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Abstract: Software-defined networking (SDN) has emerged as a flexible and programmable network
architecture that takes advantage of the benefits of global visibility and centralized control over a
network. One of the main properties of the SDN architecture is the ability to offer a northbound
interface (NBI), which enables network applications to access the SDN controller resources. How-
ever, the NBI can be compromised by a malicious application due to the lack of standardization
and security aspects in the most current NBI designs. Therefore, in this paper, we propose a novel
comprehensive security solution for securing the application–controller interface, named BCNBI.
We propose a controller-independent lightweight blockchain architecture and exploit the security
features of blockchain while limiting the blockchain’s computational overhead. BCNBI automati-
cally verifies application and SDN controller credentials through token-based authentication. The
proposed solution enforces fine-grained access control for each application’s API request and clas-
sifies the permission set into strict and normal policies, in order to add an extra level of security.
In addition, the trustworthiness of applications is evaluated in order to prevent malicious activities.
We implemented our blockchain-based solution to analyze its security, based on the confidentiality–
integrity–availability model criteria, and evaluated the introduced overhead in terms of processing
time and packet overhead. The experimental results demonstrate that the BCNBI can effectively
secure the NBI, based on the fundamental security goals, while introducing insignificant overhead.

Keywords: software-defined networking (SDN); northbound interface security; lightweight blockchain;
policy enforcement; trust evaluation

1. Introduction

The SDN is a revolutionized network architecture that enables the programming of
network devices from a central controller. The SDN motivates the idea of decoupling the
data plane from the control plane, which removes many complexities and adds flexibility to
the overall network infrastructure [1]. The Open Networking Foundation (ONF) promotes
the SDN architecture and enables users to define how the data and control planes commu-
nicate with each other [2]. The separation of these two planes has given SDN applications
the ability to program and control the underlying network infrastructure through the SDN
northbound interface. The SDN architecture can be broadly classified into the following
planes [3]: an application plane, a control plane, and a data plane, as shown in Figure 1.
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Figure 1. The three planes in the SDN architecture.

The application plane plays a great role in manipulating, configuring, and monitoring
the network behavior through the SDN controller. Network policies can be implemented
by the SDN applications that communicate with the SDN controller through northbound
interfaces. REST APIs are widely used by most SDN controllers in the northbound inter-
face [1,2,4–7]. Accordingly, we use a REST API as a means of communication between the
application plane and the SDN controller. The control plane is centralized in a software
decision-making entity named the SDN controller [8]. Therefore, the centralized SDN
controller enables network administrators to have a global view of the entire network and
to configure all network devices from single management. Therefore, the SDN controller
can be considered as the brain of the SDN, and is responsible for tasks such as setting up
routing, routing packets from one device to another, and ensuring quality of service [1].
The control plane works as a network operating system (NOS) and a middle layer between
SDN applications and data plane devices. The southbound interface enables interactions
between the SDN controller and its lower layer—namely, the data plane—through an
OpenFlow protocol. Moreover, the northbound interface enables interaction between
the SDN controller and its upper plane—namely, the application plane—through a REST
API. The data-forwarding plane comprises data-forwarding devices, such as switches and
routers, that are responsible for forwarding network traffic once paths are determined by
the SDN controller. The data plane communicates with its upper layer—namely, the control
plane—through the southbound interface.

Despite the advantages brought by the SDN, it introduces new security issues. Accord-
ing to [9–11], some threat vectors have been identified in the SDN architecture. However,
the northbound interface (NBI), which enables communication between the application
plane and the SDN controller, has been identified as one of the most vulnerable points in the
SDN architecture. Current northbound interface implementations may encounter several
weaknesses [2,6,12,13]. First, there is a lack of security mechanisms to authenticate and au-
thorize the interactions between the application and the SDN controller at the northbound
interface. The absence of such a security mechanism at the NBI enables any application
to have full access to read or write the SDN infrastructure, which allows for potentially
malicious applications. Secondly, there are no mechanisms to detect the malicious behavior
of applications in order to protect the SDN controller from a rogue or compromised applica-
tion. Unlike the southbound interface, which uses a well-known OpenFlow standard by the
Open Networking Foundation (ONF), a standard for the northbound interface is currently
lacking [5]. However, many SDN controllers implement REST APIs in the NBI. REST
APIs are also used by Facebook and Google, as they offer simple integration and minimal
communication overhead. However, most of the SDN controllers implement a REST API
without considering the security aspects which could enable malicious applications to
access the controller REST API without any constraints [12,14]. Hence, there is a need to
secure the application–controller interface in the SDN.
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Several studies have attempted to enhance the security of the northbound interface.
These studies can be classified into centralized-based solutions and blockchain-based
solutions. However, a comprehensive solution that addresses the confidentiality, integrity,
and availability threats between the application and the SDN controller, while maintaining
cost-effectiveness aspects, is still absent. Most of the centralized-based solutions focus
on AAA (authentication, authorization, and accounting) mechanisms; however, their
approaches are based on the centralization model, which could lead to a single point of
failure. In addition, previous solutions are lacking in terms of ensuring that the database
integrity is protected.

Blockchain-based solutions seem to be promising; however, there is a need to take
advantage of blockchains while avoiding their high computational overhead. In addition,
existing solutions rely on manual operations and ignore SDN behavior-monitoring applica-
tions. Due to the prominent features of blockchains, such as decentralization, immutability,
auditability, and persistency, the attention of researchers has been attracted by blockchain
technology, who have aimed to exploit its security aspects in their solutions since it was
introduced in 2008 [15,16]. A blockchain is based on a peer-to-peer (P2P) network, in which
each peer stores a replicate of the same data. Accordingly, the system availability and
reliability are improved and the possibility of a single point of failure is reduced. Moreover,
transactions committed into the blockchain are immutable and cannot be modified, due
to the block structure of blockchain technology, as each block is chained to its prior block
through the hash of the predecessor block [17].

In this paper, we propose a lightweight permissioned blockchain to leverage the
security characteristics of blockchain technology while maintaining low overhead and delay.
Unlike public or permissionless blockchains, which allow anyone to join and participate in
the consensus procedure, our solution utilizes private or permissioned blockchains, which
restrict access to approved participants.

The primary contribution of this paper is to propose a novel lightweight blockchain-
based architecture for securing an SDN application–controller interface, named BCNBI.
The architecture provides a comprehensive solution that includes the main security features
while eliminating the overhead associated with blockchain technology. Its security proper-
ties comprise automated token-based authentication, fine-grained authorization for REST
APIs, accountability, hashing, encrypted communication, and application trust monitoring.
In addition, our solution is controller independent and can be applied to various SDN con-
trollers. We use a web-based REST API as a means for communication among applications,
our proposed solution, and the SDN controller. Unlike other blockchain-based solutions,
which involve high computational overhead and delays, our proposed solution applies a
lightweight blockchain architecture. Finally, we evaluate the security of our solution based
on the confidentiality–integrity–availability (CIA) model, which provides fundamental
security goals for any secure system [18]. We implemented our solution and evaluated its
performance by comparing the performance of the Floodlight controller with and without
our blockchain-based solution, in order to measure the additional overhead introduced
by our system. The results show that the proposed solution defended the northbound
interface against threats to the CIA model, while generating insignificant overhead.

In summary, our major contributions are as follows:

• We propose a novel blockchain-based lightweight architecture for securing the application–
controller interface. The solution provides a comprehensive and decentralized security
feature to address security threats to the NBI based on the CIA model.

