
BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers∗

Chuanxiong Guo1, Guohan Lu1, Dan Li1, Haitao Wu1, Xuan Zhang1,2, Yunfeng Shi1,3,
Chen Tian1,4, Yongguang Zhang1, Songwu Lu1,5

1: Microsoft Research Asia, 2: Tsinghua, 3: PKU, 4: HUST, 5: UCLA
{chguo,lguohan,danil,hwu}@microsoft.com, xuan-zhang05@mails.tsinghua.edu.cn,

shiyunfeng@pku.edu.cn, tianchen@mail.hust.edu.cn, ygz@microsoft.com,
slu@cs.ucla.edu

ABSTRACT
This paper presents BCube, a new network architecture
specifically designed for shipping-container based, modular
data centers. At the core of the BCube architecture is its
server-centric network structure, where servers with multi-
ple network ports connect to multiple layers of COTS (com-
modity off-the-shelf) mini-switches. Servers act as not only
end hosts, but also relay nodes for each other. BCube sup-
ports various bandwidth-intensive applications by speeding-
up one-to-one, one-to-several, and one-to-all traffic patterns,
and by providing high network capacity for all-to-all traffic.

BCube exhibits graceful performance degradation as the
server and/or switch failure rate increases. This property
is of special importance for shipping-container data centers,
since once the container is sealed and operational, it becomes
very difficult to repair or replace its components.

Our implementation experiences show that BCube can be
seamlessly integrated with the TCP/IP protocol stack and
BCube packet forwarding can be efficiently implemented in
both hardware and software. Experiments in our testbed
demonstrate that BCube is fault tolerant and load balanc-
ing and it significantly accelerates representative bandwidth-
intensive applications.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topol-
ogy, Packet-switching networks

General Terms
Algorithms, Design

Keywords
Modular data center, Server-centric network, Multi-path

∗This work was performed when Xuan Zhang, Yunfeng Shi,
and Chen Tian were interns and Songwu Lu was a visiting
professor at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

1. INTRODUCTION
Shipping-container based, modular data center (MDC) of-

fers a new way in which data centers are built and deployed
[13, 16, 23, 24, 25]. In an MDC, up to a few thousands of
servers are interconnected via switches to form the network
infrastructure, say, a typical, two-level tree in the current
practice. All the servers and switches are then packed into
a standard 20- or 40-feet shipping-container. No longer tied
to a fixed location, organizations can place the MDC any-
where they intend and then relocate as their requirements
change. In addition to high degree of mobility, an MDC
has other benefits compared with the data center facilities
directly built from server racks. They include shorter de-
ployment time, higher system and power density, and lower
cooling and manufacturing cost.

In this work, we describe BCube, a high-performance and
robust network architecture for an MDC. The design and im-
plementation of BCube are driven by demands from data-
intensive computing, recent technology trends, as well as
special MDC requirements. Many data center applications
require bandwidth-intensive, one-to-one, one-to-several (e.g.,
distributed file systems [12]), one-to-all (e.g., application
data broadcasting), or all-to-all (e.g., MapReduce [6] and
Dryad [17]) communications among MDC servers. BCube
is designed to well support all these traffic patterns. A recent
technology trend is to build data centers using commodity
servers [2]. We go one step further by using only low-end
COTS mini-switches. This option eliminates expensive high-
end switches. Different from a traditional data center, it is
difficult or even impossible to service an MDC once it is
deployed. Therefore, BCube needs to achieve graceful per-
formance degradation in the presence of server and switch
failures.

The BCube network architecture takes the server-centric
approach, rather than the switch-oriented practice. It places
intelligence on MDC servers and works with commodity
switches. BCube makes innovations in its server-centric in-
terconnection structure, routing protocol, and efficient im-
plementation.

In the BCube interconnection structure, each server is
equipped with a small number of ports (typically no more
than four). Multiple layers of cheap COTS mini-switches
are used to connect those servers. BCube provides multiple
parallel short paths between any pair of servers. This not
only provides high one-to-one bandwidth, but also greatly
improves fault tolerance and load balancing. BCube ac-
celerates one-to-several and one-to-all traffic by construct-

63

ing edge-disjoint complete graphs and multiple edge-disjoint
server spanning trees. Moreover, due to its low diameter,
BCube provides high network capacity for all-to-all traffic
such as MapReduce.

BCube runs a source routing protocol called BSR (BCube
Source Routing). BSR places routing intelligence solely onto
servers. By taking advantage of the multi-path property of
BCube and by actively probing the network, BSR balances
traffic and handles failures without link-state distribution.
With BSR, the capacity of BCube decreases gracefully as
the server and/or switch failure increases.

We have designed and implemented a BCube protocol
suite. We can design a fast packet forwarding engine, which
can decide the next hop of a packet by only one table lookup.
The packet forwarding engine can be efficiently implemented
in both software and hardware. We have built a BCube
testbed with 16 servers and 8 8-port Gigabit Ethernet mini-
switches. Experiments in our testbed demonstrated the ef-
ficiency of our implementation. Experiments also showed
that BCube provides 2 times speedup for one-to-x (abbre-
viation for one-to-one, one-to-several, and one-to-all) traffic
patterns, and 3 times throughput for MapReduce tasks com-
pared with the tree structure. BCube uses more wires than
the tree structure. But wiring is a solvable issue for contain-
ers which are at most 40-feet long.

Recently, fat-tree [1] and DCell [9] are proposed as net-
work structures to interconnect tens of thousands or more
servers in data centers. BCube is better than these two
structures for MDCs. Compared with DCell, BCube does
not have performance bottlenecks and provides much higher
network capacity; compared with fat-tree, BCube provides
better one-to-x support and can be directly built using com-
modity switches without any switch upgrade. See Section 8
for detailed comparisons.

The rest of the paper is organized as follows. Section 2
discusses background. Section 3 presents BCube and its
support for various traffic patterns. Section 4 designs BSR.
Section 5 addresses other design issues. Sections 6 stud-
ies graceful degradation. Section 7 presents implementation
and experiments. Section 8 discusses related work and Sec-
tion 9 concludes the paper.

2. BACKGROUND
MDCs present new research opportunities as well as chal-

lenges. The size of a 40-feet container is 12m×2.35m×2.38m,
hence wiring becomes a solvable problem when we depart
from the traditional tree structure; it is possible to use cheap
commodity Gigabit Ethernet mini-switches for interconnec-
tion since the target scale is typically thousands of servers.
Yet, designing network architecture for MDCs is also chal-
lenging. It is difficult or even impossible to service a con-
tainer once it is sealed and deployed. The design should
be fault tolerant and the performance should degrade grace-
fully as components failure increases. We now elaborate the
requirements for MDCs in more details.
Bandwidth-intensive application support. Many data
center applications need to move huge amount of data among
servers, and network becomes their performance bottleneck
[6, 12, 17]. A well designed network architecture needs to
provide good support for typical traffic patterns. We de-
scribe several typical traffic patterns as follows.

One-to-one, which is the basic traffic model in which one
server moves data to another server. Our design should pro-

vide high inter-server throughput. This is particularly useful
when there exist server pairs that exchange large amount of
data such as disk backup. Good one-to-one support also
results in good several-to-one and all-to-one support.

One-to-several, in which one server transfers the same
copy of data to several receivers. Current distributed file
systems such as GFS [12], HDFS [4], and CloudStore [5],
replicate data chunks of a file several times (typically three)
at different chunk servers to improve reliability. When a
chunk is written into the file system, it needs to be simulta-
neously replicated to several servers.

One-to-all, in which a server transfers the same copy of
data to all the other servers in the cluster. There are several
cases that one-to-all happens: to upgrade the system image,
to distribute application binaries, or to distribute specific
application data.

