
BCoal: Bucketing-based Memory Coalescing for

Efficient and Secure GPUs

Gurunath Kadam

William & Mary

Williamsburg, VA

gakadam@email.wm.edu

Danfeng Zhang

Pennsylvania State University

University Park, PA

zhang@cse.psu.edu

Adwait Jog

William & Mary

Williamsburg, VA

ajog@wm.edu

Abstract—Graphics Processing Units (GPUs) are becoming a
de facto choice for accelerating applications from a wide range of
domains ranging from graphics to high-performance computing.
As a result, it is getting increasingly desirable to improve the
cooperation between traditional CPUs and accelerators such as
GPUs. However, given the growing security concerns in the CPU
space, closer integration of GPUs has further expanded the
attack surface. For example, several side-channel attacks have
shown that sensitive information can be leaked from the CPU
end. In the same vein, several side-channel attacks are also now
being developed in the GPU world. Overall, it is challenging to
keep emerging CPU-GPU heterogeneous systems secure while
maintaining their performance and energy efficiency.

In this paper, we focus on developing an efficient defense
mechanism for a type of correlation timing attack on GPUs. Such
an attack has been shown to recover AES private keys by exploit-
ing the relationship between the number of coalesced memory
accesses and total execution time. Prior state-of-the-art defense
mechanisms use inefficient randomized coalescing techniques
to defend against such GPU attacks and require turning-off
bandwidth conserving techniques such as caches and miss-status
holding registers (MSHRs) to ensure security. To address these
limitations, we propose BCoal – a new bucketing-based coalescing
mechanism. BCoal significantly reduces the information leakage
by always issuing pre-determined numbers of coalesced accesses
(called buckets). With the help of a detailed application-level
analysis, BCoal determines the bucket sizes and pads, if necessary,
the number of real accesses with additional (padded) accesses to
meet the bucket sizes ensuring the security against the correlation
timing attack. Furthermore, BCoal generates the padded accesses
such that the security is ensured even in the presence of MSHRs
and caches. In effect, BCoal significantly improves GPU security
at a modest performance loss.

Index Terms—GPUs, Hardware Security, Coalescing

I. INTRODUCTION

Graphics Processing Units (GPUs) provide orders of magni-

tude higher throughput compared to CPUs thanks to a large

number of computational units attached with high bandwidth

memory. GPUs have traditionally accelerated a wide-range

of arguably security insensitive applications ranging from

gaming to high-performance computing. However, many appli-

cations that benefit from GPUs nowadays process or contain

security/privacy-sensitive information. For example, DNA and

financial computing applications that heavily process private

data are taking advantage of GPUs [1], [2]. The deep learning

community has significantly benefited from the computational

power of GPUs but now is also concerned about the privacy

of their models and vendors; they are interested in protecting

them from motivated attackers [3], [4]. Cryptographic and

other computations that handle sensitive data are also known to

achieve significant performance benefits from GPUs [5]–[11].

With the growing need for secure GPU computation, it

is important to protect GPUs from a variety of possible side-

channel attacks. For example, several attacks (especially, cache-

based side-channel attacks [12]–[18]) on the CPU side have

exploited the fact that critical information can be leaked if

it affects the latency (or total execution time). In the same

vein, new correlation timing attacks and covert channels [6],

[19]–[21] are being exposed in GPUs – a recent attack [6]

showed that AES private keys can be recovered by exploiting

the correlation between the number of coalesced accesses

and execution time. Specifically, an attacker exploits the

relationship between the private keys and the number of

coalesced accesses to reveal the entire private key by performing

off-line correlation analysis with the help of recorded execution

time and encrypted (cipher) text information.1

Kadam et al. [5] presented the first work to address the

aforementioned correlation timing attack. They showed that by

randomizing the logic of coalescing unit (RCoal), additional

accesses can be generated such that the correlation between

the baseline (real) accesses and the execution time is reduced.

Consequently, the attacker finds it hard to recover the private

keys. However, we find that RCoal has two major drawbacks.

First, the performance loss for security gain is very high due

to the randomization of coalescing logic, especially for large

plain texts. Second, RCoal provides sub-optimal security in the

presence of other memory bandwidth conserving mechanisms

such as miss-status holding registers (MSHRs) and caches. As

we further demonstrate in Section III, the additional duplicate

accesses generated during randomization are merged back in

MSHRs to render RCoal ineffective. Therefore, RCoal turned-

off caches and MSHRs for security reasons, leading to even

more significant performance overheads.

To efficiently address the limitations of RCoal, we propose a

new bucketing-based coalescing technique – BCoal. It always

generates the number of coalesced accesses equal to one of

the pre-determined values (known as buckets), irrespective of

program secrets. This implies BCoal would generate additional

1More details on the attack are provided in Section II.

1

memory accesses (if necessary) along with the real accesses

to match the bucket requirements. As the number of accesses

is always equal to the pre-determined values, the variance in

the number of accesses drops. As a result, BCoal reduces the

correlation to mitigate the timing attack.

To reduce the performance overhead of additional accesses,

we select optimal bucket features by analyzing the application-

level coalescing profile. The goal of profiling is to select the

bucket features such that overall fewer additional accesses are

generated. Further, we observe that the generation of additional

accesses is non-trivial because we need to ensure that they

affect the execution time at the same rate as the real accesses,

otherwise their effect on the execution time can be filtered out

(i.e., noise can be filtered out from signal). To address this issue,

we generate unique additional accesses to the same memory

space as that of the real accesses. We find that this helps in

reducing the disparity between caching/merging probabilities

of real accesses and additional accesses, thereby making their

individual effects on execution time also similar. Consequently,

our bucketing-based coalescing technique provides security

even in the presence of MSHRs and caches.

To the best of our knowledge, this is the first work that

proposes a bucketing-based coalescing technique for GPUs to

achieve better security compared to the state-of-the-art scheme

while incurring low overhead. In summary, this paper makes

the following contributions:

• We perform a detailed analysis to show that the state-of-the-

art defense schemes against the coalescing-based correlation

timing attack are inefficient. They incur a significant perfor-

mance and data movement overhead as they work only when

the bandwidth conserving hardware such as caches and MSHRs

are not employed.

• We propose a new bucketing-based coalescing mechanism

(BCoal) that always issues pre-determined numbers (chosen

from a small set, called buckets) of coalesced accesses by

padding additional accesses to the real accesses, if necessary.

• Our analysis shows that the generation of padded accesses

is non-trivial and the effect of MSHRs and caches should be

considered to ensure security. BCoal implements a homoge-

neous padding mechanism to ensure that the real and padded

accesses affect the execution time similarly even in the presence

of MSHRs and caches. Therefore, an attacker fails to separate

the timing effect of padded accesses thereby improving the

security.

• Our theoretical and experimental analysis shows that BCoal

significantly improves the security (i.e., drops the correlation

by up to 100%) at a modest performance overhead ranging

from 5% to 15%. We also evaluate BCoal across a large

set of GPGPU applications and show that coalescing with

three equally-spaced buckets provides an excellent performance-

security trade-off that can be leveraged to secure the GPUs.

II. BACKGROUND

This section briefly introduces: a) the baseline GPU archi-

tecture, b) bandwidth conserving mechanisms, c) the AES

encryption on GPU, and d) the baseline correlation timing

attack and the state-of-the-art defense mechanism against it.

A. Basics of GPU Architecture

We consider a baseline GPU architecture with multiple cores,

known as streaming multiprocessors (SMs) in NVIDIA termi-

nology. The SMs are connected to memory partitions via an

interconnect as shown in Figure 1. GPUs achieve high through-

put by executing a large number of threads concurrently. To fa-

cilitate this, GPUs are supported by a large register file (for fast

context switching across threads) and high bandwidth memories

(for fast data access to a large number of concurrent threads).

. . .

SM

Interconnect Network

Global Memory (DRAM)

PE . . .

LD/ST Unit

SM

Coalescing Unit

MSHR

L1 Cache

PE PE . . .