• We propose a lightweight architecture to maintain the security benefits of blockchains
while mitigating their high computation overhead by avoiding computationally ex-
pensive consensus mechanisms.

• We provide a controller-independent solution to secure the SDN controller against
third-party applications, as well as enabling the framework to be applied to other
SDN controllers.
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• We provide a mechanism to monitor the behavior of SDN applications and automati-
cally evaluate the trustworthiness of an application based on its operations.

• We critically analyze the main centralized and blockchain-based solutions for securing
the northbound interface of the SDN controller.

The remainder of this paper is structured as follows: Section 2 reviews the related
works and provides a comparison of existing approaches. Section 3 elaborates the design
goals, as well as the proposed system design and architecture of BCNBI. Section 4 presents
the security analysis and performance evaluation of BCNBI, and discusses the experimental
results. Finally, we conclude the paper and introduce future research directions in Section 5.

2. Related Work

Several studies have been conducted to enhance the security of the northbound interface
and ensure secure communications between the application and SDN controller. Most of the
proposed solutions can be classified as centralized-based solutions [4,6,7,12,19–26] or blockchain-
based solutions [14,27–32].

2.1. Centralized-Based Solutions

Centralized-based solutions focus on applying security techniques based on a central-
ized security model, a basic authentication approach, and simple database storage.

Tseng et al. [4] have proposed a lightweight plug-in solution called ControllerSEPA
to secure the interface between SDN applications and the controller. ControllerSEPA is
controller independent and provides centralized AAA mechanisms. This approach was
evaluated and the authors claimed that the security of the controller had been enhanced
with small latency; however, the paper was lacking in terms of protecting the integrity of
the data. Oktian et al. [6] have designed a framework to secure the REST NBI for controllers
using OAuth 2.0; however, the proposed scheme was not evaluated.

Phan The Duy et al. [7] have introduced a Trust Trident authentication framework
for securing NBIs. The framework provides services of AAA mechanisms based on the
centralization model in order to secure the communications between the application and
SDN controller against malicious applications. Each application is assigned a trust value,
which is used to measure the trustworthiness of the application based on its behavior.
The application is disabled from further operations when it reaches the deactivation policy
threshold. They evaluated their solution based on the STRIDE methodology; however,
they did not protect the NBI against availability threats, which could lead to a single point
of failure.

Banse et al. [12] have proposed a web-based secure northbound interface that sup-
ports external applications and is controller independent. Their framework adheres to
encrypted communication between SDN applications and the controller. They offered
security services, such as a trust manager, to ensure SDN application authenticity based on
application certificates. In addition, the authors introduced a permission system to ensure
the appropriate permission is granted to the proper SDN application based on its required
network resources or operations; however, the paper was lacking in terms of protecting the
integrity of the data.

Toshniwal et al. [19] have proposed a dynamic access control called BEAM, which
grants permissions based on the analysis of SDN application behavior. BEAM modifies the
assigned access permissions to SDN applications during runtime, for a specified short dura-
tion, by analyzing and verifying the application’s behavior against its granted permissions.
The authors argue that analyzing the application log can enable abnormal application
behavior to be detected while decreasing the controller’s overhead. BEAM examines the
behavior of an application based on its log file, which has a small size. However, BEAM
does not ensure that the consistency of policy updates are protected and preserved during
runtime by multiple applications at the same time.

Cui et al. [20] have proposed a mutual authentication mechanism between appli-
cations and controllers. They addressed the issue of conflicts between unauthenticated
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SDN applications and requests. Their authentication system has good portability, as it
is controller independent; furthermore, it does not result in significantly high overhead.
The authentication system has four main modules: the system log, the security manager,
the resource manager, and the permission manager. The authors claimed that, based on
their test results, the system worked effectively, defending against illegal application access.
However, the solution does not map the application type to its permission sets; furthermore,
it has limitations in detecting the behavior of malicious SDN applications effectively.

Aliyu et al. [21] have proposed a trust management framework for enabling secure
communication between the SDN application and the controller. It aims to grant request-
required permission to perform its required task and not to exceed the permitted operation.
Every SDN application has attributes that describe the behavior of the SDN application.
These attributes control the primary function of SDN applications based on four main
permissions; namely, Read, Write, Notify, and System calls. However, the access control
information is stored in a normal database, which could be illegally modified or tampered
with. This framework has not been evaluated on a testbed.

Wen et al. [22] have proposed a fine-grained permission system with an isolation
mechanism, called PermOF, for protecting the controller by applying the least privilege on
the SDN application. PermOF specifies a set of 18 permissions, which can be categorized
into four types; namely, Read, Write, Notification, and System permissions. PermOF aims
to enforce minimum permissions on third-party SDN applications in order to ensure a
secure controller. However, the proposed solution has not been evaluated.

Tseng et al. [23] have proposed a controller-independent dynamic access control system
called Controller DAC. This framework enhances the security of the controller against
malicious SDN applications. In addition, it addresses the issues of API abuse through use
of the following four permission types: READ, ADD, UPDATE, and REMOVE. Controller
DAC contains three modules, which are a northbound security extension, a controller-
specific IDS, and a high-level policy engine. Their results showed that Controller DAC has
low deployment complexity, as code modification is generally not required. Additionally,
it can protect the controller against API abuse with a negligible performance overhead.
However, the paper does not address the issue of protecting the integrity of data against
illegal modification.

Tseng et al. [24] have presented a novel SDN architecture called SENAD, which enables
the deployment of trusted SDN applications. They stated that their solution protects NBIs
against malicious applications. The proposed architecture splits the SDN controller into
an application plane controller (APC) and a data plane controller (DPC). They secure the
APC by providing the following security services: Access control, monitoring applications,
and authentication. Based on their evaluation, the latency remained low.

Additionally, Al-Alaj et al. [25] have proposed a role-based access control model,
called SDN-RBAC, which enables the principle of least privilege at the application level.
The framework can detect application sessions and discard malicious operations at runtime.

Moreover, Aliyu et al. [26] have proposed a trust framework to secure the commu-
nications between SDN applications and the controller. Their framework has three main
modules: the trust module, which evaluates the reliability and trustworthiness of SDN
applications by Subjective Logic Reasoning; the authentication module, which verifies
and validates SDN applications through a token-based method; and authorization, which
authorizes SDN applications using a Boolean Access Matrix. The results demonstrated the
scalability and efficiency of the proposed framework.

2.2. Blockchain-Based Solutions

Although the utilization of blockchain-based security solutions has received widespread
attention in both academia and industry, only a few papers have utilized blockchains to
secure the SDN architecture, and even fewer have considered protecting the northbound
interface [27].
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To the best of our knowledge, there are only three surveys [27–29] that have discussed
the integration of blockchain and SDN architectures. Wenjuan et al. [28] have reviewed
blockchain-based SDN frameworks and discussed the opportunities and threats when com-
bining blockchain and SDN technologies. They pointed out that the combination of these
technologies enhanced the security architectures in various scenarios. The authors analyzed
the security applications that use blockchain technology in SDN, and observed that most
of the proposed studies have focused on IoT solutions [27]. In [29], the implementation
of blockchains in SDNs was reviewed based on security and non-security perspectives.
In addition, the challenges of integrating these two technologies were discussed.

Several studies have leveraged the benefits of blockchain technology to enhance the
security of the application–controller interface [14,30–32]. In [30], ChainGuard was used as
a firewall for blockchain applications, interacting with blockchain nodes to filter network
traffic. The proposed framework filters traffic by recognizing the origin of legal traffic
and blocks illegal packets to protect the blockchain nodes. ChainGuard applies an access
control mechanism, and its primary goal is to ensure that the nodes are secure against
flooding attacks and unauthorized accesses.