All-to-all, in which every server transmits data to all the
other servers. The representative example of all-to-all traffic
is MapReduce [6]. The reduce phase of MapReduce needs
to shuffle data among many servers, thus generating an all-
to-all traffic pattern.
Low-end commodity switches. Current data centers
use commodity PC servers for better performance-to-price
ratio [2]. To achieve the same goal, we use low-end non-
programmable COTS switches instead of the high-end ones,
based on the observation that the per-port price of the low-
end switches is much cheaper than that of the high-end ones.
As we have outlined in our first design goal, we want to pro-
vide high capacity for various traffic patterns. The COTS
switches, however, can speak only the spanning tree proto-
col, which cannot fully utilize the links in advanced network
structures. The switch boxes are generally not as open as
the server computers. Re-programming the switches for new
routing and packet forwarding algorithms is much harder,
if not impossible, compared with programming the servers.
This is a challenge we need to address.
Graceful performance degradation. Given that we only
assume commodity servers and switches in a shipping-container
data center, we should assume a failure model of frequent
component failures. Moreover, An MDC is prefabricated in
factory, and it is rather difficult, if not impossible, to service
an MDC once it is deployed in the field, due to operational
and space constraints. Therefore, it is extremely important
that we design our network architecture to be fault toler-
ant and to degrade gracefully in the presence of continuous
component failures.

In our BCube architecture, we introduce a novel server-
centric BCube network topology and a BCube Source Rout-
ing protocol (BSR) to meet the requirements of MDCs. We
next present the structure and BSR sequentially.

3. THE BCUBE STRUCTURE
In this section, we first present the server-centric BCube

structure and then analyze its one-to-x and all-to-all traffic
support properties.

3.1 BCube Construction
There are two types of devices in BCube: Servers with

multiple ports, and switches that connect a constant num-
ber of servers. BCube is a recursively defined structure. A
BCube0 is simply n servers connecting to an n-port switch.
A BCube1 is constructed from n BCube0s and n n-port
switches. More generically, a BCubek (k ≥ 1)) is con-

64

(a) (b)

Figure 1: (a)BCube is a leveled structure. A BCubek is constructed from n BCubek−1 and nk n-port switches.
(b) A BCube1 with n = 4. In this BCube1 network, each server has two ports.

structed from n BCubek−1s and nk n-port switches. Each
server in a BCubek has k + 1 ports, which are numbered
from level-0 to level-k. It is easy to see that a BCubek has
N = nk+1 servers and k+1 level of switches, with each level
having nk n-port switches.

The construction of a BCubek is as follows. We number
the n BCubek−1s from 0 to n − 1 and the servers in each
BCubek−1 from 0 to nk − 1. We then connect the level-k
port of the i-th server (i ∈ [0, nk− 1]) in the j-th BCubek−1

(j ∈ [0, n − 1]) to the j-th port of the i-th level-k switch,
as illustrated in Fig. 1(a). Fig. 1(b) shows a BCube1 with
n = 4, which is constructed from four BCube0s and four 4-
port switches. The links in BCube are bidirectional. In this
section, we assume the link bandwidth as 1 for simplicity of
presentation.

We denote a server in a BCubek using an address array
akak−1 · · · a0 (ai ∈ [0, n−1], i ∈ [0, k]). Equivalently, we can

use a BCube address baddr =
∑k

i=0 ain
i to denote a server.

We denote a switch using the form < l, sk−1sk−2 · · · s0 >
(sj ∈ [0, n− 1], j ∈ [0, k− 1]), where l(0 ≤ l ≤ k) is the level
of the switch.

From Fig. 1, we can see that the i-th port of a level-k
switch < k, sk−1sk−2 · · · s0 > connects to the level-k port
of server isk−1sk−2 · · · s0 (i ∈ [0, n − 1]). More generi-
cally, the construction ensures that the i-th port of a switch
< l, sk−1sk−2 · · · s0 > connects to the level-l port of server
sk−1sk−2 · · · slisl−1 · · · s0.

The BCube construction guarantees that switches only
connect to servers and never directly connect to other switches.
As a direct consequence, we can treat the switches as dummy
crossbars that connect several neighboring servers and let
servers relay traffic for each other. With 8-port mini-switches,
we can support up to 4096 servers in one BCube3. BCube
therefore meets our goal of using only low-end commodity
switches by putting routing intelligence purely into servers.

The BCube structure is closely related to the generalized
Hypercube [3]. In a BCube network, if we replace each
switch and its n links with an n × (n − 1) full mesh that
directly connects the servers, we get a generalized Hyper-
cube. Compared to the generalized Hypercube, the server
port number is much smaller in BCube. It is k + 1 in a
BCubek and (n − 1)(k + 1) in a corresponding generalized
Hypercube. This implies that we reduce the server port
number from 28 to 4 when n = 8 and k = 3. The incurred
cost in BCube is the k+1 layers of switches. This is a tradeoff
we make willingly, due to the low cost of the mini-switches.

/*
A=akak−1 · · · a0 and B=bkbk−1 · · · b0; A[i] = ai; B[i] = bi;
Π = [πk, πk−1, · · · , π0] is a permutation

of [k, k − 1, · · · , 1, 0]
*/
BCubeRouting(A, B, Π):

path(A, B) = {A, };
I Node = A;
for(i = k; i ≥ 0; i−−)

if (A[πi] 6= B[πi])
I Node[πi] = B[πi];
append I Node to path(A, B);

return path(A, B);

Figure 2: BCubeRouting to find a path from A to
B. The algorithm corrects one digit at one step. The
digit correcting order is decided by the predefined
permutation Π.

3.2 Single-path Routing in BCube
We use h(A, B) to denote the Hamming distance of two

servers A and B, which is the number of different digits of
their address arrays. Apparently, the maximum Hamming
distance in a BCubek is k + 1. Two servers are neighbors if
they connect to the same switch. The Hamming distance of
two neighboring servers is one. More specifically, two neigh-
boring servers that connect to the same level-i switch only
differ at the i-th digit in their address arrays. By utilizing
this fact, we design BCubeRouting, as we illustrate in Fig. 2,
to find a path from a source server to a destination server.

In BCubeRouting, A=akak−1 · · · a0 is the source server
and B=bkbk−1 · · · b0 is the destination server, and Π is a
permutation of [k, k−1, · · · , 1, 0]. We systematically build a
series of intermediate servers by ‘correcting’ one digit of the
previous server. Hence the path length is at most k+1. Note
that the intermediate switches in the path can be uniquely
determined by its two adjacent servers, hence are omitted
from the path. BCubeRouting is similar to the routing al-
gorithm for Hypercube. This is not by chance, but because
BCube and the generalized Hypercube share similarity as
we have discussed in Section 3.1.

From BCubeRouting, we obtain the following theorem.

Theorem 1. The diameter, which is the longest shortest
path among all the server pairs, of a BCubek, is k + 1.

In practice, k is a small integer, typically at most 3. There-
fore, BCube is a low-diameter network.

65

/*A=akak−1 · · · a0 and B=bkbk−1 · · · b0; A[i] = ai; B[i] = bi;*/
BuildPathSet(A, B):

PathSet = { };
for(i = k; i ≥ 0; i−−)

if (A[i] 6= B[i])
Pi=DCRouting(A, B, i);

else /*A[i] == B[i]*/
C= a neighbor of A at level i; /*C[i] 6= A[i]*/
Pi=AltDCRouting(A, B, i, C);

add Pi to PathSet;
return PathSet;

DCRouting(A, B, i):
m = k;
for (j = i; j ≥ i− k; j −−)

Π[m] = j mod (k + 1); m = m− 1;
path = BCubeRouting(A, B, Π);
return path;

AltDCRouting(A, B, i, C):
path={A,};
m = k;
for (j = i− 1; j ≥ i− 1− k; j −−)

Π[m] = j mod (k + 1); m = m− 1;
path += BCubeRouting(C, B, Π);
return path;

Figure 3: The algorithm to calculate the k+1 parallel
paths between servers A and B.

3.3 Multi-paths for One-to-one Traffic
Two parallel paths between a source server and a destina-

tion server exist if they are node-disjoint, i.e., the interme-
diate servers and switches on one path do not appear on the
other. The following theorem shows how to generate two
parallel paths between two servers.

Theorem 2. Given that two servers A = akak−1 · · · a0

and B = bkbk−1 · · · b0 are different in every digit (i.e., ai 6=
bi for i ∈ [0, k]). BCubeRouting generates two parallel paths
from A to B using two permutations Π0 = [i0, (i0−1) mod (k+
1), · · · , (i0−k) mod (k+1)] and Π1 = [i1, (ii−1) mod (k+
1), · · · , (i1 − k) mod (k + 1)] (i0 6= i1 and i0, i1 ∈ [0, k]).

