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Abstract

The efficacy of zero-shot sketch-based image retrieval (ZS-SBIR) models is governed by two challenges. The immense
distributions-gap between the sketches and the images requires a proper domain alignment. Moreover, the fine-grained nature
of the task and the high intra-class variance of many categories necessitates a class-wise discriminative mapping among the sketch,
image, and the semantic spaces. Under this premise, we propose BDA-SketRet, a novel ZS-SBIR framework performing a bi-level
domain adaptation for aligning the spatial and semantic features of the visual data pairs progressively. In order to highlight the
shared features and reduce the effects of any sketch or image-specific artifacts, we propose a novel symmetric loss function based
on the notion of information bottleneck for aligning the semantic features while a cross-entropy-based adversarial loss is introduced
to align the spatial feature maps. Finally, our CNN-based model confirms the discriminativeness of the shared latent space through a
novel topology-preserving semantic projection network. Experimental results on the extended Sketchy, TU-Berlin, and QuickDraw
datasets exhibit sharp improvements over the literature.

Keywords: Sketch-based image retrieval, zero-shot learning, domain adaptation, generalized zero-shot learning, graph
convolution.

1. Introduction

Sketches are the most minimalistic representation of visual
data. With the advancement in sensor technology, a quick hand-
drawn sketch can be used as a query image to retrieve similar
category samples from the visual domain. This is especially
useful when there is a lack of available visual query sample at
hand, while it is only at the mind of the user at a vague pic-
ture (Xu et al., 2020a). In traditional sketch-based image re-
trieval (SBIR) (Eitz et al., 2010), the training and the test classes
are the same. However, this is unrealistic as the model may
encounter novel classes during inference in many on-the-fly re-
trieval applications. The zero-shot learning (ZSL) (Xian et al.,
2017, 2018; Romera-Paredes and Torr, 2015) aims to bridge
the gap between the non-overlapping sets of training classes
(seen) and test classes (unseen) using semantic side informa-
tion for visual recognition. To this end, attempts have been
made to integrate ZSL with SBIR to get the zero-shot sketch-
based image retrieval (ZS-SBIR) problem (Yelamarthi et al.,
2018), even without constraining the search space to contain
only the unseen classes at test time, e.g., generalized ZS-SBIR
(GZS-SBIR) (Dutta and Akata, 2020). This essentially requires
aligning the visual and semantic features (which is used for de-
scribing the class) in the embedding space. In this paper, we
aim to solve the (G)ZS-SBIR problem by looking into some of
the existing problems that are explained in the following sub-
sections and propose improved solutions to this end.
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Figure 1: Given a cluttered feature space for images and sketches, a sub-
optimal domain alignment fails to produce a discriminative latent space which
is affected by problems like hubness and negative transfer. Feature adaptation
at multiple feature scales together with a discriminative feature space learning
ensures that zero-shot testing can be performed well in BDA-SketRet.

1.1. Observations

A key challenge in solving ZS-SBIR is because of the fact
that sketches are usually drawn by various artists. ZS-SBIR
(Yelamarthi et al., 2018; Dutta and Akata, 2020) models need
to overcome a substantial within-category variance in addition
to the domain gap between sketches and images given their dis-
parity in spectral, spatial, and texture properties (Xian et al.,
2017, 2018; Romera-Paredes and Torr, 2015). Moreover, nat-
ural images have random background effects which are com-
pletely absent in the sketches. In this regard, the majority of
the existing ZS-SBIR approaches learn independent mappings
to align the visual domains either in a semantic space (Dutta
and Akata, 2019; Pandey et al., 2020) or in a semantics influ-
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enced latent space (Dey et al., 2019). In both cases, the rep-
resentations are extracted from the entire image / sketch data
while largely neglecting the complex distributions of different
local regions. This results in sub-optimal domain alignment as
not all the information is equally transferable. Another chal-
lenge is that the performance on the unseen classes in general-
ized (G)ZS-SBIR is often compromised since the model is bi-
ased towards the seen classes. A discriminative visual-semantic
mapping is generally preferred to alleviate this issue.