Hoang et al. [31] have applied blockchain technology to their proposed solution to
enhance the security of NBIs. Their framework uses blockchain technology to ensure
the integrity of the database against unauthorized access and protect the SDN controller
from the single point of failure. In addition, their framework provides AAA mechanisms
for enhancing the security of the NBI. However, they did not analyze the trustworthi-
ness of application API requests to detect the malicious behavior. Their solution was
also not fully automated, as it involves human intervention in issuing and verifying the
authentication token.

In [32], the authors proposed a blockchain-based trust establishment between the
application and the SDN controller. The objective of the system is to control the application’s
authentication and behavior, as well as network resource management. The system uses
a smart contract to store application information. The authors indicated that the use of
blockchain enables secured authentication between vehicular applications and the SDN
controller. However, their proposed solution has not been evaluated.

In [14], the authors proposed an STHM architecture which utilizes SDN with blockchains to
establish a trust management framework. The STHM is used to secure the northbound interface
of the SDN controller in the context of healthcare monitoring applications. Their framework
ensures trust verification of the IoT healthcare devices and provides AAA mechanisms to
establish trust between network applications and the SDN controller. They use permis-
sioned blockchains and apply the Proof-of-Work (PoW) consensus algorithm, which is
computationally expensive and may be not suitable for Internet of Things (IoT) devices.
Jiang et al. [33] proposed BlocHIE, a Blockchain-based platform for healthcare information
exchange. They introduced two fairness-based transaction packing algorithms named
FAIR-FIRST and TPFAIR. These algorithms improve the throughput of the system and
the fairness among users. The packing algorithms are evaluated in terms of fairness and
throughput. The result indicates that FAIR-FIRST improves fairness, and TPFAIR enhances
the system throughput. Moreover, in [34], the authors proposed a blockchain-based data
management system that enables privacy-preserving and efficient multi-keyword search
protocol. They developed a bloom filter-enabled multi-keyword search protocol which
allows searching over encrypted data on the blockchain with minimum delay and low
financial cost. The experimental results demonstrate the advantages of the proposed proto-
col over prior traditional approaches. Jiang et al. [35] presented a fairness-based transaction
packing algorithm for private blockchain-based Industrial IoT, namely FAIR-PACK. The au-
thors proposed a heuristic and a min-heap-based optimal algorithm inside FAIR-PACK
for diverse parameter settings. The results articulate that FAIR-PACK outperforms prior
packing algorithms in terms of fairness and average response time.
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3. System Design
3.1. BCNBI: Design Objectives

This subsection discusses the design objectives of our proposed solution BCNBI,
as detailed in the following.

• Tamper-proof data storage: We applied blockchains to our framework, which ensure data
immutability and the achievement of integrity checks by design against data modification.
The blockchain applies a Merkle tree which is a hash-based data structure.
Data stored in the BCNBI cannot be changed or deleted, which protects our system
against tampering, as each block in the blockchain is connected by a cryptographic
hash link. Each block has a cryptographic hash of the predecessor block and each block
generates its hash value based on all previous block elements, along with its hash
value. Furthermore, the blockchain storage is duplicated at each BC Peer. Hence, it is
hard to tamper with the data stored in all BC Peers and compromise the cryptographic
hash of all connected blocks.

• Decentralization architecture: As a centralized SDN controller could result in a single
point of failure, there is a need to defend the SDN controller against such a failure.
Taking advantage of the decentralization aspect of blockchain technology significantly
improved the availability and reliability of our framework and eliminated the need
for an authentic third party. The blockchain is based on a peer-to-peer network,
in which a group of peers manages the network and each peer has a replicate of the
blockchain data.

• Lightweight architecture: The BCNBI framework provides a lightweight solution
based on a customized private blockchain. Our framework eliminates the blockchain’s
overhead and delay while maintaining the security and privacy benefits of blockchain
technology. Consensus mechanisms, such as Proof of Stake (PoS) or Proof of Work
(PoW)—which are computationally expensive—were eliminated. In addition, we
maintained the security of blockchains to meet the strict requirements of industries
and governments in keeping their sensitive data private. The BCNBI framework is
centrally managed by its owner, and restricts access to only selected nodes based on
the blockchain owner.

• Controller independence: Our solution is based on a REST-based northbound API,
which enables communication through a web-based interface to achieve flexibility, is
controller independent, and supports external SDN applications. REST uses HTTP
methods to access resources, and the data are transmitted in JSON format. Our BCNBI
framework takes place outside of the SDN controller.

• Authentication: The proposed framework authenticates and verifies the network
application and SDN controller before interaction. As the communication channel
between the network application and the SDN controller is encrypted with TLS, when
the user’s credentials are successfully authenticated, the BCNBI delivers a JSON Web
Token (JWT) to the authenticated user; this token needs to be used by the user with
each request between a network application and SDN controller. As a result, user
authenticity is ensured based on the user’s credentials and authenticated token.

• Fine-grained authorization: We aim to achieve the concept of a secure method by
design. Therefore, the permissions of applications are stored in BC Peers, in order
to ensure the security and integrity of the access control policies. The goal of autho-
rization in our framework is to validate whether a request from the application is
approved or disapproved based on certain conditions. If the application API request
is approved, then the application only accesses its predefined API permission on the
controller resources. Otherwise, the application request is rejected.

• Confidentiality: To prevent eavesdropping and tampering attackers, the application–
controller plane interface (A–CPI) is encrypted using the Transport Layer Security
(TLS) protocol. Therefore, the data transmitted between the application and SDN
controller are kept secret and are only read by the authorized user.
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• Application trust evaluation: Our system prevents the abnormal behavior of API
requests by monitoring SDN application–controller communication. Each application
is assigned with a trust attribute, which measures the application’s trustworthiness
based on its operations. This module can be used to decide whether to disable an
application when a threshold, which considers the abused application as malicious,
is reached.

3.2. BCNBI: Design Overview

Based on the design objectives stated above, we propose a novel lightweight blockchain
system, named BCNBI, for efficiently securing the SDN northbound interface. The BC-
NBI framework adheres to a Security-by-Design principle and comprises security features
such as encrypted communication, token-based authentication, fine-grained authoriza-
tion, and application trust monitoring. These restrict access to trusted applications and
ensure data confidentiality. In addition, inheriting the securely distributed architecture
of the blockchain technology while limiting the blockchain’s computational overheads
is one of the essential design principles of the BCNBI framework. The data integrity is
ensured by the blockchain immutability feature, and the availability and reliability of our
framework are improved by the decentralized nature of the blockchain. We introduced a
security layer between the application plane and the control plane in order to enable secure
communications between the application and the SDN controller. This security layer is
implemented based on the REST-based northbound interface, which uses HTTP methods
for communication. REST APIs are flexible as they support various SDN controllers such
as OpenDaylight, ONOS, Floodlight, HP VAN SDN, DISCO, Ryu, and POX; hence, our
solution uses REST APIs [1].

Our solution uses private blockchains, which meet the requirements of industries
and businesses in providing a controlled and permissioned environment to protect their
sensitive data while taking the advantage of a secure blockchain system.Unlike Bitcoin,
which uses PoW, our framework applies lightweight consensus algorithms to eliminate
the overhead and delay associated with traditional blockchains. Our system not only
stores the block header and transactions in blockchains, but also stores the user and policy
header in each BC Peer, which significantly enhances the level of security and ensures the
immutability and availability of our system.