LD/ST Unit

Coalescing Unit

PE

MSHR

L1 Cache

MSHR

L2 Cache

Fig. 1: Overview of Base-
line GPU Architecture.

Each SM executes the threads

assigned to it at the granularity

of a warp, which is essentially

a collection of (usually 32) indi-

vidual threads that execute a sin-

gle instruction on the processing

elements (PEs) of the SM in a

lock-step. The warps hide long

memory latencies to improve the

utilization/throughput of the SM

via executing in a pipelined and

multiplexed manner. Throughout

the paper, we evaluate the pro-

posed techniques on a cycle-level GPU simulator – GPGPU-

Sim [22]. Table I provides details of the simulated architecture.

TABLE I: Key configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)

Resources / Core 32KB shared memory, 32KB register file, 15 SMs

L1 Caches / Core 16KB 4-way L1 data cache, 2KB 4-way I-cache

128B cache block size

L2 Caches 16-way 256 KB/memory channel (1536 KB in total),

128B cache block size

Features Inter-warp merging enabled

Memory Model 6 GDDR5 Memory Controllers, FR-FCFS scheduling

16 DRAM-banks, 924 MHz memory clock

Interconnect 1400MHz interconnect clock

B. Bandwidth Conserving Mechanisms

Memory bandwidth is one of the most performance-critical

shared resources in GPUs [23], [24]. GPUs adopt several

memory bandwidth optimization techniques, such as memory

access coalescing, caching and merging to reduce the number

of accesses to the global memory. In this sub-section, we

provide a brief overview of these optimizations.

Access Coalescing. In GPUs, threads within a warp execute the

instructions in lockstep. For a global memory load instruction,

all 32 threads within a warp execute 32 load instructions. The

coalescing unit in the LD/ST unit merges multiple memory

requests from different threads of the same warp (intra-warp

coalescing) into as few cache line-sized coalesced memory

accesses as possible. The intra-warp coalescing happens at

the sub-warp granularity, where the coalescing unit of the SM

determines the coalesced accesses of the warp by examining

a group of threads belonging to the same sub-warp. If

the threads of a sub-warp access data within a contiguous

memory block, their requests are coalesced together to reduce

2

memory bandwidth consumption. The size and number of

sub-warps are typically fixed and remain the same throughout

the application execution. However, to achieve security, the

coalescing mechanisms can be randomized (RCoal [5]) so that

the coalesced accesses are no longer predictable to the attacker.

Warp # A

sid tid BA addr

#1

#2

#2

#3

0x00

0x04

0x07

0x09

0

1

2

3

0

0

0

0

A

C
o
a
le

s
c
in

g
 U

n
it

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

BA#1

BA#2

BA#3

Three coalesced accesses

(a) Baseline memory coalescing.

Warp # A

sid tid BA addr

#1

#2

#2

#3

0x00

0x04

0x07

0x09

0

1

2

3

0

1

0

1

B

C
o
a
le

s
c
in

g
 U

n
it 0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

BA#1

BA#2

BA#3

0x04 0x05 0x06 0x07 BA#2

Four coalesced accesses

(b) Randomized memory coalescing.

Fig. 2: Memory access coalescing in GPUs.

Figure 2 illustrates the coalescing in baseline GPU and pre-

viously proposed randomized coalescing techniques. Assume

a single warp with four threads. The per-thread addresses

and the requested block addresses (BA) are shown with

corresponding thread-ids (tid) and sub-warp id (sid). In the

baseline GPU, we assume a single sub-warp (sid = 0 for

all threads) and hence all threads participate together in the

coalescing. Since the requests from tid 1 and 2 map to the

same cache block, only three accesses are generated (A) to

conserve the memory bandwidth. With randomized coalescing,

the threads are randomly assigned to subwarps and hence

lead to unpredictable effects on coalescing. In Figure 2(b), we

observe that four accesses are generated (B) due to different

sub-warp ids assigned to the random groups of thread. More

details on the randomized coalescing techniques are discussed

in Section II-D.

Caching. GPUs further conserve the memory bandwidth by

exploiting the temporal and spatial locality in memory accesses

across and within warps with the help of hardware caches.

Current GPUs employ two levels of caches, L1-cache (shared

by the warps executing on the same SM) and L2-cache (shared

by the warps executing on different SMs).

Access Merging. The coalesced memory accesses from a warp

are sent to the L1-cache. Upon cache misses, the memory ac-

cesses are logged in the miss-status holding registers (MSHRs).

Multiple cache-missed coalesced accesses to the same cache

block from different warps on the same SM are merged (inter-

warp merging) in MSHRs. Note that as independent loads

from the same warp can be issued to improve memory-level

parallelism, MSHRs also help in merging redundant accesses

from the same warp (intra-warp merging) if they are issued at

different times. Another source of inter-warp merging is via

MSHRs at L2-cache, where the redundant L2-cache misses

(across different SMs) can be merged together.

C. AES Encryption

To demonstrate the GPU timing attack exploiting the

vulnerability due to memory coalescing, we consider the widely

used symmetric-key algorithm, Advanced Encryption Standard

(AES) [25]–[29] with a key length of 128 bits, to encrypt the

plaintext. AES-128 algorithm consists of 10 rounds, each with

a 16-bytes round key generated from the encryption key. We

focus on the last round of the AES, which is shown to be the

most vulnerable to side-channel attacks [6]. The last round

involves a table (for the S-box table T4) look-up operation

followed by bitwise XOR operation with the last round key.

Our AES implementation on GPU is from Jiang et al. [6],

[11], which was used in the original attack [6] and a known

defense [5]. We used the same implementation for a fair

comparison. The AES implementation on GPU involves

dividing the plaintext across multiple parallel threads to achieve

high throughput. Each thread encrypts a line of the plaintext

independent of other threads. Therefore, a warp consisting of

32 threads can perform 32 different encryptions concurrently.

In general, the line to thread mapping is sequential and

deterministic. If the size of the plaintext exceeds 32 lines,

then it is divided sequentially among several warps. For

example, a plaintext with 1024 lines will employ 32 warps each

executing 32 lines of the plaintext. To ensure a stronger baseline

for comparison, the AES implementation used in this paper

performs random mapping of threads to the warps (known as

input blinding) to gain additional security [5].

D. Baseline Attack and Defense Mechanism

Baseline Attack. In this work, we use the same attack model

as designed by Jiang et al. [6]. It assumes that the attacker

can send a large number of plaintexts to a remote GPU-based

AES [25]–[29] encryption server and collect the ciphertext.

The attacker also records the total execution time required to

complete each encryption. The attack was also shown to be

very effective in noisy environments [6].

Given that the GPU coalescing procedure is determinis-

tic [30] and the last round of AES is invertible [6], the attacker

can calculate the number of coalesced accesses with the help

of ciphertext and a last round key guess. As the number of

coalesced accesses is correlated with the execution time in

the baseline system [6], the key guess that leads to the best

correlation across a large number of encryptions is determined

to be the correct key. This attack further assumes that the

round tables are kept in GPU DRAM, which can be cached in

L1/L2 caches based on the access patterns. For brevity, we skip

the algorithmic details of the attack and refer readers to prior

works [5], [6]. Also, the rest of the paper assumes a stronger

attacker with the capability of accessing last round execution

time as compared to the realistic attack, which is weaker due to

the noise in the total execution time. Consequently, we assume

the goal of the attacker is to correctly guess the last round

AES encryption key [5], which can divulge all other round

keys by reverting the fixed AES key generation schedule.

Figure 3 shows the scatter plots for the baseline correlation

attack for the single-warp (plaintext with 32 lines) and multi-

warp (plaintext with 64 lines) cases. Each scatter plot shows

the correlation values for all 256 possible values for the 3rd

key byte of the last round. Each point on the scatter plot

3

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(a) Plaintext with 32 lines.

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(b) Plaintext with 64 lines.

