage. It is documented that p53 acts upstream of BID as
its transcriptional activator,”® and as a transcriptional activator
of one of its effectors, BAX. On the other hand, it is possible
that in the DNA damage pathway, phosphorylated BID might
act upstream of p53 by directly regulating its transcriptional-
independent activity at the mitochondria, or its transcriptional-
dependent activity in the nucleus.

Relationship between BCL2 family cell
cycle and antiapoptosis functions in
tumorigenesis

Cumulative data indicate that cell cycle control is linked to cell
death regulation. The relationship is complex and context
dependent. For the antiapoptosis BCL2 family members such
as BCL2 and BCL-x_, the parallel effects of antiapoptosis and
cell cycle inhibition suggest that cells may maintain survival at
the expense of proliferation. Although it remains to be proven,
data up to now indicate that the same biochemical function of
BCL2 and BCL-x_. mediates both survival and quiescence.
The multi-domain proapoptotic molecule BAX seems to be the
converse of BCL2 and BCL-x,, in that BAX promotes both cell
death and cell cycle, suggesting that proliferation is death
prone. To date, there is little indication that the two activities
are separable in BAX, although this has not been specifically
addressed in published reports.

The antiapoptosis function of BCL2 and its homologs
renders them as oncogenes, but their cell cycle function is
consistent with tumor suppression. Which function is pre-
dominant may be in part determined by the physiology of the
cell and tissue type. The hematopoietic system, particularly
the lymphoid lineage, is constantly exposed to apoptosis
signaling in development and maturation. One reasonable
hypothesis would be that the antiapoptosis function of BCL2
exerts a dominant effect over the antiproliferative function in
this scenario, and BCL2 emerges as an oncogene. In
contrast, in epithelial and mesenchymal tissues, such as
breast and liver, the proliferative phases preceding progres-
sion to carcinoma may provide an opportunity for the
antiproliferative function of BCL2 to be more evident. The
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overall effect of BCL2 in this context, then, would be more
tumor suppressive than oncogenic.

In the lymphoid system, the antiapoptosis molecule BCL2
paradoxically acts as a relatively weak oncogene. By itself,
BCL2 promotes tumors at a low but significant rate, but BCL2
is much more remarkable in potentiating other oncogenes,
especially c-Myc. This could be explained by BCL2’s
simultaneous antiproliferative function. If the cell cycle
inhibitory function of BCL2 could be abrogated, presumably
BCL2 would be a more potent oncogene. Conversely,
augmenting the antiproliferative function of BCL2 could
decrease tumor aggressiveness.

In contrast to the case of BCL2, where the antiapoptotic
function correlates with its oncogenic function, this correlation is
less obvious in proapoptotic molecules. Absence of proapoptotic
BH3-only molecules results in spontaneous malignancy in
mouse models lacking BID and BAD.*®** However, the
absence of multi-domain BAX or BAK results in prominent
inhibition of apoptosis emanating from both intrinsic and extrinsic
pathways with resultant abrogation of homeostatic control.”®
Despite this potent perturbation of apoptosis, to date, bax '~ or
bak mice do not progress to malignancy. BAX deficiency and
BAX overexpression can synergize with other oncogenes, and
like BCL2, BAX has dual roles to either enhance or inhibit
tumorigenesis depending on the genetic context.

Proapoptotic BID possesses an additional function in
regulating the ability of cells to stop DNA replication following
DNA damage, presumably allowing cells to repair damaged
DNA and prevent propagation of potentially harmful muta-
tions. This cell cycle function is independent of the proapop-
totic BH3 domain of BID, in contrast to BCL2 and BCL-x,, in
which the cell cycle and apoptotic functions are linked.
Perturbation of both DNA damage-induced cell cycle check-
points and apoptosis has the potential to enahnce tumori-
genesis in the case of BH3-only BID.

Like BCL2 and BCL-x,, recent data indicate that BID’s
ability to suppress oncogenesis may be context- and lineage-
dependent. Absence of BID results in decreased tumor
growth in a mouse model of carcinogen-induced hepatocel-
lular carcinoma, whereas BID-deficient mice develop sponta-
neous CMML. The hematopoietic system is highly susceptible
to DNA damage, and organisms rely on apoptosis for removal
of damaged cells. In this context, the proapoptotic function of
BID may play a more prominent role.

Conclusion

For the multi-domain anti- and proapoptotic BCL2 members
(except MCL1), the cell cycle and apoptosis functions are
coordinately regulated. The interplay of cell cycle and
apoptosis is more variable for the BH3 molecules, all of which
cannot be easily explained by their ability to bind antiapoptotic
family members. BAD is basically the antithesis of BCL2 and
BCL-x,, consistent with the selective high affinity of BAD for
BCL-x_ and BCL2.8° For Bid, the choice appears to be either
apoptosis or cell cycle. In this case, the cell cycle function is
independent of BH3-mediated binding to BAX or BCL2.%? For
PUMA, the choice between apoptosis and cell cycle arrest
occurs upstream at the level of gene induction, and to date,
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or apoptosis

Figure 3 BCL2 family members couple apoptosis and cell cycle in different
ways. BCL2, BCL-x., and BAX coordinately regulate survival and proliferation;
BID functions in either apoptosis or cell cycle; PUMA is only apoptotic. For each
molecule, whether the apoptosis or cell cycle function predominates depends on
cell type and genetic context

there is no evidence that this BH3 molecule has any cell cycle
function (Figure 3). Perhaps, this is because PUMA binds all
of the antiapoptotic BCL2 family members,® but in that case,
one might expect greatly accelerated cell cycling. It is clear
that the cell cycle function of certain BCL2 family members is
distinct from their apoptosis or survival function.

The BCL2 family offers a unique opportunity to study the
intersection of two major cellular pathways: regulation of
apoptosis and cell cycle control. For the BCL2 family
members known to have dual functions, such as BCL2,
BCL-x_, MCL-1, BAX, and BID, their relative roles in apoptosis
versus cell cycle are highly dependent on cell lineage and
genetic context. These variables present challenges in the
discovery of cell cycle functions for the other BCL2 family
members, such as A1, BIM, PUMA, NOXA. Increased
understanding of the BCL2 family proteins in recent years
illustrates that individual members couple cell cycle and
apoptosis in unique ways. That the mitochondria may be at the
center of a cell’s decision between survival and proliferation is
very intriguing. More research needs to be focused on
precisely how the apoptotic regulators fit into known cell cycle
signaling cascades. The concept of survival at the expense of
proliferation awaits further validation as more mechanistic
data come to light.

Dedication

This review is written in honor of Stan Korsmeyer, who was a
wonderful mentor. All three authors are grateful for the
rigorous post doc training in Stan’s lab. He will always remain
a guiding force to our science.
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