Our system protects the SDN controller’s APIs by intercepting and evaluating the security
of application requests before they reach the northbound interface of the SDN controller.

3.3. System Architecture

The high-level architecture of our solution is given in Figure 2, consisting of the follow-
ing main components: BCNBI APIs, the BCNBI Blockchain Manager, and the Controller API
Handler. Figure 3 demonstrates the main scenario and high-level interactions among the
SDN application, the BCNBI system, and the SDN controller. In the following subsections,
we explain each component in detail.

3.3.1. BCNBI APIs

These REST APIs represent the interface and front end of our proposed solution. They
enable fixable and efficient interactions among the applications, the BCNBI system, and the
SDN controller. The BCNBI REST APIs enable controller independence, as the proposed
solution is independent of the underlying SDN controller. The BCNBI APIs include the
entities detailed below.



Electronics 2022, 11, 996 9 of 27

Figure 2. The high-level architecture of the proposed solution.

Figure 3. Main scenario and high-level interaction of the proposed solution.
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Authentication API: This is a REST API that is responsible for authenticating all
users, such as admin users, application users, and SDN controller users. Figure 4 shows
the workflow for authenticating the SDN application through the Authentication API.
As we use a P2P network, our system uses a round-robin algorithm to balance the requests
among the BC Peers. Therefore, the user authentication request is assigned to one of
the BC Peers based on the round-robin algorithm. The user undergoes the following
authentication process:

• Ensure the BC Peer that sends the request is joined in our blockchain network;
• Authenticate the user’s credentials from the latest block’s user header;
• Check that the user trust level is not malicious based on the latest block’s user header

of BC Peer.

If all of the above conditions are met, then the user is successfully authenticated and
calls the JWT module to generate an authentication session token, which needs to be used
by the user with each request during the session period.

Figure 4. Authentication API workflow for SDN application.

Authorization API: This REST API is responsible for authorizing the application API
request that comes through the SDN controller. Therefore, this API is only accessed by the
SDN controller for validating application API requests, as illustrated in Figure 5. When
the SDN controller receives an API request from an application to access its resources, it
communicates with our BCNBI system and obtains one of the BC Peers based on the round-
robin algorithm. Then, it validates the application API request based on the following
authorization process:

• Ensure the BC Peer is joined in our blockchain network;
• Authenticate the SDN controller’s credentials based on the latest block’s user header,

by invoking the Authentication API;
• Check the user trust level is not malicious, based on the latest block’s user header of

BC Peer;
• When the SDN controller is successfully authenticated, then the JWT module generates

an authentication session token that needs to be used by the SDN controller with each
request within the session period;

• Ensure the requested user is a controller from the latest block’s user header, as this
API is only permitted for the SDN controller user;
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• Validate the application API request which is encapsulated within the SDN controller
authorization request that is sent to our BCNBI system, taking into account that the
SDN controller request must contain two authentication tokens (in particular, for the
application and for the SDN controller);

• Validate the authentication tokens by the JWT module;
• Check whether the application user has permission to request the API of the SDN

controller based on the latest block’s policy header;
• Ensure the user’s trust level is not malicious, based on the latest block’s user header; and
• Validate the transaction based on the agreement of other BC Peers, using validate-

BlockchainApi.

If all of these conditions are satisfied then the application request is successfully
authorized and the SDN controller allows the application to access the requested API of
the SDN controller; otherwise, the application request is discarded. Our system maintains
a value for the last blockchain update, named the DateTime parameter, which is used to
determine the last updated blockchain. This value is continuously updated with each
transaction added to the blockchain. The system adds a transaction to the local BC Peer and
broadcasts the updated local blockchain to the other peers using the P2P API, as illustrated
in Algorithm 1.

Figure 5. Authorization API workflow.
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Algorithm 1 Add transaction to blockchain of BC peer.

1: Input:
2: newTransaction: new transaction needs to be added to BC peer blockchain.
3: localPeer: the BC peer that will add the newTransaction into its blockchain.
4: p2pNetwork: the P2P network of all BC peers.
5: Steps:
6: Set tempBlockchain = localPeer.blockchain
7: Add newTransaction to tempBlockchain
8: Set isTempBlockchainAccepted = true
9: Set allPeers = p2pNetwork.getAllPeers()

10: for each currentPeer in allPeers do
11: Set validationResponse = invoke(currentPeer.validateBlockchainApi(tempBlockchain))
12: if valicationResponse == “blockchain invalid” then
13: Set isTempBlockchainAccepted = false
14: end if
15: end for
16: if isTempBlockchainAccepted = true then
17: Set localPeer.blockchain = tempBlockchain
18: for each currentPeer in allPeers do
19: Invoke(currentPeer.setBlockchainApi(tempBlockchain))
20: end for
21: return “transaction accepted”
22: else
23: return “transaction rejected”
24: end if

Admin API: This REST API is responsible for configuring the users and policies of
the proposed solution. As we apply permissioned blockchains, it is important to have
a central authority that limits the participants to known and authorized users. Private
or permissioned blockchains satisfy the requirements of businesses and governments in
protecting their privacy. The Admin API is responsible for adding, deleting, and modifying
the latest block of user and policy header in the BC Peer. The only authorized user who can
access this API is the admin user, created by default in the Genesis Block. As an example,
the following explains the steps required for the Admin API to add a user:

• Ensure the BC Peer is joined in our blockchain network;
• The admin user needs to authenticate themself by Authentication API;
• If the admin user is successfully authenticated, they receive an authentication token

that needs to be used with each request by the admin user;
• When the admin user sends an API request to add a user to the Admin API, it validates

the authentication token of the admin user using the JWT module, and ensures the
requested user type is admin through the latest block’s user header of BC Peer;

• Validate the transaction based on the agreement of other BC Peers, using validate-
BlockchainApi.

If all of the above conditions are fulfilled, the Admin API adds the user to the user
header of the last block and adds the transaction to the local BC Peer. To ensure each BC
Peer obtains the last updated blockchain, we update the DateTime parameter, which is
updated with each update in the blockchain. Finally, the updated blockchain broadcasts to
other BC Peers.

P2P API: This API is responsible for managing our P2P network. The P2P API com-
prises the entities listed below.
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Set Blockchain API: This API enables the broadcasting of blockchain updates to other
Peers. The Broadcast Blockchain To P2P function uses this API to update other BC Peers.

Get Blockchain API: This API enables the acquiring of the blockchain by other joined
Peers in the network. This API is used by the Get updated blockchain from the P2P function
to obtain the blockchains of other Peers, in order to determine the most updated blockchain
to be stored in a newly joined BC Peer.

Broadcast Blockchain To P2P: This function is executed after any modification or
update in blockchain data, such as after any POST requests by the Admin API and after
successful or unsuccessful authorization requests from applications. Broadcast Blockchain
To P2P is executed as follows:

• After successful validation by validateBlockchainApi;
• Get all joined BC Peers;
• Execute Set Blockchain API, which is a REST API request to update all BC Peers.

Therefore, this function plays a major role in updating other BC Peers when there is
any update or change in the blockchain. This ensures identical blockchain storage in all
joined BC Peers.

Get updated blockchain from P2P: This function, as the name indicates, obtains the
most updated blockchain. Even though we believe that all BC peers have the same copy,
we execute this function when a new BC Peer joins our network in order to ensure that we
maintain the most updated blockchain replica. The function is executed as follows:

• Get all joined BC Peers from BC storage;
• Send Get Blockchain API to all BC Peers to obtain the most updated blockchain

database;
• Compare the blockchain database of Peers in terms of number of blocks, number of

transactions in the last block, and last blockchain modification based on the DateTime
parameter.