Fig. 3: Baseline Attack.

corresponds to a correlation value between the number of

coalesced accesses (on a per-warp basis) calculated by the

attacker and the execution time of the last round of AES-128.

In the multi-warp case, the maximum value of the number of

coalesced accesses across all warps is used as the warp that

generates the most number of coalesced accesses has shown

to dominate the total execution time [6]. From Figure 3, we

observe that the correlation value is the highest (highlighted

in red and encircled) for the correct value of the 3rd key byte

among all other guess values for the single- as well as the

multi-warp case. Therefore, the correct value of the key byte

3 is recoverable. We observe this trend for all last round key

bytes indicating successful recovery.

Baseline Defense. Kadam et al. [5] presented a series of

randomized coalescing (RCoal) mechanisms to defend against

the correlation timing attacks. They showed that randomizing

the number of subwarps, the sizes of subwarps, and the

thread elements of the subwarp can improve the GPU security,

however at the cost of performance loss and increased data

movement between SMs and memory. Based on these three

parameters, three RCoal mechanisms were proposed: fixed-

sized subwarp (FSS), random-sized subwarp (RSS), and

random-threaded subwarp (RTS). They showed that the best

performance-security trade-off can be achieved with an RCoal

mechanism (RSS+RTS+4), which uses the number of subwarps

to be 4, the sizes of warps are chosen based on a skewed

distribution, and the thread elements are chosen randomly

based on a uniform distribution. In rest of the paper, we denote

this best of the RCoal scheme as RCoal(4). Note that if the

number of subwarps is equal to the number of threads in a

warp then it is equivalent to coalescing being disabled as all

threads independently participate in the coalescing procedure.

For example, with a warp size of 32, choosing the number of

subwarps to be 32 is equivalent to disabling the coalescing. We

denote this as RCoal(32). RCoal(32) was shown to be the most

secure design as the number of coalesced access is always

constant at 32 [5]. Due to security concerns, RCoal disabled

caches and MSHRs (refer to Section III-B for more details).

Figure 4 shows the scatter plots for RCoal(32) (the most

secure mechanism) and RCoal(4) (best of RCoal) using plain-

text with 32 and 64 lines. In contrast to the baseline attack, for

RCoal(32) and RCoal(4), the correlation between the number

of coalesced accesses and execution time with the correct

key (highlighted in red and encircled) dropped significantly.

Consequently, this point is no more distinguishable among the

other correlation points ensuring successful defense against the

attack. We observe this trend for all last round key bytes.

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(a) RCoal(4) with Plaintext (32 lines).

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(b) RCoal(32) with Plaintext (32 lines).

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(c) RCoal(4) with Plaintext (64 lines).

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(d) RCoal(32) with Plaintext (64 lines).

Fig. 4: Effect of different RCoal coalescing schemes on the
recovery of one of the last round key byte (shown in red circle). In
RCoal, the caches and MSHRs are disabled for security reasons
(refer Section III-B).

III. MOTIVATION AND ANALYSIS

Although RCoal helps in improving the GPU security

significantly, it also incurs a very high performance and data

movement overhead. To substantiate the overhead of RCoal,

Figure 5 shows the total execution time and number of DRAM

accesses for two scenarios: a) RCoal(32) – the most secure

design, and b) RCoal(4) – the best of RCoal. These results

are shown for three different sizes of plaintexts (32, 64, and

1024) and are normalized to the baseline GPU. We observe

that the overhead of RCoal(32) is very high – more than 27×
increase in the number of DRAM accesses leading to over 9.4×
increase in the execution time. Furthermore, the performance

degradation increases rapidly with the size of plaintexts. The

same trend is visible for RCoal(4) as well.

RCoal(4) RCoal(32)
Schemes

0

10

20

30

N
or

m
al

iz
ed

 N
um

be
r

of
 D

RA
M

 A
cc

es
se

s

(a) Number of DRAM Accesses

RCoal(4) RCoal(32)
Schemes

0

2

4

6

8

10

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

(b) Execution Time

Plaintext with 32 lines Plaintext with 64 lines Plaintext with 1024 lines

Fig. 5: Illustrating the overhead of RCoal defense scheme for
different sizes of plaintext. The results are normalized to a
baseline GPU with MSHRs and caches.

A. Performance Overhead Analysis of RCoal

There are two major reasons behind the large performance

and data movement overhead. First, RCoal introduces sub-

optimal and randomized coalescing that causes additional

memory traffic. To understand this, we analyze the number

of coalesced accesses generated in three different architecture

options: baseline, RCoal(4), and RCoal(32). For these three

options, Figure 6 shows the number of coalesced accesses

with respect to the percentage of load instructions in the AES

CUDA implementation. We observe a bimodal distribution in

4

0 4 8 12 16 20 24 28 32
Number of Coalesced Accesses

0%
5%

10%
15%
20%
25%

%
 o

f I
ns

tr
uc

ti
on

s

(a) Baseline.

0 4 8 12 16 20 24 28 32
Number of Coalesced Accesses

0%

5%

10%

15%

20%

%
 o

f I
ns

tr
uc

ti
on

s

(b) RCoal(4).

0 4 8 12 16 20 24 28 32
Number of Coalesced Accesses

0%
20%
40%
60%
80%

100%

%
 o

f I
ns

tr
uc

ti
on

s

(c) RCoal(32).

Fig. 6: Histogram of the number of coalesced accesses generated across a warp for 1000 plaintext samples each with 32 lines.

the baseline scenario (Figure 6(a)): the first peak occurs when

only one coalesced cache line access is generated for roughly

20% instructions and the second peak occur between 12-16

coalesced cache line accesses for the remaining instructions.

The first peak is observed due to the loads for the round keys

and the second peak is due to the table lookup operations. With

RCoal(32) (Figure 6(c)), the coalescing unit performs worst to

always generate 32 coalesced accesses for all load instructions.

As noted before, this is similar to the coalescing being disabled.

Although it is the most secure option, the average number of

coalesced accesses and the overall number of DRAM accesses

increase significantly (Figure 5). In RCoal(4) (Figure 6(b)), we

observe that the second peak has shifted to the right compared

to Figure 5(a) due the obfuscation of the coalescing mechanism

that generates additional memory traffic. Overall, RCoal(4)

and RCoal (32) generate additional memory traffic and incur

performance penalties to reduce the correlation between the

number of baseline coalesced accesses and the execution time.

Importantly, RCoal ignores the application properties, especially

the baseline coalescing profile to optimally generate the traffic

while reducing the correlation.

Second, due to the security reasons, RCoal schemes were

only shown to work in the absence of other bandwidth

optimization techniques, such as caches and MSHRs. The

absence of MSHRs and caches has a substantial impact on

the performance and data movement, and is well-documented

in GPU literature [22], [23], [31]. The combined effect of

sub-optimal coalescing, and absence of MSHRs and caches

leads to a sharp increase in the number of DRAM accesses

resulting in high performance degradation.

B. Effect of MSHRs and Caches on Security with RCoal

Effect of MSHRs. In the presence of MSHRs, RCoal scheme

becomes vulnerable to the correlation timing attacks. RCoal

randomizes the access coalescing and generates redundant

accesses to the same block addresses to reduce the correlation

between the execution time and the number of baseline coa-

lesced accesses. The MSHRs render RCoal scheme ineffective

by merging the redundant accesses to the same block addresses

leading to similar correlation as in the case of baseline GPU.

The effect of MSHRs on RCoal scheme is prominent for the

table lookup instructions experiencing a high cache-miss rate as

the corresponding accesses are likely served through MSHRs

leading to predictable access merging. This is especially true

for the initial table lookup instructions of the last round

because T4 table elements are less likely cached. Figure 7

shows this merging-back phenomenon using the example from

Figure 2. RCoal(4) generated 4 accesses A , including one

redundant access. However, MSHRs merged back the cache-

missed accesses, leading to the same number of accesses

(B) generated to the DRAM as that of in the baseline case.