The permutations Π0 and Π1 start from different locations
of the address array and then correct the digits sequentially.
This pattern ensures that the used switches are always at
different levels for the same digit position, thus producing
the two parallel paths. The formal proof of Theorem 2 is
given in Appendix A.

From Theorem 2, we see that when the digits of A and B
are different, there are k + 1 parallel paths between them.
It is also easy to observe that the number of parallel paths
between two servers be upper bounded by k + 1, since each
server has only k + 1 links. The following theorem specifies
the exact number of parallel paths between any two servers.

Theorem 3. There are k + 1 parallel paths between any
two servers in a BCubek.

We show the correctness of Theorem 3 by constructing
such k + 1 paths. The construction procedure, BuildPath-
Set, is based on Theorem 2 and shown in Fig. 3. For two
servers A and B, the paths built by BuildPathSet fall into
two categories: the paths constructed by DCRouting using
permutations start from digits ai 6= bi and those constructed
by AltDCRouting. There are h(A, B) and k + 1−h(A, B)

P3 : {0001, < 3, 001 >, 1001, < 1, 101 >, 1011}
P2 : {0001, < 2, 001 >, 0101, < 1, 011 >, 0111,

< 3, 111 >, 1111, < 2, 111 >, 1011}
P1 : {0001, < 1, 001 >, 0011, < 3, 011 >, 1011}
P0 : {0001, < 0, 000 >, 0002, < 3, 002 >, 1002,

< 1, 102 >, 1012, < 0, 101 >, 1011}

Figure 4: An example showing the parallel paths
between two servers A (0001) and B (1011) in a
BCube3 with n = 8. There are 2 paths with length
2 (P3 and P1) and 2 paths with length 4 (P2 and P0).

paths in the first and second categories, respectively. From
Theorem 2 (and by removing the digits ai = bi in all the
servers), we can see that the paths in the first category are
parallel.

Next, we show that paths in the second category are also
parallel. Assume ai = bi and aj = bj for two different i and
j. From Fig. 3, the i-th digit of all the intermediate servers
in path Pi is a value ci 6= ai, whereas it is ai in all the
intermediate servers in path Pj . Similarly, the j-th digits
of the intermediate servers in Pi and Pj are also different.
The intermediate servers in Pi and Pj differ by at least two
digits. The switches in Pi and Pj are also different, since a
switch connects only to servers that differ in a single digit.
Hence the paths in the second category are parallel.

Finally, we show that paths in different categories are par-
allel. First, the intermediate servers of a path in the second
category are different from the servers in the first category,
since there is at least one different digit (i.e., the i-th digit
ci). Second, the switches of a path in the second category
are different from those in the first category (due to the fact
that switches in the second category have ci whereas those
in the first category have ai in the same position).

From BuildPathSet, we further observe that the maximum
path length of the paths constructed by BuildPathSet be
k + 2. The lengths of the paths in the first and second
categories are h(A, B) and h(A, B) + 2, respectively. The
maximum value of h(A, B) is k + 1, hence the maximum
path length is at most k +3. But k +3 is not possible, since
when h(A, B) = k + 1, the number of paths in the second
category is 0. The parallel paths created by BuildPathSet
therefore are of similar, small path lengths. It is also easy
to see that BuildPathSet is of low time-complexity O(k2).

Fig. 4 shows the multiple paths between two servers 0001
and 1011 in a BCube network with n = 8 and k = 3. The
Hamming distance of the two servers is h(A, B) = 2. We
thus have two paths of length 2. These two paths are P3

and P1. We also have two paths of length h(A, B) + 2 = 4.
These two paths are P2 and P0, respectively. For clarity, we
also list the intermediate switches in the paths. It is easy to
verify that all these paths are parallel, since an intermediate
server or switch on one path never appears on other paths.

It is easy to see that BCube should also well support
several-to-one and all-to-one traffic patterns. We can fully
utilize the multiple links of the destination server to accel-
erate these x-to-one traffic patterns.

3.4 Speedup for One-to-several Traffic
We show that edge-disjoint complete graphs with k + 2

servers can be efficiently constructed in a BCubek. These
complete graphs can speed up data replications in distributed
file systems like GFS [12].

66

Theorem 4. In a BCubek, a server src and a set of
servers {di|0 ≤ i ≤ k}, where di is an one-hop neighbor
of src at level i (i.e., src and di differ only at the i-th digit),
can form an edge-disjoint complete graph.

We show how we recursively construct such an edge-disjoint
complete graph. Suppose src and d0−dk−1 are in a BCubek−1

B0, and dk is in another BCubek−1 B1. Assume that servers
in B0 have already formed a complete graph. We show
how to construct the edges among dk and the rest servers
d0 − dk−1. The key idea is to find k servers d′0 − d′k−1,
where d′i(0 ≤ i < k) and dk differ in the i-th digit. It is
easy to see that the Hamming distance between di and dk is
two. We can then establish an edge between di and dk via
the intermediate server d′i. This edge uses the level-k link
of di and the level-i link of dk. This edge is node-disjoint
with other edges: it does not overlap with the edges in B0

since it uses the level-k link of di; it also does not overlap
with the edges in B1 since it uses the level-i link of dk. In
this way, we can recursively construct the edges between
dk−1 and di(0 ≤ i < k − 1), using the level-(k − 1) links of
di(0 ≤ i < k − 1) and level-i link of dk−1, etc.

From the construction procedure, we see that the diameter
of the constructed complete graph is only two hops. For
a server src, there exist a huge number of such complete
graphs. src has n−1 choices for each di. Therefore, src can
build (n− 1)k+1 such complete graphs.

In distributed file systems such as GFS [12], CloudStore [5],
and HDFS [4], a file is divided into chunks, and each chunk is
replicated several times (typically three) at different chunk
servers to improve reliability. The replicas are chosen to lo-
cate at different places to improve reliability. The source
and the selected chunk servers form a pipeline to reduce the
replication time: when a chunk server starts to receive data,
it transmits the data to the next chunk server.

The complete graph built in BCube works well for chunk
replication for two reasons: First, the selected servers are
located at different levels of BCube, thus improving repli-
cation reliability. Second, edge-disjoint complete graph is
perfect for chunk replication speedup. When a client writes
a chunk to r (r ≤ k + 1) chunk servers, it sends 1

r
of the

chunk to each of the chunk server. Meanwhile, every chunk
server distributes its copy to the other r−1 servers using the
disjoint edges. This will be r times faster than the pipeline
model.

3.5 Speedup for One-to-all Traffic
We show that BCube can accelerate one-to-all traffic sig-

nificantly. In one-to-all, a source server delivers a file to all
the other servers. The file size is L and we assume all the
links are of bandwidth 1. We omit the propagation delay
and forwarding latency. It is easy to see that under tree and
fat-tree, the time for all the receivers to receive the file is at
least L. But for BCube, we have the following theorem.

Theorem 5. A source can deliver a file of size L to all
the other servers in L

k+1
time in a BCubek.

We show the correctness of Theorem 5 by constructing k+
1 edge-disjoint server spanning trees. Edge-disjoint means
that an edge in one spanning tree does not appear in all the
other ones. Fig. 5 shows how such k+1 server spanning trees
are constructed. BuildMultipleSPTs constructs the k + 1
spanning trees from the k + 1 neighbors of the source. A

/*Servers are denoted using the address array form.
src[i] denotes the i-th digit of the address array of src.*/

BuildMultipleSPTs(src):
for(i = 0; i ≤ k; i + +)

root=src’s level-i neighbor and root[i]=(src[i] + 1) mod n;
Treei = {root, };
BuildSingleSPT(src, Treei, i);

BuildSingleSPT(src, T, level):
Part I:

for(i = 0; i ≤ k; i + +)
dim = (level + i) mod (k + 1);
T2 = {};
for (each server A in T)

C = B = A;
for (j = 0; j < n− 1; j + +)

C[dim] = (C[dim] + 1) mod n;
add server C and edge (B, C) to T2;
B = C;

add T2 to T ;
Part II:

for (each server S 6= src and S[level] = src[level])
S2 = S; S2[level] = (S[level]− 1) mod n;
add server S and edge (S2, S) to T;

Figure 5: Build the k + 1 edge-disjoint server span-
ning trees from a source server in a BCubek.