As a result, we obtain the most updated blockchain and store it in the newly joined
BC Peer.

ValidateBlockchainApi: This API validates the blockchain update by other BC Peers,
as follows:

• Ensure the requested BC Peer is joined in our blockchain network;
• Get all joined BC Peers from the BC storage;
• Each BC Peer validates the updated blockchain using the isValid function, in order to

ensure data integrity;
• Each BC Peer compares the number of blocks of the updated blockchain with the

number of blocks of its BC;
• Each BC Peer compares the number of transactions in the last block of the updated

blockchain with the number of transactions in the last block of its blockchain;
• Each BC Peer compares the last timestamp of the updated blockchain with the last

timestamp of its BC.

If all BC Peers reach an agreement on the blockchain update, as demonstrated in
Algorithm 2, then the blockchain update is considered to be a valid transaction.

IsValid: This function validates any modification or updates in the blockchain, in or-
der to protect the integrity of data against any tampering attack, as demonstrated in
Algorithm 3. In addition, this function is used by validateBlockchainApi to validate
blockchain updates by other BC Peers.

As each block in the blockchain has its own hash value and the hash value of the
previous block, isValid is executed as follows:

• Check if the received hash of each block is equal to its calculated hash of the block’s
received data;

• Check if the previous hash value of each block is equal to the actual hash of the
previous block.
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Algorithm 2 ValidateBlockchainApi.

Input:
peerBC: the blockchain of another peer needs to be validated by
local peer.
localBC: the blockchain of local peer.

Steps:
if peerBC.isValid() then

if peerBC.blocks.count > localBC.blocks.count then
return “Blockchain Valid”

end if
if peerBC.blocks.count == localBC.blocks.count then

if peerBC.latestBlock.trans > localBC.latestBlock.trans then
return “Blockchain Valid”

end if
end if
if peerBC.blocks.count == localBC.blocks.count then

if peerBC.lastUpdate > localBC.lastUpdate then
return “Blockchain Valid”

end if
end if

end if return “Blockchain Invalid”

If both conditions are satisfied and all hashes match, we can ensure the data integrity
of the blockchain.

Algorithm 3 IsValid.

Input:
blockchain: the blockchain which needs to be validated .

Steps:
Set index = 1
while index < blockchain.blocks.count do

Set currentBlock = blockchain.blocks[index]
Set prevBlock = blockchain.blocks[index − 1]
if currnetBlock.hash != currentBlock. calculateHash() then return false
end if
if currentBlock.prevHash != prevBlock.hash then return false
end if
index = index + 1

end while return true

3.3.2. BCNBI Blockchain Manager

The BCNBI Blockchain Manager represents the back end of our proposed solution,
which is accountable for building and managing our blockchain-based architecture. The BC-
NBI Blockchain Manager comprises the entities listed below.

Blockchain Module: This is a core component in our framework, which is responsible
for constructing and handling the blockchain structure. It includes a Block Header, which
is responsible for building and chaining the entire blockchain. Each block in a BC Peer has
transactions and three headers, namely, a block header, a user header, and a policy header,
as shown in Figure 6. However, the last updated user and policy headers are placed in
the last block of all BC Peers, which are used for assuring and checking API permissions
and users. Each block contains the hash of its previous block to ensure immutability of
the BC. The block header has all information related to the block, such as the block index,
hash, previous hash, and timestamp. To ensure secure and immutable access control of
our system, we store our access-control privileges in the policy header, which assigns each
application to its allowed permissions. When the system creates the first block, it generates
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a genesis block and an admin user to control and manage our blockchain in terms of adding,
deleting, and modifying users or policies.

Figure 6. Block structure example.

User Module: The responsibility of this module is to store all information related
to users or participants of our system, such as admin users, application users, and SDN
controller users. Each participant has seven parameters: userID, userPassword, userType,
userSystem, NormalPolicyThreshold, StrictPolicyThreshold, and UserLevel. The userID
and userPassword are used by the Authentication API, while the userType, userSystem,
NormalPolicyThreshold, StrictPolicyThreshold, and UserLevel are used by the Autho-
rization API for the authorization process and for evaluating an application’s behavior.
Although each block in the blockchain contains a user header, the most updated user header
is positioned in the last block’s header, which is used for validating and modifying users.

Policy Module: This module stores the access control policy of applications and has
two parameters: ApplicationUserID and API Permission. API permissions are assigned
to each ApplicationUserID, based on application type and roles. This module is used by
the Authorization API for comparing the requested API permission of the application and
its predefined API permission in the policy header of the last block. If there is a match,
it allows the request to continue to the authorization process; otherwise, it discards the
request. Though each block in the blockchain contains a policy header, the most updated
policy header is positioned in the last block’s header, which is used for validating and
modifying policies.

Transaction Module: Any communication between an application and the SDN con-
troller is considered a transaction, which includes an ApplicationUserID, ControllerName
ControllerUserID, ApiUri, ApiMethod, ApiPermission, IsAuthorized, PolicyThreshold,
ApplicationUserLevel, Date, and Creator, as shown in Figure 7.

Figure 7. Transaction structure.
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Hash Module: A vital component of blockchain technology is to apply the hash
function to the content of each block, including the previous block’s hash of the current
block, which is used to ensure that a tamper-proof and immutable database is maintained.
We use the lightweight hash algorithm SHA256 to calculate the hash value for each block.
This module produces the hash value for each block based on BlockIndex, BlockTimeStamp,
PreviousHash, PoliciesHeader, UsersHeader, and Transactions. The hash module is invoked
by the isValid function after any update by the Admin API or Authorization API.

Trust evaluation Module: This module monitors the behavior of applications when
communicating with the northbound interface of the SDN controller, as illustrated in
Algorithm 4. The interactions between an application and SDN controller can be classified
into reading network status and writing network permissions [13].

Algorithm 4 Application trust evaluation.

Input:
transaction: the transaction that represents the request from application.
to controller with its authorization status.
appUser: the user of SDN application.

Steps:
if transaction.appRequestMethod == “GET” then

if transaction.isAppAuthorized == false then
Decrease appUser.normalPolicyThreshold by 5
if appUser.normalPolicyThreshold < 50 then

Set appUser.level = “Malicious”
end if

end if
else

if transaction.isAppAuthorized == false then
Decrease appUser.strictPolicyThreshold by 5
if appUser. strictPolicyThreshold == 85 then

Set appUser.level = “Malicious”
end if

end if
end if

Read permission: Read permissions allow applications to send HTTP requests with
the GET method to the SDN controller. This permission enables the application to obtain
information about the state of controllers, switches, devices, topology, routing, and statistics
of events. Therefore, Read permissions allow applications to gather the network’s statistical
information and learn about the structure of the SDN. Should a malicious application have
this permission, it could discover vulnerabilities of the system to be exploited at a later
time or to launch a reconnaissance attack. However, Read permissions can only be used
to read information about the network without modifying it, making them less risky than
Write permissions.

Write permission: Write permissions allow applications to send HTTP requests includ-
ing POST, PUT, and DELETE to the SDN controller. These permissions plays a significant
role in setting, modifying, and deleting the configuration of the SDN; for example, an ap-
plication with this permission can perform very dangerous operations, such as adding
or deleting static flow on flow entries, creating or dropping firewall rules, modifying the
firewall status, and creating or deleting virtual networks. This permission enables an
attacker to generate multiple attacks, such as flow rule tampering, redirection of network
traffic, and controller spoofing and, finally, to compromise the entire SDN. Therefore, we
classify the policy in our system as a strict policy or a normal policy based on the type of
the requested HTTP method.