Consequently, it leads to the same correlation and information

leakage as that of the baseline GPU.

B

M
S
H

R

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

BA#1

BA#2

BA#3

Three merged accesses

A

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

BA#1

BA#2

BA#3

0x04 0x05 0x06 0x07BA#2

Four coalesced accesses

Fig. 7: Effect of MSHRs on the cache-missed coalesced accesses
in RCoal scheme.

Effect of caches. The security of RCoal depends on the

cache hit rates. For example, in the case of RCoal(32), if

all accesses of a table lookup instruction are always cached,

then all 32 accesses from the coalescing unit are served by the

cache. Therefore, if the execution time remains constant due

to the constant number of accesses to the cache, the attacker

cannot establish the correlation between the number of baseline

coalesced accesses and the execution time to reveal the private

key. However, a perfect cache hit rate cannot be guaranteed

for all the table lookup instructions across a large number of

plaintext samples. Therefore, if the accesses of a table lookup

instruction miss in the cache, the key byte can still be recovered

with RCoal due to the access merging in MSHR as discussed

earlier. To illustrate this point, Figure 8 shows the scatter plots

for the first table lookup instruction of the last round with

MSHRs and caches enabled. We note that the private key byte

3 corresponding to the first table lookup instruction can easily

be recovered in both the RCoal scenarios.

In summary, RCoal becomes vulnerable due to the access

optimizations in MSHRs and caches.

C. Our Proposal and Goals

Our goal is to design a mechanism that reduces the

performance overheads of RCoal while offering comparable

security. To this end, we propose BCoal: a bucketing-based coa-

lescing mechanism to address the primary performance-related

shortcomings of RCoal discussed before. BCoal matches the

number of coalesced accesses generated for a global memory

load instruction per warp to one of the predetermined values

(denoted as buckets). To match the number of accesses to one

of the preset bucket sizes, we pad the real coalesced accesses

from a warp with additional (padded) memory accesses. Since

5

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(a) RCoal(32) + MSHRs + Caches.

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(b) RCoal(4) + MSHRs + Caches.

Fig. 8: The presence of MSHRs and caches leads to successful
recovery of one of the last round key bytes in RCoal(32) and
RCoal(4). Plaintext has 32 lines.

the total numbers of accesses always match one of the bucket

sizes, their overall variance decreases. Furthermore, as observed

earlier for RCoal, MSHRs adversely affect the security by

merging the redundant accesses after randomized coalescing.

Therefore, the padding mechanism in BCoal is devised such

that MSHRs cannot merge the real and padded accesses, thereby

maintaining a very low variance in the resulting number of

accesses. Additionally, the padding mechanism ensures that

the real and padded accesses follow similar access merging

and caching pattern, such that they affect the execution time at

the same rate. Subsequently, the individual effects of real and

padded accesses on the execution time are indistinguishable.

Therefore, in BCoal-enabled GPU, the attacker will not be able

to correlate the number of real coalesced accesses with the

observed execution time. Consequently, the security offered by

BCoal scheme against the correlation timing attacks remains

intact even in the presence of MSHRs and caches. In summary,

BCoal scheme presented in this work not only offers improved

security but also incurs minimal performance degradation as

compared to RCoal.

IV. ANATOMY OF BUCKETING IN GPUS

In this section, we first explain our general approach towards

realizing a bucketing scheme and then explore the design

challenges in meeting the bucketing requirements in the

presence of MSHRs and caches. Finally, based on our analysis,

we present our secure bucketing scheme – BCoal.

A. Bucket Features

Let us assume a system with n buckets and sizes of buckets

to be: b1,..,bi, bi+1,...,bn where ∀i : bi < bi+1. A predetermined

number of coalesced accesses are generated per table lookup

(load) instruction as per the bucket size. If a load instruction

generates n number of coalesced accesses, where bi < n ≤ bi+1,

then additional accesses are padded such that the total number

of coalesced accesses is equal to bi+1. The number of buckets

is selected to achieve the desired reduction in the variance of

the number of coalesced accesses. For example, with only one

bucket, the number of accesses generated is always equal to

the size of that bucket, thus, reducing the variance to zero. As

the number of buckets increases, the variance in the number of

coalesced accesses increases due to the increased number of

distinct possible values for the coalesced accesses. This leads

to higher information leakage, however, also reduces the total

number of additional padded accesses.

We revisit Figure 6(a) to select the bucket features for AES.

We observe that the number of coalesced accesses during the

AES encryption on GPU never exceeds 16. Therefore, we

select the size of the bucket to be 16 as one of the options

and denote the scheme as BCoal(16). With only one bucket

of size 16 in the coalescing unit, the AES encryption will

always generate 16 number of coalesced accesses to reduce

their variance to 0. Consequently, the correlation between the

number of real coalesced accesses and the execution time drops

as well. However, with only one bucket, each (security-sensitive

and security-insensitive) load instruction sends 16 accesses,

leading to performance degradation (Section VI).

The performance of BCoal scheme can be further improved

by adding multiple buckets of intermediate sizes. We propose

to add one more bucket with size 1 because of the bi-modal

distribution observed in Figure 6(a) and call this scheme

BCoal(1, 16). The performance degradation in BCoal(1, 16)

will be lower than in BCoal(16) because the coalesced accesses

generated by instructions other than the table lookups (the first

peak in Figure 6(a)) now fit into the added bucket. Furthermore,

in BCoal(1, 16), as the bucket with size 1 does not affect the

table lookup instructions, its effect on the security is minimum.

We quantify all performance and security results in Section VI.

B. Estimation of Number of Padded Accesses

To generate an optimal number of padded memory accesses

for bucketing, we first need to determine the number of real

memory accesses generated for a load instruction of a warp.

The number of real coalesced accesses generated by the load

instruction is stored as the pending request count (PRC) in the

coalescing unit [30]. By reading PRC, we determine the number

of real memory accesses. Next, we compare the number of

real memory accesses generated with the preset bucket values.

If the number of real memory accesses does not match, then

we generate a number of padded memory accesses equal to

the difference between the next larger bucket value and the

number of real memory accesses. For example, in BCoal(1,16),

if the number of original memory accesses is 12, then we need

to generate 4 extra memory accesses.

C. Design Challenges in Generating Padded Accesses

We consider the effect of MSHRs and caches on RCoal

scheme while designing the padding mechanism for BCoal. In

RCoal, the redundant accesses to the same block addresses

were merged in MSHRs eliminating the security offered by

randomized coalescing of accesses. Therefore, to meet the

bucketing requirement, we must generate padded accesses to

the unique block addresses. Consequently, all memory accesses

originating from a warp, real and padded, have unique block

addresses. The unique accesses for padding are generated

randomly from an address range that is accessible to the AES

CUDA application. In our case, the block address range spans

over the five tables used for table lookups and the round keys

used for each round, all saved in the DRAM.

To evaluate the resulting bucketing scheme, we first deter-

mine the possibility of key byte recovery in the absence of

6

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(a) Without MSHRs and caches.

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(b) With MSHRs and caches.

Fig. 9: Evaluation of security offered by the bucketing scheme
employing unique access padding mechanisms with one bucket
of size 16. Plaintext has 32 lines.

MSHRs and caches. Figure 9a shows the scatter plots for the

bucketing scheme employing padding via unique accesses in

the absence of MSHRs and caches. We note that the correct

value of the key byte cannot be recovered as the attacker fails

to establish a correlation between the real number of accesses

and the execution time. The low correlation is attributed to

the constant number of accesses generated per table lookup

instruction across the plaintext samples leading to the low

variance in them.

From the above padding mechanisms employed in the

bucketing scheme, we make the following observation:

Observation I: For the secure bucketing scheme, the block

addresses of the padded accesses should be random and unique

(that is, exclusive of the block addresses of the real and other

padded accesses of the corresponding table lookup instruction).