Figure 6: The two edge-disjoint server spanning
trees with server 00 as the source for the BCube1

network in Fig. 1(b).

level-i neighbor differs from the source in the i-th digit. We
then systematically add servers into the tree starting from
that level. Intuitively, the trees are edge-disjoint because
a server is added to different trees using links of different
levels. The formal proof is omitted due to space limitation.
Fig. 6 shows the two edge-disjoint spanning trees with server
00 as the source for the BCube1 network of Fig. 1(b).

When a source distributes a file to all the other servers, it
can split the file into k + 1 parts and simultaneously deliver
all the parts via different spanning trees. Since a receiving
server is in all the spanning trees, it receives all the parts and
hence the whole file. The time to deliver a file of size L to
all is therefore L

k+1
in a BCubek. No broadcast or multicast

is needed in BuildMultipleSPTs. Hence we can use TCP to
construct the trees for reliable data dissemination.

3.6 Aggregate Bottleneck Throughput for All-
to-all Traffic

Under the all-to-all model, every server establishes a flow
with all other servers. Among all the flows, the flows that re-

67

ceive the smallest throughput are called the bottleneck flows.
The aggregate bottleneck throughput (ABT) is defined as
the number of flows times the throughput of the bottleneck
flow. The finish time of an all-to-all task is the total shuffled
data divided by ABT. ABT therefore reflects the network
capacity under the all-to-all traffic pattern.

Theorem 6. The aggregate bottleneck throughput for a
BCube network under the all-to-all traffic model is n

n−1
(N−

1), where n is the switch port number and N is the number
of servers.

See Appendix B on how we derive the number. An ad-
vantage of BCube is that BCube does not have performance
bottlenecks in the all-to-all traffic model since all the links
are used equally. As a result, the ABT of BCube increases
linearly as the number of servers increases. As we will show
in Section 6, the ABT of BCube decreases gracefully under
both server and switch failures.

4. BCUBE SOURCE ROUTING
We require that the routing protocol be able to fully utilize

the high capacity (e.g., multi-path) of BCube and automat-
ically load-balance the traffic. Existing routing protocols
such as OSPF and IS-IS [20] cannot meet these require-
ments. Furthermore, it is unlikely that OSPF and IS-IS
can scale to several thousands of routers [20]. In this paper,
we design a source routing protocol called BSR by leverag-
ing BCube’s topological property. BSR achieves load bal-
ance and fault tolerance, and enables graceful performance
degradation.

4.1 The BSR Idea
In BSR, the source server decides which path a packet

flow should traverse by probing the network and encodes
the path in the packet header. We select source routing for
two reasons. First, the source can control the routing path
without coordinations of the intermediate servers. Second,
intermediate servers do not involve in routing and just for-
ward packets based on the packet header. This simplifies
their functionalities. Moreover, by reactively probing the
network, we can avoid link state broadcasting, which suffers
from scalability concerns when thousands of servers are in
operation.

In BSR, a flow can change its path but only uses one path
at a given time, in order to avoid the packet out-of-order
problem. A flow is a stream of packets that have the same
values for a subset of fields of the packet header, such as the
five-tuple (src, src port, dst, dst port, prot). We treat a
duplex flow as two separate simplex flows, since the network
conditions along opposite directions may be different.

When a new flow comes, the source sends probe packets
over multiple parallel paths. The intermediate servers pro-
cess the probe packets to fill the needed information, e.g.,
the minimum available bandwidth of its input/output links.
The destination returns a probe response to the source.
When the source receives the responses, it uses a metric to
select the best path, e.g., the one with maximum available
bandwidth. In this paper, we use available bandwidth to op-
timize application throughput since we focus on bandwidth-
intensive applications. However, it is possible to use other
metrics such as end-to-end delay.

When a source is performing path selection for a flow, it
does not hold packets. The source initially uses a default

PathSelection(src, dst):
Source:

when a flow arrives or probing timer timeouts:
goodPathSet = { };
pathSet = BuildPathSet(src, dst);
while (pathSet not empty)

path = pathSet.remove();
if (ProbePath(path) succeeds)

goodPathSet.add(path);
else

altPath = BFS(pathSet, goodPathSet);
if(altPath exists) pathSet.add(altPath);

return SelectBestPath(goodPathSet);

Intermediate server: /*receiver is not pkt.dst*/
when a path probe pkt is received:

if (next hop not available)
send path failure msg to src; return;

ava band = min(ava band in, ava band out);
if (ava band < pkt.ava band)

pkt.ava band = ava band;
forward(pkt);

Destination: /*receiver is pkt.dst*/
when a path probe pkt is received:

if (ava band in < pkt.ava band)
pkt.ava band = ava band in;

reverse the path in pkt; pkt.type = response;
route pkt back to src;

Figure 7: The path selection procedure of BSR.

path selected from the parallel path set. After the path se-
lection completes and a better path is selected, the source
switches the flow to the new path. Path switching may re-
sult in temporal packet out-of-order. Because path probing
can be done in a short time and TCP is still in its three-
way handshaking or slow-start phase, this one-time switch-
ing does not pose performance problem.

4.2 The PathSelection Procedure
The detailed, path probing and selection procedure is given

in Fig. 7. It has three parts, which describe how source, in-
termediate, and destination servers perform.

When a source performs PathSelection, it first uses Build-
PathSet to obtain k+1 parallel paths and then probes these
paths. The PathSelection tries its best to find k + 1 parallel
paths. Thus, if one path is found not available, the source
uses the Breadth First Search (BFS) algorithm to find an-
other parallel path. The source first removes the existing
parallel paths and the failed links from the BCubek graph,
and then uses BFS to search for a path. When links are
of equal weights, BFS is a shortest-path routing algorithm.
The newly found path is parallel to the existing pathes, since
all existing paths are removed before BFS. When BFS can-
not find a path, we know that the number of parallel paths
must be smaller than k + 1.

BFS is very fast for a BCube network that has thousands
of servers. For a BCube network with n = 8 and k = 3, the
execution time of BFS is less than 1 millisecond in the worst
case (using a 2.33GHZ Intel dualcore CPU).

When an intermediate server receives a probe packet, if its
next hop is not available, it returns a path failure message
(which includes the failed link) to the source. Otherwise, it
updates the available bandwidth field of the probe packet
if its available bandwidth is smaller than the existing value.
Its available bandwidth is the minimum available bandwidth
of its incoming and outgoing links. We need to do this be-

68

cause two adjacent servers A and B in BCube are indirectly
connected via a switch S. Hence the available bandwidth of
A’s output link is not necessarily equal to that of B’s input
link.

When a destination server receives a probe packet, it first
updates the available bandwidth field of the probe packet
if the available bandwidth of the incoming link is smaller
than the value carried in the probe packet. It then sends
the value back to the source in a probe response message.

All the servers maintain a failed link database by over-
hearing the path failure messages. Links are removed from
the database by timeout or by a successful probe response
that contains that link. This database is used in the path
selection procedure as we have described.

4.3 Path Adaptation
During the lifetime of a flow, its path may break due to

various failures and the network condition may change sig-
nificantly as well. The source periodically (say, every 10
seconds) performs path selection to adapt to network fail-
ures and dynamic network conditions.

When an intermediate server finds that the next hop of
a packet is not available, it sends a path failure message
back to the source. As long as there are paths available,
the source does not probe the network immediately when
the message is received. Instead, it switches the flow to one
of the available paths obtained from the previous probing.
When the probing timer expires, the source will perform
another round path selection and try its best to maintain k+
1 parallel paths. This design simplifies the implementation
by avoiding packets buffering.

When multiple flows between two servers arrive simultane-
ously, they may select the same path. To make things worse,
after the path selection timers expire, they will probe the
network and switch to another path simultaneously. This
results in path oscillation. We mitigate this symptom by
injecting randomness into the timeout value of the path se-
lection timers. The timeout value is a constant plus a small
random value. Our experiment in Section 7.5 showed that
this mechanism can efficiently avoid path oscillation.