Strict policy: This policy is associated with Write permissions, and aims to protect our
system from unauthorized modification which could result in direct damage to the SDN
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controller. In this policy, the application is blocked and its trust level is considered to be
malicious if the number of unauthorized HTTP requests exceeds three times. This threshold
was set based on common security practices in most strict security systems, in order to
defend our SDN from being compromised or attacked.

Normal policy: This policy is linked with Read permissions, and aims to protect
our system from unauthorized reads which could result in understanding and exploiting
system weaknesses. In this policy, the application is blocked and its trust level is considered
to be malicious if the number of unauthorized HTTP requests exceeds eleven times. Set
according to [7], the threshold can be tolerated to some extent, as some over-privileged
requests caused by mistaken and illegitimate Read permissions cannot amend the state of
the network, compared to Write permissions.

Trust attribute: This attribute is stored in the latest block’s user header of a BC Peer,
and is used to measure the application’s trustworthiness based on its behavior. Each
application is assigned with a Trust attribute, which is periodically evaluated and updated
based on the application’s operations. The Trust attribute can be represented by a trust
level, such as benign or malicious, or by a trust value (0–100). At the beginning, by default,
the trust level is set to normal and the trust value is set to 100. The trust value drops by
five points per unauthorized request, while remaining at the same value for permitted
requests. There are two types of thresholds, based on the predefined policies, as shown in
Figure 6. The strict policy uses a strict threshold, blocking the application when its trust
value reaches 85 and turning its trust level to malicious. Regarding the normal policy,
an application is deactivated once its trust value is less than 50, and its trust level becomes
malicious. The Trust attribute is assigned with each application request and checked by the
Authentication API and the Authorization API, in order to establish a trust relationship
between the application and the SDN controller.

JWT module: This module is responsible for the generation and validation of authen-
tication tokens. The GenerateToken function encrypts the user’s identity based on the
HMAC (Hash-Based Message Authentication Code), which uses a secret cryptographic
key in conjunction with a hash function to protect the integrity of the data and adds an
extra layer of user authentication. The ValidateToken function checks the validity of re-
ceived authentication tokens. In addition, it validates the token expiry duration, as each
token has an expiration date (called expireMinutes). The Authentication API uses this
module to generate tokens, while the Authorization and Admin APIs use this module to
validate tokens.

3.3.3. Controller API Handler

The Controller API Handler is used as an SDN controller plugin to facilitate secure
interactions with our proposed system, and to intercept and analyze the application re-
quests for validation purposes. The Controller API Handler encompasses the entities
detailed below.

Controller Authentication API: To achieve mutual authentication, we optimized
the security of the Floodlight controller by building this API to validate the identity of
the Floodlight controller when communicating with our framework using a username,
password, and authentication token. This API interacts with one of the BC Peers, based
on the round-robin algorithm, and sends an API request to the Authentication API to
authenticate the credentials of the Floodlight controller. After successful authentication,
the Authentication API of the BC Peer generates an authentication token for the Floodlight
controller, which needs to be used with each request.

Permission-Detecting API: This API facilitates communications among the applica-
tion, Floodlight controller, and our proposed solution. Permission Detecting can be divided
into two main elements: Check API permission and Authorize application request.

Check API permission: This API maintains policies and permissions for Floodlight
REST APIs and their associated HTTP methods. The Floodlight controller offers several
REST APIs, such as Controller APIs, Topology and Routing APIs, Device APIs, and Fire-
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wall APIs. These APIs could have URIs with various HTTP methods, such as GET, POST,
DELETE, and PUT; for instance, Firewall APIs, which are used for listing, creating, and delet-
ing firewall rules, have one URI /wm/firewall/rules/json with various HTTP methods. To illus-
trate that the following URI /wm/firewall/rules/json with the GET method is used for listing
firewall rules, the same URI with the POST method is used to create a new firewall rule.
Therefore, this module compares the requested API permission of the application with the
predefined permissions of Floodlight APIs. If there is a match, it forwards the result to the
Authorize Application Request API for further analysis; otherwise, it discards the request.

Authorize Application Request API: This API is an SDN controller plugin, used to
authorize and verify the API requests of applications based on our framework. This API
communicates with one of the BC Peers and sends an authorization request to the Autho-
rization API, taking into account that the request should include certain parameters; namely,
a controller token, controller name, application token, API permission, API URI, and API
HTTP method. The Authorization API validates the identity of the application and the
SDN controller, ensures the authorization request is initiated by the SDN controller, checks
the application’s permissions based on the policy header in the BC Peer, and evaluates the
application’s trust level. Based on the above mentioned conditions, the Authorization API
responds to the SDN controller to approve or deny application requests.

4. BCNBI Evaluation

The proposed solution, BCNBI, was evaluated based on a qualitative security analysis
and its quantitative performance overhead. The security analysis demonstrated that our
architecture can achieve the fundamental security objectives of confidentiality, integrity,
and availability, and examines how primary security threats were mitigated. In addition,
we evaluated the performance overhead of the proposed solution.

4.1. Experimental Setup

We implemented a proof-of-concept prototype of our BCNBI solution in the ASP.NET
framework as a permissioned blockchain, in order to achieve the security benefits of
blockchain technology while maintaining privacy and control requirements. Unlike Proof-
of-Work and other highly computationally intensive consensus processes, we implemented
a lightweight blockchain framework similar to our previous work in [36] and similar to that
of [37]. In our previous work, we demonstrated a lightweight instantiation of blockchain
for IoT systems by mitigating the heavy computational cost of a consensus algorithm.

We executed the BCNBI solution on a Windows 10 operating system with 12 GB RAM
and an Intel Core i7-4510U CPU at 2.60 GHz. In addition, the Mininet simulator was
used to emulate the SDN on Ubuntu 14.04 LTS in a VMware Workstation with an Intel
Core i7-4510U CPU at 2.60 GHz and 8 GB memory. The Floodlight controller was used
to control and manage the SDN. The SDN topology comprised one Floodlight controller
andthree Open vSwitch (OVS) switches with one connected host per switch in a linear-type
model. We simulated the Blockchain network in our solution with three connected BC
peers. In addition, we simulated the SDN application in our framework using JMeter [38]
to test the northbound interface through consuming the Floodlight REST APIs.

4.2. Security Analysis

We evaluated our solution based on the confidentiality–integrity–availability (CIA)
triad, which is a well-known information security model. We chose the CIA triad to evaluate
our system, as it is commonly used as the key objective in computer security design.
Each security objective guards the system against different types of threats. For example,
confidentiality ensures that information is disclosed and accessed only by authorized
participants, while integrity ensures that information is accurate and cannot be modified;
finally, availability ensures that the information is available to trusted users. Next, we
analyzed the effectiveness of our solution to prevent threats related to the CIA triad.
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4.2.1. Confidentiality Threats

The aim of protecting confidentiality is to protect information against unauthorized
access or disclosure. This protection includes protecting data while being transmitted from
an application to a SDN controller and data that are stored in BC Peers. Our system applies
encryption, authentication, and authorization to achieve confidentiality. In addition, we
utilize a private blockchain to protect privacy, as the flow of data is controlled and the
consensus process is limited to predefined participants.