Effect of MSHRs and caches. We evaluate the effect

of MSHRs and caches on the security of above bucketing

mechanism using the scatter plot in Figure 9b. We note that

while the correlation and related key byte value leakage is low,

the correct value of the key byte can still be recovered. The

key byte value leakage is possible because the real and padded

accesses affect the execution time at different rates due to their

distinct merging and caching patterns.

The distinct access merging and caching patterns are caused

because of the different block address ranges accessed by the

real and padded accesses. In the above bucketing scheme, the

padded accesses generated in each round access the same range

of block addresses spread across the entire memory space of the

AES CUDA application. In contrast to the padded accesses, in

the last round, the real accesses target only the T4 table elements.

As the real accesses are confined to a narrower address space

(only T4 table elements) as compared to the padded accesses

(entire application memory space), their respective merging and

caching patterns are different. Therefore, the padded and real

accesses affect the execution time at different rates. An attacker

can then treat the effect of padded accesses on the execution

time as noise and filter it out over a large number of plaintext

samples to correlate the real accesses and the execution time to

recover the private key. The effect of MSHRs and caches on the

real and padded accesses leads to the following observation:

Observation II: The padded and real accesses should be

homogeneous in terms of their respective probabilities of

merging in MSHRs and caching.

D. BCoal: A Secure Bucketing Scheme

From the observations I and II recorded previously, we note

that for a secure bucketing scheme to operate in the presence

of MSHRs and caches, the padded accesses should have the

following two characteristics: i) the block addresses of the

padded accesses should be random and exclusive (unique) of

the block addresses of the other accesses and ii) the padded

accesses should follow the same merging and caching pattern

as that of the real accesses.

Padding via Homogeneous Unique Accesses. The first prop-

erty of the desired padding mechanism is met by ensuring

that the block addresses of the padded accesses are random

and unique across each security-sensitive load instruction. To

enforce the second property, we recall the merging mechanism

in MSHRs, where the accesses going to the same block

addresses are merged together. Furthermore, the caching also

works at the block address granularity. Therefore, to obtain

similar merging and caching probabilities across all accesses,

we restrict the block addresses of the padded accesses to the

range of possible block addresses of the real accesses, thereby

generating homogeneous unique accesses.2

During the AES execution, the table lookup instructions

of the first nine rounds access first four tables, while for the

last round only T4 table is accessed. Therefore, to meet the

bucketing requirements, the padding mechanism should restrict

the block address range of the padded accesses to the block

address range of the first four tables in DRAM during the

first nine rounds, while to the block address range of T4 table

in DRAM during the last round. As the padding mechanism

maintains similar merging and caching properties for the real

and the padded accesses, the attacker cannot segregate their

effects on the total execution time. Therefore, the attacker will

fail to establish the correlation between the real number of

coalesced accesses and the execution time, thereby failing to

recover the key byte value. Furthermore, as all rounds of AES

encryption are potentially vulnerable to timing attacks [32],

BCoal is enabled for all ten rounds of AES.

In summary, we select the padding via homogeneous unique

accesses for the BCoal bucketing scheme. We present the

security and performance evaluation of the proposed BCoal

scheme with MSHRs and caches enabled in Section VI.

V. HARDWARE/SOFTWARE OVERHEAD

In this section, we describe the implementation overhead

of BCoal. We consider a generalized BCoal scheme, which

targets a security-sensitive application with an arbitrary number

of program sections. For example, the two program sections in

AES are the first 9 rounds and the last round. The generated

padded accesses have memory addresses that target respective

program sections.

Storage overhead. The storage requirement is for keeping

track of a) bucket sizes and b) the start/end addresses of the

program sections. To store the buckets sizes, BCoal uses a

2This heuristic may have to be tuned for different applications based on
their memory access pattern.

7

32-bit mask that covers all 32 possible number of coalesced

accesses across a warp. The indices of the mask are set as per

the BCoal configuration. For example, for BCoal(1, 16, 32),

only 1st , 16th and 32nd bits are set. Next, BCoal maintains an

address table – accessible by all SMs executing the security-

sensitive application – to save the start and end 32-bit addresses

of each program section. For an application with N program

sections, the size of the table will be (2N ×32) bits. For AES

with 2 program sections, the size of the table will be 128 bits

and the total storage overhead is 128+32 = 160 bits.

Address Generation. The generation of unique homoge-

neous accesses for padding follows three steps: a) determine

the number of padded accesses needed, b) determine the unique

homogeneous block addresses for the accesses, and c) generate

the accesses. As noted in Section IV-B, the pending request

count (PRC) in the memory coalescing unit (MCU) records the

number of real accesses across a warp. Therefore, the number

of padded accesses needed can be identified by comparing

the size of a bucket with PRC. Since the maximum value of

PRC (limited by the maximum possible number of coalesced

accesses) and the maximum size of a bucket is 32, BCoal

needs a 5-bit comparator.

The address range for each program section is known from

the memory allocation and data copy operations executed at

the start of a GPGPU application. This information can also be

embedded in the load instructions. To generate padded accesses

in the range of the program section under execution, BCoal

uses a 32-bit random address generator.

VI. ANALYSIS OF SECURITY & PERFORMANCE

In this section, we first analyze the security of our proposed

bucketing-based coalescing mechanism, BCoal, via experimen-

tal and theoretical analysis. Subsequently, we discuss the effects

of the proposed mechanism on performance and data movement.

We also compare BCoal with RCoal in terms of security,

performance and data movement. Finally, we generalize our

mechanism across a wide range of GPGPU applications.

All the results are collected on a cycle-level GPU simulator

– GPGPU-Sim [22]. We assume the same number of samples

as that of in the attack scenario [5] for plaintext with 32 lines.

For plaintext with 64 lines, we use 1000 samples, the same

number as needed for the successful attack, to evaluate the

defense mechanism for a fair comparison.

A. Experimental Analysis of Security

For the security evaluation of BCoal scheme in the presence

of MSHRs and caches, we consider two configurations: i)

default with one bucket of size 16 denoted as BCoal(16) and

ii) performance efficient with two buckets of sizes 1 and 16

denoted as BCoal(1, 16). For each BCoal configuration, we

plot a scatter plot as explained in Section II-D.

Plaintext with 32 lines. Figure 10 shows the scatter plots for

BCoal scheme using plaintext with 32 lines with MSHRs and

caches enabled. We note that the key byte recovery is not

possible because of the low correlation between the number

of accesses and the execution time. The low correlation can

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(a) BCoal(16)+MSHRs+Caches.

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(b) BCoal(1, 16)+MSHRs+Caches.

Fig. 10: BCoal defense scheme against correlation attack for
plaintext with 32 lines.

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(a) BCoal(16)+MSHRs+Caches.

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(b) BCoal(1, 16)+MSHRs+Caches.

Fig. 11: BCoal defense scheme against correlation attack for
plaintext with 64 lines.

be explained as follows. With BCoal scheme, three scenarios

can occur for a table lookup instruction. First, all accesses

– real and padded – for the instruction are cached. In this

case, the instruction always generates 16 accesses to the

cache. Second, no accesses are cached, therefore, generating 16

DRAM accesses to the unique block addresses which MSHRs

cannot optimize. In both scenarios, the number of accesses

to the cache or DRAM remains constant leading to reduced

correlation with the execution time. In the third case, a partial

set of accesses of the instruction are either cached or merged

in MSHR. Here, since the real and the padded accesses target

the same block address range, their merging and caching

probabilities are similar. Subsequently, the attacker cannot

distinguish between the effects of the padded and real accesses

on the execution time and fails to correlate the number of real

coalesced accesses and the execution time. In conclusion, the

attacker fails to recover the key byte in a BCoal-enabled GPU.