5. OTHER DESIGN ISSUES

5.1 Partial BCube
In some cases, it may be difficult or unnecessary to build

a complete BCube structure. For example, when n = 8 and
k = 3, we have 4096 servers in a BCube3. However, due to
space constraint, we may only be able to pack 2048 servers.

A simple way to build a partial BCubek is to first build
the BCubek−1s and then use a partial layer-k switches to
interconnect the BCubek−1s. Using Fig. 1(b) as an exam-
ple, when we build a partial BCube1 with 8 servers, we first
build two BCube0s that contain servers 00-03 and 10-13,
we then add two switches < 1, 0 > and < 1, 1 > to con-
nect the two BCube0s. The problem faced by this approach
is that BCubeRouting does not work well for some server
pairs. For example, BCubeRouting will not be able to find
a path between servers 02 and 13 no matter which routing
permutation is used, because 02 and 13 are connected to
non-existing layer-1 switches. Of course, we still can estab-
lish paths between 02 and 13 by enlarging the path length.
For example, 02 can reach 13 via path {02, 00, 10, 13}. But
this approach reduces network capacity.

The root cause for why server 02 cannot reach server 13
is that we do not have switches < 1, 2 > and < 1, 3 >.
Hence, our solution to partial BCube construction is as fol-
lows. When building a partial BCubek, we first build the
needed BCubek−1s, we then connect the BCubek−1s using a
full layer-k switches. With a full layer-k switches, BCubeR-
outing performs just as in a complete BCube, and BSR just
works as before.

An apparent disadvantage of using a full layer-k switches
is that switches in layer-k are not fully utilized. We pre-
fer this solution because it makes routing the same for par-
tial and complete BCubes, and most importantly, the mini-
switches are cheap and affordable. In this paper, we choose
n = 8 and k = 3 and use these parameters to build a partial
BCube with 2048 servers. n = 8 implies that we only need
cheap COTS mini-switches. k = 3 means that each server
has 4 ports, which provides significant speedups for one-to-x
and enough fault-tolerance and load-balance.

5.2 Packaging and Wiring
We show how packaging and wiring can be addressed for

a container with 2048 servers and 1280 8-port switches (a
partial BCube with n = 8 and k = 3). The interior size of a
40-feet container is 12m×2.35m×2.38m. In the container,
we deploy 32 racks in two columns, with each column has
16 racks. Each rack accommodates 44 rack units (or 1.96m
high). We use 32 rack units to host 64 servers as the current
practice can pack two servers into one unit [23], and 10 rack
units to host 40 8-port switches. The 8-port switches are
small enough, and we can easily put 4 into one rack unit.
Altogether, we use 42 rack units and have 2 unused units.

As for wiring, the Gigabit Ethernet copper wires can be
100 meters long, which is much longer than the perimeter
of a 40-feet container. And there is enough space to ac-
commodate these wires. We use 64 servers within a rack
to form a BCube1 and 16 8-port switches within the rack
to interconnect them. The wires of the BCube1 are inside
the rack and do not go out. The inter-rack wires are layer-2
and layer-3 wires and we pace them on the top of the racks.
We divide the 32 racks into four super-racks. A super-rack
forms a BCube2 and there are two super-racks in each col-
umn. We evenly distribute the layer-2 and layer-3 switches
into all the racks, so that there are 8 layer-2 and 16 layer-3
switches within every rack. The level-2 wires are within a
super-rack and level-3 wires are between super-racks. Our
calculation shows that the maximum number of level-2 and
level-3 wires along a rack column is 768 (256 and 512 for
level-2 and level-3, respectively). The diameter of an Ether-
net wire is 0.54cm. The maximum space needed is approx-
imate 176cm2 < (20cm)2. Since the available height from
the top of the rack to the ceil is 42cm, there is enough space
for all the wires.

5.3 Routing to External Networks
So far, we focus on how to route packets inside a BCube

network. Internal servers need to communicate with exter-
nal computers in the Internet or other containers. Since we
have thousands of servers in an MDC, the total throughput
to or from external network may be high. We assume that
both internal and external computers use TCP/IP.

We propose aggregator and gateway for external communi-
cation. An aggregator is simply a commodity layer-2 switch
with 10G uplinks. We can use a 48X1G+1X10G aggregator

69

0 5 10 15 20
0

500

1000

1500

2000

2500

Server failure ratio (%)

A
gg

re
ga

te
 b

ot
tle

ne
ck

 th
ro

ug
hp

ut
 (

G
b/

s)

BCube
Fat−tree
DCell

(a)

0 5 10 15 20
0

500

1000

1500

2000

2500

Switch failure ratio (%)

A
gg

re
ga

te
 b

ot
tle

ne
ck

 th
ro

ug
hp

ut
 (

G
b/

s)

BCube
Fat−tree
DCell

(b)

Figure 8: The aggregate bottleneck throughput of
BCube, fat-tree, and DCell under switch and server
failures.

to replace several mini-switches and use the 10G link to con-
nect to the external network. The servers that connect to
the aggregator become gateways. When an internal server
sends a packet to an external IP address, it will choose one of
the gateways. The external IP to gateway mapping can be
manually configured or dynamically adjusted based on net-
work condition. The packet is then routed to the gateway
using BSR. After the gateway receives the packet, it strips
the BCube protocol header (which will be explained in Sec-
tion 7.1) and forwards the packet to the external network
via the 10G uplink. The paths from external computers to
internal servers can be constructed similarly.

We can add more aggregators to handle large traffic vol-
ume and introduce load-balancing mechanisms to evenly dis-
tribute the traffic among the gateways. These are topics for
our future work.

6. GRACEFUL DEGRADATION
In this section, we use simulations to compare the aggre-

gate bottleneck throughput (ABT) of BCube, fat-tree [1],
and DCell [9], under random server and switch failures.
Recall that ABT is the throughput of the bottleneck flow
times the number of total flows in the all-to-all traffic model
(Section 3.6). ABT reflects the all-to-all network capacity.
We show that only BCube provides high ABT and graceful
degradation among the three structures. Graceful degrada-
tion states that when server or switch failure increases, ABT

reduces slowly and there are no dramatic performance falls.
We assume all the links are 1Gb/s and there are 2048 servers.
This setup matches a typical shipping-container data center.

For all the three structures, we use 8-port switches to con-
struct the network structures. The BCube network we use
is a partial BCube3 with n = 8 that uses 4 full BCube2.
The fat-tree structure has five layers of switches, with layers
0 to 3 having 512 switches per-layer and layer-4 having 256
switches. The DCell structure is a partial DCell2 which con-
tains 28 full DCell1 and one partial DCell1 with 32 servers.
We use BSR routing for BCube and DFR [9] for DCell. For
fat-tree, we use the routing algorithm described in [1] when
there is no failure and we randomly re-distribute a flow to
an available path when the primary path fails. The results
are plotted in Figures 8(a) and (b) for server and switch
failures, respectively.

The results show that when there is no failure, both BCube
and fat-tree provide high ABT values, 2006Gb/s for BCube
and 1895Gb/s for fat-tree. BCube is slightly better than fat-

tree because the ABT of BCube is n(N−1)
n−1

, which is slightly
higher than that of fat-tree, N . But DCell only provides
298Gb/s ABT. This result is due to several reasons. First,
the traffic is imbalanced at different levels of links in DCell.
Low-level links always carry much more flows than high-level
links. In our simulation, the maximum numbers of flows in
the level-0 - level-2 links are 14047, 9280, and 5184, respec-
tively. Second, partial DCell makes the traffic imbalanced
even for links at the same level. In our simulation, the max-
imum and minimum numbers of flows in the level-0 links
are 14047 and 2095, respectively. This huge difference is
because there are level-0 links that seldom carry traffic for
other servers in a partial DCell.