Encryption technique: This method aims to make stored and transmitted data unread-
able to illegal users. While the data in the storage phase are stored in the BC Peers, which
encrypt the stored data by hashing, the data cannot be interpreted in the transfer phase,
as we use Hyper Text Transfer Protocol Secure (HTTPS) over Transport Layer Security (TLS)
to encrypt data during transmission and enable a secure channel between the application
and the SDN controller. This technique guards our system against eavesdropping and
sniffing threats, such as man-in-the-middle attacks.

Authentication technique: This technique verifies the application user’s identity to
prevent unauthorized users from accessing the SDN controller. As the first line of defense
to protect the SDN controller from malicious applications, the application needs to be
authenticated by our system before it can communicate with the SDN controller. The au-
thentication process involves three steps that take place between the application and the
Authentication API in the BC Peer. The first step involves validating whether the requested
application’s credentials match the actual application’s predefined credentials that are
stored in our BC Peer. If there is a match, then it successfully passes the first line of defense.
Then, if the application trust level is not malicious, the BCNBI generates an authentication
session token that must be used by the application with each request within the session
period. Finally, the authentication technique maintains the application trust level, which
can be updated and altered based on the activities of the application.

Example 1. Let us assume that an adversary bypasses the HTTPS protocol and manages to acquire
the credentials of a legal application user.

The attacker would be unable to authenticate itself, as it does not have an authentication session
token that is generated and validated by our BC Peer. The worst-case scenario consists of the attacker
capturing the authentication session token. Then, in this case, there are two situations: First, if the
token is expired or modified the PC Peer would detect this as a malicious request. On the other
hand, if the intruder acquires a valid token then this countermeasure would be passed; however, our
system would check the application’s trust level and update it based on the application’s behavior.
Accordingly, if the application exceeded the trust-value threshold it would result in blocking of the
application and it would be considered as a malicious application. Therefore, this technique validates
the identity of the application before communicating with the SDN controller and mitigates the
threat of spoofing based on multiple security levels.

Authorization technique: The next step, after successfully identifying and verifying the
identity of the application, involves permitting the application to access the resources of the
SDN controller APIs based on particular conditions. The SDN controller is the only entity
that can communicate with the Authorization API in the BC Peer. The Authorization API is
implemented in each BC Peer, which is responsible for validating the application request
and granting permission to the application to access APIs of the SDN controller based on
several verification steps. These verification steps include authenticating the application
and the SDN controller, checking the application operation based on the predefined access
policies in the BC Peer, monitoring the application’s trustworthiness based on a predefined
threshold and, finally, validating the transaction by other BC Peers.

Example 2. Let us assume that one of the authorized applications attempts to elevate its allowed
privileges and access unauthorized REST APIs of the Floodlight controller.
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These requests would be discarded by the Authorization API in the BC Peers, and the applica-
tion’s trust value would automatically drop by five points per illegal request as a punishment. Our
system classifies the threshold into strict and normal, based on the type of HTTP method. On one
hand, the strict threshold is activated when the application requests three unauthorized controller
API resources with a Write permission, such as POST, PUT, and DELETE. Then, the trust value
of this application is declined to 85 as a penalty for this behavior, and the application’s trust level
is set to malicious. On the other hand, the normal threshold is activated when the application
sends eleven over-privileged HTTP requests with a Read permission, such as GET. Then, the trust
value of this application is declined to 45 and the application’s trust level is set to malicious as a
penalty for this behavior, which disables the application from sending further requests. Thus, our
design has hierarchical security layers, mitigates attacks based on the severity of the launched attack,
and secures the APIs of the SDN controller against the threat of the elevation of privileges.

4.2.2. Integrity Threats

Integrity involves protecting data from being modified or tampered with by an ille-
gitimate party. Data integrity includes data that are stored on BC Peers and data that are
transmitted between the application and SDN controller. Centralized approaches store the
data and policy in a normal database, which can be exploited and modified by hackers.
Therefore, we utilize blockchain technology to ensure the integrity and tamper resistance of
the BCNBI database. We enhance the security of the access control information by storing
them in the header of each BC Peer, as shown in Figure 6; however, the most updated
access control information is stored in the header of the last BC Peer. The proposed solution
maintains the immutability of data stored in the BC Peers by utilizing the blockchain
feature, as each block contains a hash value of its content and a hash value of the previous
block, which forms secure interconnections between the blocks. Our system uses REST
APIs, which operate based on the HTTPS protocol, which encrypts the communication
channel between application and SDN controller, in order to guard the data integrity
during transmission.

Example 3. Let us assume that an adversary successfully attacks one of the BC Peers and updates
the trust level of an application from malicious to normal.

This attack can be detected by other BC Peers as any modification or update in one of the BC
Peer needs to be validated by other blockchain Peers before confirmation. In addition, the proposed
solution inherits the properties of blockchain which runs on a P2P network, and each BC peer has a
duplicate copy of the blockchain data. Therefore, even if the intruder succeeds in hacking one BC Peer,
other BC Peers will detect this modification. This attack can be detected by validateBlockchainApi,
as other BC Peers calculate each block’s hash and the link to the previous block’s hash to detect
changes between the received block’s hash of the tampered block and the calculated block’s hash.
In addition, each BC Peer compares the number of blocks of the updated blockchain with the number
of blocks of its BC. Moreover, each BC Peer compares the number of transactions in the last block of
the updated blockchain with the number of transactions in the last block of its blockchain. Finally,
each BC Peer compares the last timestamp of the updated blockchain with the last timestamp of
its BC. Thus, the validation not only examines the hash value of the block and the link to the
previous block’s hash, but also examines the number of blocks, the number of transactions in the
last block, and the last timestamp of the updated blockchain. Furthermore, our solution enables the
recording and tracking of all activities performed by a specific user, which can be used for auditing
and ensuring the accountability of operations. Accordingly, our design protects the data stored in
the BC Peers and data on the transmissions from tampering threats.

4.2.3. Availability

The goal of availability is to ensure that the system is available and responsible for
a valid request. This security goal assures that the system is reliable and available for
authorized users in a timely manner. Our solution can mitigate the availability threats to
the NBI of the SDN controller by applying various techniques, namely redundancy and
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fault tolerance. We employ blockchain technology, which enables redundancy and fault
tolerance as it runs on a P2P network. Leveraging the decentralized nature of blockchain
networks, which include numerous peers, each joined peer has a duplicate copy of the
blockchain ledger, which improves the network resilience.

Example 4. Let us consider the case in which one of the BC Peers has been attacked or overwhelmed.
Our system would continue executing, as other BC Peers would handle further application

requests. Moreover, to enhance the network performance and minimize response time, it is important
to equally distribute an application request across a group of BC Peers which have identical storage
and computing resources. Hence, we apply round-robin load balancing, which forwards the applica-
tion request to each BC Peer on a cyclical basis. Thus, our design can overcome the threat of a single
point of failure, which is one of the most common attacks against a centralized SDN controller.

4.3. Performance Evaluation

The introduced performance overhead of the proposed architecture was evaluated by
measuring the time overhead of Write and Read transactions between applications and
the SDN controller. We evaluated the performance overhead introduced by our solution
by comparing the time and packet overheads with and without the use of our blockchain-
based method.

In the first scenario, we employed our blockchain-based solution when an application
invoked the REST API of the Floodlight controller [39].