Plaintext with 64 lines. Figure 11 shows the scatter plots for

BCoal scheme using plaintext with 64 lines with MSHRs and

caches enabled. We note that the key byte recovery is not

possible because of the low correlation between the number

of accesses and the execution time. To understand the low

correlation, we refer to the correlation timing attack described

by Jiang et al. in [6] for the multi-warp case, where the attacker

treats each warp individually executing a plaintext with 32 lines

and chooses the warp with the highest number of coalesced

accesses to recover the key. Therefore, the observations made

for a single warp case hold true for the multi-warp case as

well. Particularly, the attacker cannot correlate the number

of real coalesced accesses and the execution time due to the

low variance in the number of accesses, and the homogeneity

between the real and padded accesses. Therefore, the attacker

fails to recover the key byte value in the multi-warp scenario.

The experimental analysis concludes that BCoal-enabled

GPU successfully mitigates the correlation timing attacks in

single-warp and multi-warp scenarios.

8

B. Theoretical Analysis of Security

We present an analytical framework to analyze the security of

AES. Before a formal analysis, we consider one instruction in

the last round that accesses 12 unique memory block addresses

before padding. When only one bucket is used (at 16), the 4

padded memory accesses are drawn from the same memory

space as the 12 real requests. Hence, there is no information

leakage. In general, we will shortly prove that when BCoal

uses one bucket at 16, there is no information leakage.

When multiple buckets are used, say at 12 and 16, the

attacker can infer if the number of real block addresses being

accessed are up to 12 or between 12 and 16, which leaks some

information. However, as we show next, the leakage in general

is minimal, due to the randomized mapping from plaintext

lines to warps. The randomized mapping obfuscates which

plaintext lines share the same warp.

To quantify the leakage of BCoal, we note that threads

across different warps are not synchronized and the longest

warp execution time dominates the time measurement [6].

Hence, one of the warps, the dominant warp, will have true

timing. Known attacks on multiple warps [6] analyze each warp

and use the longest running (dominant) warp for correlation

analysis to recover the AES private keys. So it is safe to focus

on an arbitrary warp in the rest of the analysis. Moreover,

we assume the padded and real accesses are homogeneous

(as described in Section IV-B). Hence, their probabilities of

merging in MSHRs and caching are identical.

To make a fair comparison with RCoal, we follow the

analytical model and assumptions of RCoal [5]. Futher, we

target an arbitrary last-round key byte k and assume that U is

the number of real accesses for the lookup of last round table,

T4, with respect to the key byte k, from the dominant warp.

Following RCoal [5], we estimate the number of plaintext

samples required to successfully recover an AES key byte, S,

as

S ∝
(µ(U ×Û)−µ(U)µ(Û)

σ(U)σ(Û)

)−2
(1)

where Û is the number of coalesced accesses when the guessed

key byte is identical to k, µ and σ are the mean and standard

deviation of a random variable respectively.

We first prove BCoal leaks no information with one bucket.

LEMMA 1. When BCoal only uses one bucket at 16, the needed

samples to break AES is infinite.

PROOF. With only one bucket, P(Û = 16|U = u) = 1 for any

u. Hence, µ(Û) = 16 and µ(U ×Û) = ∑u P(u)µ(U ×Û |U =
u) = 16∑u u×P(u) = 16µ(U). Hence S = (0)−2 = ∞.

When the number of buckets is more than one, the compu-

tation is more involved. To simplify the analysis, we further

make a conservative assumption that an attacker may directly

observe the unpadded memory blocks in the following analysis.

Therefore, µ(Û) = µ(U),σ(Û) = σ(U).
In AES, the lookup table relevant to key byte k has 16 unique

memory block addresses. With sufficiently random plaintexts

TABLE II: Security Analysis. S denotes the normalized number
of samples required to successfully recover an AES key byte [5].

Schemes Correlation ρ (normalized) S

RCoal(4) 0.15 42×
RCoal(32) 0.00 ∞

BCoal(16) 0.00 ∞

BCoal(1,16) 0.16 37×

and a warp with 32 threads, each thread accesses one of 16

memory block addresses in a uniform way. Hence, the number

of unique block addresses U , obeys the following distribution:

P(U = i) = 1
1632

16!
(16−i)!

{
32
i

}
, where

{
32
i

}
denotes the Stirling

number of the second kind. Here,
{

32
i

}
represents the ways

of partitioning 32 threads into i non-empty subsets; 16!
(16−i)! ,

i-permutations of 16, represents the ways of forming i non-

empty subsets from 16 memory block addresses. From this

distribution, we can compute both µ(U) and σ(U) by their

definitions.

To compute µ(U × Û), we note that due to the random

mapping from plaintext lines to warps, U and Û only depend

on the frequency of accessing the 16 memory block addresses

among the 64 lines of plaintext, which is defined as follows.

Definition 1. For 16 memory blocks and 64 plaintext lines, the

frequency set of all possible accesses to the block addresses

are

F = {(f1, . . . , f16) | f1 + · · ·+ f16 = 64}

where fi ∈ F represents the frequency of accessing the i-th

memory block address among the 64 plaintext lines.

Given F ∈F , µ(U |F) = ∑ fi∈F µ(1block i is accessed| fi), where

1block i is accessed is an indicator random variable that has value

1 if block address i is being accessed in the dominating warp.

Given fi accesses to block address i, the probability that it is

accessed in the dominating warp is (1−C64−32
fi

/C64
fi

), where

Cm
n denotes the binomial coefficient. Hence,

µ(U |F) = ∑
fi∈F

1−C32
fi
/C64

fi

Given F ∈ F , U and Û are independently and identically

distributed. Hence,

µ(U ×Û) = ∑
F∈F

P(F)µ(U |F)2 = ∑
F∈F

P(F)
(

∑
fi∈F

1−
C32

fi

C64
fi

)2

Here, P(F) is the probability of seeing the frequency vector

F . Among all 1664 combinations of memory accesses from 64

threads, C64
f1

C
64− f1
f2

· · ·C
64−∑1≤ j≤15 f j

f16
= (64)!

Π fi∈F fi!
match F . Hence,

we have P(F) = (64)!
Π fi∈F fi!

× 1
1664 .

Putting all pieces together, we use a Python script to compute

the correlation and normalized the sample size needed for a

successful attack, similar to the RCoal analysis [5]. The results

are summarized in Table II. We note that with 1 bucket, BCoal

rules out leakage entirely. With multiple warps, its security

is comparable with RCoal(4), the best of the RCoal schemes.

Note that the results of RCoal in Table II only applies when

MSHR and caches are disabled. But with homogeneous padded

9

and real accesses, the results of BCoal also applies even if

MSHR and caches are enabled.

In summary, this theoretical security analysis demonstrates

that when MSHR and caches are disabled, both RCoal

and BCoal schemes provide significant security against the

correlation timing attack. However, if the MSHRs and caches

are enabled, RCoal becomes vulnerable due to the access

merging and caching as illustrated in Figure 8. In contrast to

RCoal, BCoal has high security even in the presence of MSHRs

and caches as shown both in Table II and in Section VI-A.

C. Experimental Analysis of Performance

To evaluate the performance and scalability of BCoal scheme

against RCoal, we plot the execution time and number of

DRAM accesses in Figure 12 for plaintext with 32, 64 and 1024

lines. We first demonstrate the effect of different coalescing

strategies in BCoal and RCoal by comparing them in the

absence of MSHRs and caches in Figure 12a. We note that

the number of DRAM accesses increases sharply with the

plaintext size in RCoal as compared to BCoal due to the

inefficient access coalescing in RCoal. Consequently, RCoal

suffers severe performance degradation as compared to BCoal

as the plaintext size increases.

RCoal(4) RCoal(32) BCoal(16) BCoal(1,16)
0

10

20

30

N
or

m
al

iz
ed

 N
um

be
r

of
 D

RA
M

 A
cc

es
se

s

(a) Without MSHRs and Caches

DRAM Traffic

RCoal(4) RCoal(32) BCoal(16) BCoal(1,16)
0

2

4

6

8

10

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Execution Time

RCoal(4) RCoal(32) BCoal(16) BCoal(1,16)
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 N
um

be
r

of
 D

RA
M

 A
cc

es
se

s Insecure (refer Sec III-B)

(b) With MSHRs and Caches

DRAM Traffic

RCoal(4) RCoal(32) BCoal(16) BCoal(1,16)
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e Insecure (refer Sec III-B)

Execution Time

Plaintext with 32 lines Plaintext with 64 lines Plaintext with 1024 lines

Fig. 12: Performance of BCoal for different plaintext sizes. All
results are normalized to the baseline GPU.