Fat-tree performs well under server failures but its ABT
drops dramatically when switch failure increases (e.g., 1145Gb/s
at 2% switch failure and 704Gb/s at 6% switch failure). Our
analysis revealed that the dramatic drop is caused by low-
level switch failures. In fat-tree, switches at different layers
have different impact on routing performance. When a level-
1 switch fails, an affected server has only n

2
− 1 choices to

re-route, whereas it has (n
2
)2 − 1 to re-route for a level-2

switch failure. Hence the failures of low-level switches make
the traffic imbalanced in fat-tree and degrade the perfor-
mance dramatically.

BCube performs well under both server and switch fail-
ures. Compared with fat-tree, switches at different layers
are equal in BCube (recall that the multi-paths we build
in Section 3.3 use switches at different levels equally). In
BCube, live servers always have 4 live links under the server
failure model whereas some live servers may have less than
4 live links under switch failures. This difference results less
balanced traffic and therefore smaller ABT under the switch
failure model. But the degradation is graceful. The ABT
value is 765Gb/s even when the switch failure ratio reaches
20% (as a comparison, it is only 267Gb/s for fat-tree).

7. IMPLEMENTATION AND EVALUATION

7.1 Implementation Architecture
We have prototyped the BCube architecture by design-

ing and implementing a BCube protocol stack. We have
implemented the stack as a kernel driver in the Windows
Servers 2003 and 2008. The BCube stack locates between

70

the TCP/IP protocol driver and the Ethernet NDIS (Net-
work Driver Interface Specification) driver. The BCube
driver is located at 2.5 layer: to the TCP/IP driver, it is
a NDIS driver; to the real Ethernet driver, it is a protocol
driver. TCP/IP applications therefore are compatible with
BCube since they see only TCP/IP.

The BCube stack has the following key components: the
BSR protocol for routing, the neighbor maintenance proto-
col which maintains a neighbor status table, the packet send-
ing/receiving part which interacts with the TCP/IP stack,
and the packet forwarding engine which relays packets for
other servers.

The BCube packet header is similar to that of DCell [9].
Each packet includes a BCube header between the Ethernet
header and IP header. The header contains typical fields
including source and destination BCube addresses, packet
id, protocol type, payload length, and header checksum. We
use a 32-bit integer for server address. Similar to DCell, we
also maintain a fixed, one-to-one mapping between an IP
address and a BCube address.

Different from DCell, BCube stores the complete path and
a next hop index (NHI) in the header of every BCube packet.
If we directly use the 32-bit addresses, we need many bytes
to store the complete path. For example, we need 32 bytes
when the maximum path length is 8. In this paper, we
leverage the fact that neighboring servers in BCube differ
in only one digit in their address arrays to reduce the space
needed for an intermediate server, from four bytes to only
one byte. We call this byte NHA. NHA is divided into two
parts: DP and DV. DP indicates which digit of the next
hop is different from the current relay server, and DV is the
value of that digit. In our current implementation, DP has
2 bits and DV has 6 bits, the path (NHA array) has 8 bytes,
and the BCube header length is 36 bytes.

7.2 Packet Forwarding Engine
We have designed an efficient packet forwarding engine

which decides the next hop of a packet by only one ta-
ble lookup. The forwarding engine has two components:
a neighbor status table and a packet forwarding procedure.
The neighbor status table is maintained by the neighbor
maintenance protocol. Every entry in the table corresponds
to a neighbor and has three fields: NeighborMAC, OutPort,
and StatusFlag. NeighborMAC is the MAC address of that
neighbor, which is learnt from neighbor maintenance proto-
col; OutPort indicates the port that connects to the neigh-
bor; and StatusFlag indicates if the neighbor is available.

Every entry of the neighbor status table is indexed by
the neighbor’s NHA value. The number of entries is 256
since NHA is one byte. The number of valid entries is (k +
1)(n − 1), which is the number of neighbors a server has.
One entry needs 8 bytes and the entire table only needs
2KB memory. The table is almost static. For each entry,
OutPort never changes, NeighborMAC changes only when
the neighboring NIC is replaced, and StatusFlag changes
only when the neighbor’s status changes.

When an intermediate server receives a packet, it gets the
next hop NHA from the packet header. It then extracts the
status and the MAC address of the next hop, using the NHA
value as the index. If the next hop is alive, it updates the
MAC addresses, NHI and header checksum of the BCube
header, and forwards the packet to the identified output
port. The forwarding procedure only needs one table lookup.

We have implemented the forwarding engine in both hard-
ware and software. Our hardware implementation is based
on NetFPGA [21] and part of the implementation details is
given in [10]. Due to the simplicity of the forwarding engine
design, our NetFPGA implementation can forward packets
at the line speed and reduce the CPU forwarding overhead to
zero. We believe that hardware forwarding is more desirable
since it isolates the server system from packet forwarding.
But the the PCI interface of NetFPGA limits the sending
rate to only 160Mb/s. Hence we mainly use the software im-
plementation, which uses server CPU for packet forwarding,
in the rest experiments.

There are other BCube driver components (such as avail-
able bandwidth estimation and BCube broadcast), the BCube
configuration program, and the NetFPGA miniport driver.
The BCube driver contains 16k lines of C code, the NetF-
PGA miniport driver has 9k lines of C code, and the BCube
NetFPGA implementation contains 7k lines of Verilog (with
3.5k lines of Verilog for the forwarding engine).

7.3 Testbed
We have built a BCube testbed using 16 Dell Precision 490

servers and 8 8-port DLink DGS-1008D Gigabit Ethernet
mini-switches. Each server has one Intel 2.0GHz dualcore
CPU, 4GB DRAM, and 160GB disk, and installs one Intel
Pro/1000 PT quad-port Ethernet NIC. The OS we use is
Windows Server 2003.

In our experiments, there is no disk access. This is to
decouple the network performance from that of disk I/O.
We turn off the xon/xoff Ethernet flow control, since it has
unwanted interaction with TCP [9]. Next, we study the
CPU overhead when using CPU for packet forwarding. After
that, we show BCube’s support for various traffic patterns.

7.4 CPU Overhead for Packet Forwarding
In this experiment, we form part of a BCube3 with five

servers. The servers are 0000, 0001, 0010, 0100, 1000. We
set up four TCP connections 0001 → 0100, 0100 → 0001,
0010→1000, 1000→0010. All the connections send data as
fast as they can. Server 0000 needs to forward packets for all
the other four servers. We vary the MTU size of the NICs
and measure the forwarding throughput and CPU overhead
at server 0000.

Fig. 9 illustrates the result. The result shows that when
MTU is larger than 1KB, we can achieve 4Gb/s packet for-
warding, and when we increase the MTU size, the CPU us-
age for packet forwarding decreases. When MTU is 1.5KB,
the CPU overhead is 36%. When MTU is 9KB, the CPU
overhead drops to only 7.6%. Our result clearly shows that
per-packet processing dominates the CPU cost.

The experiment demonstrates the efficiency of our soft-
ware forwarding. In the rest of our experiments, each server
forwards at most 2Gb/s and MTU is set to be 9KB. Hence
packet forwarding will not be the bottleneck. Again, the
software implementation is to demonstrate that BCube ac-
celerates representative bandwidth-intensive applications. Ide-
ally, packet forwarding needs to be offloaded to hardware, to
reserve server resources (e.g., CPU, memory I/O, PCI/PCI-
E bus I/O) for other computing tasks.

7.5 Bandwidth-intensive Application Support
We use 16 servers to form a BCube1. This BCube1 has 4

BCube0s. Each BCube0 in turn has 4 servers. Our testbed

71

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
or

w
ar

di
ng

 T
hr

ou
gh

pu
t (

G
b/

s)

C
P

U
 U

sa
ge

 (
%

)

MTU (byte)

Forwarding Throughput
CPU Usage

Figure 9: The packet forwarding throughput and
CPU overhead with different MTU sizes.

uses two ports of each NIC and four ports of each mini-
switch. Fig. 1(b) illustrates the topology. We perform ex-
periments to demonstrate BCube’s support for one-to-one,
one-to-several, one-to-all, and all-to-all traffic patterns. In
all our experiments, we set MTU to 9KB. In the one-to-x
experiments, the source server sends 10GB data to the rest
servers. In the all-to-all experiment, each server sends a to-
tal 10GB data to all the other servers. We compare BCube
with a two-level tree. In the tree structure, 16 servers are di-
vided into 4 groups and servers in each group are connected
to a first-level mini-switch. The first-level switches are con-
nected to a second-level mini-switch. Fig. 10 summarizes the
per-server throughput of the experiments. Compared with
the tree structure, BCube achieves near 2 times speedup for
the one-to-x traffic and 3 times higher throughput for the
all-to-all traffic.