In the second scenario, an application invoked the REST API of the Floodlight con-
troller without a blockchain-based solution. While we refer to the former scenario as a
block-based method, we refer to the latter scenario as a baseline method. On one hand,
the block-based method has several security features securing the application–controller
interface or northbound interface, such as encryption, authentication, authorization, hash-
ing, P2P architecture, logging, and application trust level. On the other hand, the baseline
method does not have any security features to protect the REST API of the Floodlight
controller from malicious applications; for example, in the baseline method, the application
can send HTTP requests in plaintext and access the REST APIs of the Floodlight controller
without authentication, authorization, or behavior inspection. This means that the applica-
tion can modify the network state and perform malicious operations without any defensive
mechanisms to protect the REST API of the Floodlight controller. Consequently, this could
lead to a severely negative impact on the SDN.

We simulated the scenarios using the JMeter tool as an application that sends requests
to the Floodlight controller, in order to measure the time and packet overheads introduced
with and without our proposed solution. The JMeter tool was used as an application, which
sent an HTTP GET request to one of the Floodlight REST APIs; namely, /wm/device/ (see
Figure 8). This API is an example of a Read transaction that retrieves all devices tracked by
the controller. For Write transactions, the application would send an HTTP POST request
to /wm/firewall/rules/json, which is one of the Floodlight REST APIs that is responsible
for creating new firewall rules. The Read and Write transactions were repeated 10 times,
and the averaged overheads are presented in Figures 9 and 10, as well as Table 1. Our
evaluation was based on the following metrics.

Figure 8. JMeter request to the Floodlight REST API.
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Figure 9. Evaluation of Read time overhead.

Figure 10. Evaluation of Write time overhead.

Table 1. Packet overhead evaluation (in bytes).

Packet Route Block-Based Solution Baseline

Read transaction 338 155
Write transaction 417 212

4.3.1. Performance Analysis Based on Time Overhead

• Read transaction: This metric refers to the time consumption from when the applica-
tion requests to read the resources of the Floodlight controller until the response is
sent to the application. The Read transaction involves the time when the application
retrieves the data regarding the state of the Floodlight controller, the duration of the
handling of the request, and the time taken to respond to the application. Figure 9
shows the simulation results for the time overhead of the Read transaction. The block-
based method took a longer time to process packets than the baseline method due to
additional security operations, such as hashing, enforcing access control and encryp-
tion. However, the average increase in overhead was approximately 0.174 s, which is
not significant.
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• Write transaction: This metric refers to the time consumption from when the applica-
tion requests to modify the resources of the Floodlight controller until the response
is sent to the application. The processing time for Write transactions involves the
time taken for the application to send a request to the SDN controller, that for the
processing of the request, and that for responding to the application. The most time-
consuming part is the time required to handle the request by the Floodlight controller,
which communicates with the BCNBI framework to verify the application’s identity,
permissions, and trust before giving the response to the application. The process
of the Write transaction is more time consuming than that of the Read transaction,
as Read transactions simply retrieve data and do not change the network configuration.
Figure 10 illustrates the results for the time consumption of the Write transaction. It is
obvious, from the figure, that applying blockchain technology and security mecha-
nisms increased the packet processing time in our solution compared to the baseline
method. Nevertheless, the block-based method increased the overhead by only about
0.121 s, imposing a relatively small effect on the Floodlight controller.

4.3.2. Performance Analysis Based on Packet Overhead

This metric refers to the amount of additional packets introduced by the proposed
solution. Table 1 demonstrates the results for packet overhead in bytes. As stated above,
our blockchain-based solution applies encryption and hashing, which increased the size
of the packets; particularly, it uses the JSON Web Token, which needs to be embedded in
the HTTP Header with each request. However, the additional packet overhead which was
generated by the Write transaction was less than 0.25 kilobytes, which can be considered
negligible. In summary, the security and protection advantages of our solution significantly
outweigh the relatively low overheads introduced.

4.3.3. Comparative Analysis

In this section we critically analyze the related work and classify the previous studies
into centralized and blockchain-based solutions. Centralized-based solutions lack ade-
quate security properties, specifically those protecting the northbound interface against a
single point of failure, as well as ensuring data immutability and controller-independent
platforms. Most of the current blockchain-based solutions are also lacking, in terms of
minimizing the high computational overhead associated with blockchains, monitoring
the SDN application’s behavior, and supporting automated security solutions. The public
blockchain-based solution uses Proof of Work (POW) or Proof of Stake (POS) consensus
algorithms which demand high computational resources to solve a cryptography puzzle.
For instance, the transaction confirmation in Bitcoin is about 10 min whereas it is about
15 s in Ethereum [40,41]. In Table 2, we compare the limitations of existing approaches
in securing the northbound interface of the SDN controller with our proposed solution;
the comparison is performed in terms of AAA mechanisms, Decentralization, App Trust
Evaluation, Immutability, Security Automation, and Lightweight.

In addition, we demonstrate the efficiency of the proposed solution by comparing the
overheads of the BCNBI framework with another private blockchain-based solution that
aims to secure the northbound interface of the SDN controller with the same environmental
simulation. The proposed BCNBI framework is compared to BlockAS [31] which uses
blockchain to secure the northbound interface of the SDN controller. They implemented a
CFT (crash-fault-tolerant) consensus algorithm in their proposed BlockAS system. The SDN
topology used in the simulation comprised one Floodlight controller, three switches, and
three connected hosts per switch in a linear-type model. As shown in Figure 11, the pro-
posed BCNBI framework achieves better performance while the BlockAS system took a
longer time handling the Read and Write transaction compared to our proposed solution.
Thus, to fill the above gaps, we propose a novel lightweight blockchain-based architecture,
called BCNBI, to secure the northbound interface of the SDN controller.
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Table 2. Comparison of existing approaches for securing the northbound interface of the SDN
controller. 3, fully achieved; k, partially achieved; 7, not achieved.

References AAA Decentralization App Trust
Evaluation Immutability Security

Automation Lightweight

[12] 3 7 3 7 7 3

[19] 3 7 3 7 7 3

[7] 3 7 3 7 7 3

[20] 3 7 7 7 7 3

[21] 3 7 3 7 7 3

[22] k 7 7 7 7 3

[23] 3 7 7 7 3 3

[4] 3 7 7 7 3 3

[24] k 7 7 7 7 3

[6] k 7 7 7 3 3

[25] k 7 7 7 7 3

[26] k 7 3 7 3 3

[30] k 3 7 3 7 ]

[31] 3 3 7 3 7 ]

[14] 3 3 3 3 7 7

Proposed
framework 3 3 3 3 3 3

Figure 11. Performance evaluation comparison between proposed framework and BlockAS [31].

5. Conclusions and Future Work

In this paper, we proposed a comprehensive decentralized security framework based
on a lightweight blockchain-based architecture for securing the SDN application–controller
interface. We proposed a novel security solution, named BCNBI, which addresses the
security threats of the northbound interface based on the well-known security goals of
confidentiality, integrity, and availability. Our framework aims to utilize blockchain technol-
ogy to provide effective and automated security features while eliminating the associated
high computational overhead and delay. The framework is controller independent and
authenticates applications and the SDN controller through token-based authentication,
which is issued and verified by the BCNBI. The system enforces the access control policy
for each application REST API request to the SDN controller. The application behavior is
monitored based on an application trust model, which enables or disables applications
based on their operations. The proposed solution was tested on the Floodlight controller,
and the results illustrated that the framework provides effective protection against CIA
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triad threats with negligible overhead. For future work, we intend to extend the solution to
a distributed controller environment and focus on addressing security and data consistency
issues [42,43]. In addition, we plan to enhance the precision of our system by applying
machine learning methods.
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