Figure 12b demonstrates the effect of MSHRs and caches

on the performance of BCoal and RCoal. Both schemes show

a significant reduction in the DRAM traffic leading to reduced

performance degradation. However, in the presence of MSHRs

and caches, RCoal is insecure (Section III-B) and BCoal is

secure (Section VI-A and VI-B). For BCoal, the performance

degradation is limited to 5% and 15% for BCoal(1, 16) and

BCoal(16), respectively. In summary, the performance of BCoal

(with MSHRs and caches) scales well with the plaintext size

as opposed to secure RCoal (without MSHRs and caches).

D. Evaluating BCoal on Other Applications

We evaluate BCoal on a wide range of applications from

various suites such as CUDA-SDK (C) [33], Rodinia (R) [34],

Lonestar (L) [35], Mars (M) [36], Shoc (S) [37] and Polybench

(P) [38]. For these applications, we evaluate only the perfor-

mance of BCoal, as the bucketing driven reduced variation in

the number of coalesced accesses ensures improved security.

The address range of the padded accesses is spread over the

entire memory space of the respective application. We examine

the effects of the number and sizes of buckets on the application

performance using Figure 13. The MSHRs and caches are

enabled for the evaluation.

Number of buckets. In Figure 13, the first two configurations

of BCoal, BCoal(1, 16, 32) and BCoal(1, 32), demonstrate the

effect of the number of buckets on various applications. Both

configurations have a bucket of size 1 to reduce the DRAM

traffic in applications that exhibit perfect coalescing (i.e, all

threads in a warp are served by a single cache block at a given

time). We notice that most applications are unaffected by the

number of buckets, as they can leverage the bucket of size 1

through good coalescing profiles.

In C-CONS and C-NN, the number of DRAM accesses

increase in BCoal(1, 32) as the number of coalesced accesses

between 2 to 31 are padded to meet the bucket 32. The

increased number of accesses in combination with high cache-

misses results in increased DRAM traffic leading to increased

performance degradation. In C-TRA, P-CORR and P-COVAR,

although the number of DRAM accesses does not change

drastically, the execution time increased in BCoal(1, 32) over

BCoal(1, 16, 32). The increase in execution time is attributed

to the increase in the number of L1 cache accesses in BCoal(1,

32) as it lacks the bucket of size 16. The increased L1 accesses,

even if cached (thus leading to fewer DRAM accesses), are

satisfied serially thereby increasing the execution time.

Sizes of buckets. BCoal(1, 32) and BCoal(16, 32) demonstrate

the effect of bucket sizes on various applications. We noticed

that the performance degradation is severe for BCoal(16, 32)

compared to BCoal(1, 32) due to the increased number of

DRAM accesses in BCoal(16, 32). In BCoal(16, 32), the

smallest bucket size is 16, therefore all applications, even the

ones with good coalescing profiles, generate at least 16 DRAM

accesses for each memory access instruction. Subsequently,

the number of DRAM accesses increase resulting in increased

performance degradation.

In summary, we observe that the application performance is

more affected by the sizes of buckets than the number of buckets.

A careful bucket size selection can reduce the number of padded

requests thereby reducing the overall data movement.

A Generic BCoal configuration. From Figure 13, we note that

BCoal(1, 16, 32) configuration results in only 1.15% average

performance loss. The security and performance of AES with

BCoal(1, 16, 32) is identical to BCoal(1, 16) because the

bucket of size 32 in BCoal(1, 16, 32) is never used as the

baseline number of coalesced accesses never exceed 16 as

shown in Figure 6a. Therefore, BCoal(1, 16, 32) can be widely

adopted as it offers good security at a minimal performance loss.

However, for optimal security and performance tradeoff, a user

can perform application-specific offline profiling of coalesced

accesses (discussed in Section III) to determine appropriate

bucket features.

10

0

0.5

1

1.5

2
No

rm
al

ize
d

Nu
m

be
r

of
 D

RA
M

 A
cc

es
es Bcoal(1, 16, 32) Bcoal(1, 32) Bcoal(16, 32)3.09

(a) DRAM Traffic.

0
0.5

1
1.5

2
2.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Bcoal(1, 16, 32) Bcoal(1, 32) Bcoal(16, 32)
4.77 4.82 3.52

(b) Execution Time.

Fig. 13: Performance Evaluation of BCoal on GPGPU applications with MSHRs/caches enabled. Results are normalized to the
baseline GPU.

VII. RELATED WORK

In this section, we highlight the prior works that are the

most relevant to this paper.

Attacks. Implementations of cryptographic systems on CPUs

are vulnerable to timing attacks. Several AES implementations

contain key-dependent memory accesses, which eventually

affect the status of the data cache. Via cache-probing technique,

an attacker can quickly recover the entire private key of

AES and RSA by measuring the execution time of either

a cryptographic algorithm (e.g., [32], [39]–[42]) or his/her

own application if the data or instruction cache is shared

(e.g., [42]–[45]). On GPUs, Jiang et al. [6] demonstrated a

novel complete AES key recovery timing attack that exploits

the coalescing features on a commercial GPU architecture

(discussed in Section II-D). They also developed a new fine-

grained timing channel caused by shared memory bank conflicts

in GPUs [21]. Wang et al. [46] developed partial attacks against

RCoal [5] focusing on the configurations with high variance

in the number of coalesced accesses. Our BCoal mechanism

further reduces the variance making it a much stronger defense.

Defense mechanisms. Several hardware-based defense mech-

anisms have been proposed in the context of CPUs [13]–[15],

[47]–[50]. However, those mechanisms have been shown to

work only for cache-based timing attacks and not for GPU

coalescing-related vulnerabilities. The memory traffic shaping

schemes to mitigate the timing attacks in CPUs have been

extensively explored [51]–[53]. With the help of fake/dummy

access generation mechanism, these schemes enforce the

memory traffic to follow either a constant rate or a pre-

determined distribution over a time epoch. These schemes

differ from BCoal in two ways. First, BCoal works at a finer

instruction-level granularity to shape the memory traffic. The

single-instruction multiple-thread (SIMT) execution model of

GPUs allows parallel thread memory access generation across

a warp, which is leveraged by BCoal to estimate and generate

padded accesses for each sensitive instruction. Second, BCoal

ensures that the real and padded accesses are to the same

memory space, which helps in making their individual effects

on execution time similar. This makes it harder for the attacker

to distinguish padded accesses from the real accesses.

Lin et al. [54] proposed new software-based mechanisms

specific to AES for reducing the information leakage due to co-

alescing units. On the other hand, BCoal is a generic hardware-

based coalescing mechanism applicable to all security-sensitive

GPGPU applications that are vulnerable to coalescing-based

correlation timing attacks. This also makes BCoal complemen-

tary to other software-based implementations of cryptographic

workloads. Köpf et al. [55] ensures that the execution time

matches one of the discrete bucket values, while BCoal ensures

the number of memory accesses generated per load instruction

conform to a predefined set of values, that is buckets. Further,

buckets in the prior work [55] assumes input blinding for a tight

leakage bound. In BCoal, we utilize the inherent parallelism

in GPUs to randomize the mapping from inputs to threads,

achieving a similar blinding effect for arbitrary applications.

VIII. CONCLUSIONS

We propose a bucketing-based coalescing scheme (BCoal) to

thwart the coalescing-based correlation timing attack without

incurring high performance overhead. The key insight is to

redesign GPU memory coalescing such that it always issues a

pre-determined number of memory accesses (called buckets).