One-to-one. We set up two TCP connections C1 and
C2 between servers 00 and 13. The two connections use
two parallel paths, P1 {00, 10, 13} for C1 and P2 {00, 03,
13} for C2, respectively. The total inter-server throughput
is 1.93Gb/s. The total throughput is 0.99Gb/s in the tree
structure, due to the fact that the two connections need to
share the single network port.

In this experiment, we also study how BSR reacts to fail-
ures. For example, when we shut down server 03, server 00
discovers that server 03 is not available using its neighbor
maintenance protocol (in three seconds). Then server 00
switches C2 to P1, which is the available path cached for
C2 during the previous probing. At next BSR probing, C2
finds a new path P3 {00, 02, 22, 23, 13} and switches to it.
The total throughput becomes 1.9Gb/s again.

One-to-several. In this experiment, we show that the
complete graph can speedup data replication. Server A (00)
replicates 10GB data to two servers B (01) and C (10). In
our complete graph approach, A splits the data into two
parts and sends them to both B and C, respectively. B
and C then exchange their data with each other. We com-
pare our approach with the pipeline approach using the tree
structure. In the pipeline approach, A sends the data to B,
and B sends the data to C. We need 89 seconds using the
pipeline approach and only 47.9 seconds using our complete
graph. This is 1.9 times speedup.

One-to-all. In this experiment, the server 00 distributes
10GB data to all the other 15 servers. We compare two
methods. The first is the pipeline approach using the tree
structure in which server i relays data to i + 1 (i ∈ [0, 14]).
The second is our edge-disjoint spanning tree-based approach

 0

 0.5

 1

 1.5

 2

 2.5

One-to-one One-to-several One-to-all All-to-all

T
hr

ou
gh

pu
t (

G
b/

s)

BCube
Tree

Figure 10: Per-server throughput of the bandwidth-
intensive application support experiments under dif-
ferent traffic patterns.

which we depict in Fig. 6. We measure the average through-
put. In the pipeline approach, we get approximate 880Mb/s
throughput, whereas we can achieve 1.6Gb/s throughput us-
ing our spanning tree approach.

All-to-all. In the experiment, each server establishes a
TCP connection to all other 15 servers. Each server sends
10GB data and therefore each TCP connection sends 683MB.
This is to emulate the reduce-phase operations in MapRe-
duce. In the reduce phase, each Reduce worker fetches data
from all other workers, resulting in an all-to-all traffic pat-
tern. This experiment is similar to that presented in Section
7.3 of [9]. Fig. 11 plots the total throughput of BCube and
the tree structure.

The data transfer completes at times 114 and 332 sec-
onds for BCube and the tree, respectively. The per-server
throughput values of BCube and the tree are 750Mb/s and
260Mb/s, respectively. BCube is about 3 times faster than
the tree. The initial high throughput of the tree is due to
the TCP connections among the servers connecting to the
same mini-switches. After these connections terminate at
around 39 seconds, all the remaining connections have to
go through the root switch. The total throughput decreases
significantly. There are no such bottleneck links in BCube.
Compared with the result in DCell, the per-server through-
put of a DCell1 with 20 servers is 360Mb/s (Section 7.3 of
[9]), which is less than 50% of BCube.

We further observe that the traffic be evenly distributed
in all the 32 links in BCube. The average throughput per-
link is 626Mb/s, with a standard deviation of 23Mb/s. (The
sending/receving throughput per-server is 750Mb/s and the
forwarding throughput per-server is 500Mb/s, hence the av-
erage throughput per-link is 626Mb/s by spitting the send-
ing/receving and forwarding throughput into two links.) This
shows that BSR does a fine job in balancing traffic. We have
counted the number of path probings and path switchings.
On average, every TCP connection probed the network 9.5
times and switched its path 2.1 times, and every probe com-
pleted in 13.3ms. The result shows that BSR is both robust
and efficient.

8. RELATED WORK
Though network interconnections have been studied for

decades [11, 18], to the best of our knowledge, none of the
previous structures meets the MDC requirements and the
physical constraint that servers can only have a small num-
ber of network ports. Switch-oriented structures (where
servers connect to a switching fabric), such as tree, Clos
network, Butterfly, and fat-tree [1, 19], cannot support one-
to-x traffic well and cannot directly use existing Ethernet
switches. Existing server-centric structures (where servers
directly connect to other servers) either cannot provide high
network capacity (e.g., 2-D and 3-D meshes, Torus, Ring)

72

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

G
b/

s)

Time (second)

BCube

Tree

Figure 11: Total TCP throughput under BCube and
tree in the all-to-all communication model.

Tree Fat-tree DCell+ BCube
One-to-one 1 1 k′ + 1 k + 1
One-to-several 1 1 k′ + 1 k + 1
One-to-all 1 1 ≤ k′ + 1 k + 1

All-to-all(ABT) n N N

2k′
n(N−1)

n−1

Traffic balance No Yes No Yes
Graceful bad fair good good
degradation

Wire No.
n(N−1)

n−1
N log n

2

N
2

(k′
2

+1)N N lognN

Switch upgrade No Yes No No

+A level-2 (k′ = 2) DCell with n = 8 is enough for shipping-

container. Hence k′ is smaller than k.

Table 1: Performance comparison of BCube and
other typical network structures.

or use a large number of server ports and wires (e.g., Hy-
percube and de Bruijn).

In recent years, several data center network structures
have been proposed [1, 7, 8, 9]. Table 1 compares BCube
and other three typical structures: tree, fat-tree [1, 7], and
DCell [9]. In the table, n is the number of switch ports
and N is the number of servers. For one-to-x, we show the
speedup as compared with the tree structure. For all-to-all,
we show the aggregate bottleneck throughput.

As we show in Table 1, BCube provides much better sup-
port for one-to-x traffic than both tree and fat-tree. Tree
provides the lowest aggregate bottleneck throughput since
the throughput is only the capacity of the root switch. For
the same n and N , the layer of switches needed by fat-tree
is log n

2

N
2

, which is larger than that of BCube, lognN . Hence

the path length and the number of wires in fat-tree are
larger than those of BCube. Moreover, fat-tree does not
degrade gracefully as switch failure increases (see Section 6)
and it needs switch upgrade to support advanced routing
and packet forwarding functionalities.

BCube is also better than DCell[9] for MDCs. DCell
builds complete graphs at each level, resulting doubly ex-
ponential growth. As a result, DCell targets for Mega data
centers. The traffic in DCell is imbalanced: the level-0
links carry much higher traffic than the other links. As
a result, the aggregate bottleneck throughput of DCell is
much smaller than that of BCube (see Section 6). Further-
more, though DCell has multiple parallel paths between two

Cost(k$) Power(kw) wires
switch NIC total switch NIC total No.

Tree 55 10 4161 4.4 10 424 2091
Fat-tree 92 10 4198 10 10 430 10240
DCell 10 41 4147 1.2 20 431 3468
BCube 51 41 4188 5.8 20 435 8192

Table 2: Cost, power, and wiring comparison of dif-
ferent structures for a container with 2048 servers.
The total cost is the sum of the costs of the switches,
NICs, and servers.

servers, the paths are of different lengths. This makes one-
to-x speedup in DCell difficult to achieve. Of course, the
benefits of BCube are not offered for free: BCube uses more
mini-switches and wires than DCell. But mini-switches are
affordable and wiring is a solvable issue for a container-based
data center, as we have addressed in Section 5.

VL2 [8] extends the fat-tree structure by using 10G Eth-
ernet to form its switching backbone. BCube and VL2
share several similar design principles such as providing high
capacity between all servers and embracing end-systems.
BCube uses only low-end switches and provides better one-
to-x support at the cost of multi-ports per-server. VL2 is
able to decouple IP address and server location by introduc-
ing a directory service. VL2 uses randomization whereas
BCube uses active probing for load-balancing.

Table 2 presents construction cost, power consumption,
and wire numbers of the four structures for a container with
2048 servers. We list the costs and power consumptions of
switches, NICs, and the total numbers (which are the sums
of those of switches, NICs, and servers). Each server costs
$2000 and needs 200W power supply. For Tree, we use 44
48-port DLink DGS-3100-48 (which is the cheapest 48 port
switch we can find) to form a two-level switch fabric. For
other structures, we use 8-port DLink DGS-1008D switches.
DCell, BCube, and fat-tree use 256, 1280, and 2304 switches,
respectively. DCell and BCube need a 4-port NIC for each
server, whereas Tree and fat-tree only use one-port NIC. A
DGS-3100-48 costs $1250 and needs 103W. A DGS-1008D
costs $40 and needs 4.5W. A one-port NIC and 4-port NIC
cost $5 [15] and $20, and need 5W and 10W [22], respec-
tively. Table 2 shows that the networking cost is only a small
fraction of the total cost. This result is consistent with that
in [14]. The construction and power costs of BCube and
fat-tree are similar, but BCube uses a smaller number of
wires than fat-tree. The performance and cost study clearly
show that BCube is more viable for shipping-container data
centers.

9. CONCLUSION
We have presented the design and implementation of BCube

as a novel network architecture for shipping-container-based
modular data centers (MDC). By installing a small num-
ber of network ports at each server and using COTS mini-
switches as crossbars, and putting routing intelligence at
the server side, BCube forms a server-centric architecture.
We have shown that BCube significantly accelerates one-
to-x traffic patterns and provides high network capacity for
all-to-all traffic. The BSR routing protocol further enables
graceful performance degradation and meets the special re-
quirements of MDCs.

73

The design principle of BCube is to explore the server-
centric approach to MDC networking in both topology de-
sign and routing, thus providing an alternative to the switch-
oriented designs. In our future work, we will study how to
scale our server-centric design from the single container to
multiple containers.

10. ACKNOWLEDGEMENT
We thank Danfeng Zhang for his work on the NetFPGA

Windows driver, Byungchul Park for helping us perform part
of the one-to-several experiment, Lidong Zhou for generously
granting us exclusive access to the testbed servers, Zhanmin
Liu, Wei Shen, Yaohui Xu, and Mao Yang for helping us
build the testbed. We thank Victor Bahl, Albert Green-
berg, James Hamilton, Frans Kaashoek, Jim Larus, Mark
Shaw, Chuck Thacker, Kushagra Vaid, Geoff Voelker, Zheng
Zhang, Lidong Zhou, the anonymous SIGCOMM reviewers,
and the members of the Wireless and Networking Group of
Microsoft Research Asia for their feedback and comments.

11. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[2] L. Barroso, J. Dean, and U. Hölzle. Web Search for a
Planet: The Google Cluster Architecture. IEEE Micro,
March-April 2003.

[3] L. Bhuyan and D. Agrawal. Generalized Hypercube and
Hyperbus Structures for a Computer Network. IEEE trans.
Computers, April 1984.

[4] D. Borthakur. The Hadoop Distributed File System:
Architecture and Design. http://hadoop.apache.org/
core/docs/current/hdfs design.pdf.

[5] CloudStore. Higher Performance Scalable Storage.
http://kosmosfs.sourceforge.net/.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[7] A. Greenberg et al. Towards a Next Generation Data
Center Architecture: Scalability and Commoditization. In
SIGCOMM PRESTO Workshop, 2008.

[8] A. Greenberg et al. VL2: A Scalable and Flexible Data
Center Network. In SIGCOMM, Aug 2009.

[9] C. Guo et al. DCell: A Scalable and Fault Tolerant
Network Structure for Data Centers. In SIGCOMM, 2008.

[10] G. Lu et al. CAFE: A Configurable pAcket Forwarding
Engine for Data Center Networks. In SIGCOMM PRESTO
Workshop, Aug 2009.

[11] J. Duato et al. Interconnection Networks: An Engineering
Approach. Morgan Kaufmann, 2003.

[12] S. Ghemawat, H. Gobioff, and S. Leung. The Google File
System. In SOSP, 2003.

[13] J. Hamilton. An Architecture for Modular Data Centers. In
3rd CIDR, Jan 2007.

[14] J. Hamilton. Cooperative Expandable Micro-Slice Servers
(CEMS). In 4th CIDR, Jan 2009.

[15] J. Hamilton. Private communication, 2009.
[16] IBM. Scalable Modular Data Center.

http://www-935.ibm.com/services/us/its/pdf/smdc-eb-
sfe03001-usen-00-022708.pdf.

[17] M. Isard, M. Budiu, and Y. Yu. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. In
EuroSys, 2007.

[18] F. Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays. Trees. Hypercubes. Morgan
Kaufmann, 1992.

[19] C. Leiserson. Fat-trees: Universal networks for
hardware-efficient supercomputing. IEEE Trans.
Computers, 34(10), 1985.

[20] J. Moy. OSPF: Anatomy of an Internet Routing Protocol.
Addison-Wesley, 2000.

[21] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: Reusable Router Architecture for Experimental
Research. In SIGCOMM PRESTO Workshop, 2008.

[22] Silicom. Gigabit Ethnet Server Adapters.
http://www.silicom-usa.com/default.asp?contentID=711.

[23] Rackable Systems. ICE Cube Modular Data Center.
http://www.rackable.com/products/icecube.aspx.

[24] Verari Systems. The Verari FOREST Container Solution:
The Answer to Consolidation. http://www.verari.com/
forest spec.asp.

[25] M. Waldrop. Data Center in a Box. Scientific American,
July 2007.

APPENDIX
A. PROOF OF THEOREM 2

From permutation Π0 (Π1), we establish path P0 (P1)
by first correcting digits of A from position i0 (i1) to 0,
then from k to i0 + 1 (i1 + 1). We denote P0 and P1

as {A, N0
1 , N0

2 , · · ·N0
m, · · ·N0

k , B} and {A, N1
1 , N1

2 , · · ·N1
m,

· · ·N1
k , B}.

We show that the intermediate server N0
m (1 ≤ m ≤ k)

of P0 cannot appear in P1. First, N0
m cannot appear in P1

at different locations other than m, otherwise, we can reach
N0

m from two shortest pathes with different path lengthes,
which is impossible. Second, N0

m cannot appear in P1 at
position m, because P0 and P1 start by correcting different
digits of A. Therefore, N0

m cannot appear in P1. Similarly,
any intermediate server N1

m cannot appear in P0.
We next show that the switches in the paths are also

different. First, the switches in a single path are differ-
ent, this is because these switches are at different layers.
Then assume that switch S0 in P0 and switch S1 in P1 are
the same, and we denote it as < l, sk−1 · · · slsl−1 · · · s0 >.
Due to the fact that servers in P0 and P1 are different, we
have four servers in the two pathes that connected via this
switch. But the only two servers it connects in P0 and P1

are sk−1 · · · slalsl−1 · · · s0 and sk−1 · · · slblsl−1 · · · s0. The
contradiction shows that S0 and S1 cannot be the same.
Therefore, P0 and P1 are two parallel paths.

B. PROOF OF THEOREM 6
In order to get the aggregate bottleneck throughput, we

first calculate the average path length from one server to
the rest servers using BCubeRouting. For a server A, the
rest nk+1 − 1 servers in a BCubek can be classified into k
groups. Groupi contains the servers that are i hops away
from A. The number of servers in Groupi (i ∈ [1, k + 1]) is
Ci

k+1(n − 1)i. By averaging the path lengths of these dif-
ferent groups, we get the average path length is ave plen =

1
nk+1−1

∑k+1
i=1 {iCi

k+1(n− 1)i} = (n−1)N
n(N−1)

(k + 1).

Since links are equal in BCube, the number of flows car-

ried in one link is f num = N(N−1)ave plen
N(k+1)

, where N(N−1)

is the total number of flows and N(k + 1) is the total num-
ber of links. The throughput one flow receives is thus 1

f num
,

assuming that the bandwidth of a link is one. The aggre-
gate bottleneck throughput is therefore N(N − 1) 1

f num
=

n
n−1

(N − 1).

74