Our modified coalescing unit generates additional memory

accesses (if necessary) along with the real accesses to match

the bucket requirements. These additional padded accesses

reduce the variance in the total number of coalesced accesses

to significantly enhance the security. BCoal carefully generates

padded accesses such that they have similar caching/merging

probability as that of the real accesses. Such a mechanism

significantly helps in retaining the security even in the presence

of the MSHRs and caches. In conclusion, we believe that BCoal

addresses the memory coalescing related vulnerability in GPUs

while incurring low performance overhead.

11

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

and the members of Insight Computer Architecture Lab at

William & Mary for their feedback. This material is based

upon work supported by the National Science Foundation (NSF)

grant #1717532 and a summer research grant from William

& Mary. This work was performed in part using computing

facilities at William & Mary.

REFERENCES

[1] NVIDIA, “Parabricks.” [Online]. Available: https://blogs.nvidia.com/
blog/2018/09/05/parabricks-genomic-analysis/

[2] NVIDIA, “Computational finance.” [Online]. Available: https://www.
nvidia.com/en-us/gtc/topics/finance/

[3] W. Hua, Z. Zhang, and G. E. Suh, “Reverse Engineering Convolutional
Neural Networks Through Side-channel Information Leaks,” in DAC,
2018.

[4] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered Insecure: GPU Side Channel Attacks are Practical,” in CCS,
2018.

[5] G. Kadam, D. Zhang, and A. Jog, “RCoal: Mitigating GPU Timing Attack
via Subwarp-based Randomized Coalescing Techniques,” in HPCA, 2018.

[6] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing
attack on a GPU,” in HPCA, 2016.

[7] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted Execution
Environments on GPUs,” in OSDI, 2018.

[8] G. Liu, H. An, W. Han, G. Xu, P. Yao, M. Xu, X. Hao, and Y. Wang, “A
program behavior study of block cryptography algorithms on GPGPU,”
in FCST, 2009.

[9] T. Cheneau, A. Boudguiga, and M. Laurent, “Significantly improved
performances of the cryptographically generated addresses thanks to
ECC and GPGPU,” computers & security, vol. 29, 2010.

[10] S. Neves and F. Araujo, “On the performance of GPU public-key
cryptography,” in ASAP, 2011.

[11] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “SSLShader: Cheap
SSL Acceleration with Commodity Processors,” in NSDI, 2011.

[12] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in ACSAC, 2006.

[13] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ISCA, 2007.

[14] Z. Wang and R. B. Lee, “A Novel Cache Architecture with Enhanced
Performance and Security,” in MICRO, 2008.

[15] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in MICRO,
2014.

[16] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P, 2015.

[17] M. K. Qureshi, “New Attacks and Defense for Encrypted-address Cache,”
in ISCA, 2019.

[18] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are Coherence Protocol
States Vulnerable to Information Leakage?” in HPCA, 2018.

[19] H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh, “Con-
structing and characterizing covert channels on GPGPUs,” in MICRO,
2017.

[20] Q. Xu, H. Naghibijouybari, S. Wang, N. B. Abu-Ghazaleh, and
M. Annavaram, “GPUGuard: mitigating contention based side and covert
channel attacks on GPUs,” in ICS, 2019.

[21] Z. H. Jiang, Y. Fei, and D. Kaeli, “A Novel Side-Channel Timing Attack
on GPUs,” in VLSI, 2017.

[22] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in ISPASS,
2009.

[23] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative Thread Array
Aware Scheduling Techniques for Improving GPGPU Performance,” in
ASPLOS, 2013.

[24] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated Scheduling and Prefetching for GPGPUs,”
in ISCA, 2013.

[25] F. P. Miller, A. F. Vandome, and J. McBrewster, Advanced Encryption

Standard. Alpha Press, 2009.

[26] O. Harrison and J. Waldron, “AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units,” in CHES, 2007.

[27] K. Iwai, T. Kurokawa, and N. Nisikawa, “AES Encryption Implementation
on CUDA GPU and Its Analysis,” in ICNC, 2010.

[28] N. Nishikawa, K. Iwai, and T. Kurokawa, “High-Performance Symmetric
Block Ciphers on CUDA,” in ICNC, 2011.

[29] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Implementation and
analysis of AES encryption on GPU,” in HPCC-ICESS, 2012.

[30] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in ISCA, 2013.

[31] A. Sethia, D. A. Jamshidi, and S. Mahlke, “Mascar: Speeding up GPU
warps by reducing memory pitstops,” in HPCA, 2015.

[32] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of AES,” CT-RSA, 2006.

[33] NVIDIA, “CUDA C/C++ SDK Code Samples,” 2011. [Online].
Available: http://developer.nvidia.com/cuda-cc-sdk-code-samples

[34] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Computing,”
in IISWC, 2009.

[35] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in IISWC, 2012.

[36] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A
MapReduce Framework on Graphics Processors,” in PACT, 2008.

[37] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous Computing
(SHOC) benchmark suite,” in GPGPU, 2010.

[38] L.-N. Pouchet, “Polybench: the polyhedral benchmark suite,” 2012.
[Online]. Available: http://web.cs.ucla.edu/∼pouchet/software/polybench/

[39] D. J. Bernstein, “Cache-timing attacks on AES,” cr.yp.to/papers.html#
cachetiming, 2005.

[40] J. Bonneau and I. Mironov, “Cache-collision timing attacks against AES,”
in CHES, 2006.

[41] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differential
Cache-Collision Timing Attacks on AES with Applications to Embedded
CPUs,” in CT-RSA, 2010.

[42] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games—Bringing
Access-Based Cache Attacks on AES to Practice,” in S&P, 2011.

[43] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack,” in USENIX Security, 2014.

[44] G. Irazoqui, M. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! A
fast, cross-VM attack on AES,” in RAID, 2014, pp. 299–319.

[45] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-Tenant
Side-Channel Attacks in PaaS Clouds,” in CCS, 2014.

[46] X. Wang and W. Zhang, “Cracking Randomized Coalescing Techniques
with An Efficient Profiling-Based Side-Channel Attack to GPU,” in
HASP, 2019.

[47] D. Page, “Partitioned cache architecture as a side-channel defense
mechanism,” in Cryptology ePrint Archive, Report 2005/280, 2005.
[Online]. Available: http://eprint.iacr.org/2005/280.pdf

[48] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: A language for
hardware-level security policy enforcement,” in ASPLOS, 2014.

[49] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A Hardware Design
Language for Timing-Sensitive Information-Flow Security,” in ASPLOS,
2015.

[50] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure Hierarchy-Aware
Cache Replacement Policy (SHARP): Defending Against Cache-Based
Side Channel Atacks,” in ISCA, 2017.

[51] Y. Zhou, S. Wagh, P. Mittal, and D. Wentzlaff, “Camouflage: Memory
traffic shaping to mitigate timing attacks,” in HPCA, 2017.

[52] C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. De-
vadas, “Suppressing the Oblivious RAM timing channel while making
information leakage and program efficiency trade-offs,” in HPCA, 2014.

[53] S. Aga and S. Narayanasamy, “InvisiMem: Smart Memory Defenses for
Memory Bus Side Channel,” in ISCA, 2017.

[54] Z. Lin, U. Mathur, and H. Zhou, “Scatter-and-Gather Revisited: High-
Performance Side-Channel-Resistant AES on GPUs,” in GPGPU, 2019.

[55] B. Köpf and M. Dürmuth, “A Provably Secure And Efficient Counter-
measure Against Timing Attacks,” in CSF, 2009.

12

https://blogs.nvidia.com/blog/2018/09/05/parabricks-genomic-analysis/
https://blogs.nvidia.com/blog/2018/09/05/parabricks-genomic-analysis/
https://www.nvidia.com/en-us/gtc/topics/finance/
https://www.nvidia.com/en-us/gtc/topics/finance/
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://web.cs.ucla.edu/~pouchet/software/polybench/
cr.yp.to/papers.html#cachetiming
cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/2005/280.pdf