Further, images and sketches that are significantly dissimi-
lar across domains in the feature space should not be forcefully
aligned; otherwise, the model becomes vulnerable to the neg-
ative transfer of irrelevant knowledge. This dilemma can be
curtailed if the global feature extraction is guided by highly
domain-independent mid-level regional properties. The exist-
ing work in the ZS-SBIR literature that use domain adaptation
primarily tries to align the final features of the sketch and im-
ages (Dutta and Akata, 2019; Dey et al., 2019; Dutta et al.,
2020). This often leads to a sub-optimal domain alignment
due to variations in the sketch domain. These methods are
non-trivial to use in the ZS-SBIR setup given the disjoint na-
ture of the training and test classes. As the quality of the spa-
tial feature maps obtained from the intermediate layers affects
global image-level features extracted from deeper layers in a
CNN, it becomes hard to forcefully align the global features
without ensuring equivalence of the preceding feature maps.
Apparently, the feature maps look substantially different for
the sketch and the image modalities considering several issues
like the variations in the sketch drawings and background ef-
fects in case of images. We argue that the well-aligned mid-
level feature maps would supplement the global feature adap-
tation process. Hence, we introduce a ZS-SBIR model called
BDA-SketRet which inculcates a rigorous multi-level modality
adaptation policy between sketches and images both at the mid
and high level feature embeddings to ensure a highly domain-
agnostic, discriminative, and task-specific representation learn-
ing. Fig. 1 illustrates in briefs the main idea behind the pro-
posed BDA-SketRet.

1.2. Our Approach
In BDA-SketRet, we propose to apply cross-modal visual

adaptation separately at the local and global levels. The local
adaptation is essential as the mid-level feature maps are very
dissimilar between the domains and hence making them indis-
tinguishable at this level is challenging. The major problem in
aligning the feature maps arises from the vagueness of the de-
cision boundary between the domains. Hence, we propose an
cross-entropy based loss measure where the ground truth prob-
ability is selected to have high entropy. In the global adapta-
tion, we aim to make the high-level feature embeddings more
discriminative and devoid of any irrelevant domain-specific in-
formation which may hamper the alignment. For this, we intro-
duce a novel metric learning based information theoretic align-
ment loss based on symmetric KL divergence. Finally, since
the sketch and image modalities are vastly different, we include
two cross-modal mid-to-high level feature reconstruction mod-
ules which further boosts the domain invariance of the back-

bone networks. This is different from the traditional cross-
reconstruction of the high-level features typically followed in
the multi-modal learning tasks. On the other hand, we propose
a semantic projection network for the class prototypes which
preserves the neighborhood topology of the original semantic
space into the embedding space. Generally, the ZSL models
are biased towards to training classes which may partially be
solved with neighborhood preservation. In order to accomplish
the same, we introduce a network consisting of MLP and graph
CNN (GCN).

Our major contributions are as follows: i) We introduce
BDA-SketRet, a discriminative multi-level domain adaptation
framework for solving ZS-SBIR and GZS-SBIR. ii) We show-
case the effectiveness of aligning both the domains in two dif-
ferent feature levels (mid and high level) and propose a novel
strategy for the same. A novel symmetric KL divergence based
formulation is introduced for information bottleneck loss to be
used for semantic feature alignment as opposed to the tradi-
tional asymmetric KL based VIB loss measure (Tishby and Za-
slavsky, 2015). iii) An intuitive neighborhood-preserving se-
mantic projection module is proposed which is seen to reduce
the model bias towards the seen classes specifically for GZS-
SBIR. iv) We conduct extensive experiments on the extended
Sketchy, TU-Berlin, and QuickDraw datasets and rigorously
ablate the model. The efficacy of the proposed model is ver-
ified experimentally as the proposed network beats the existing
state-of-the-art models by a margin of ≈ 3 - 4% in all the eval-
uation metrices.

2. Related Works

In this section, we review prior related works on ZS-SBIR,
semantic projection and GCN that are related to ours. We also
show how is our work different from the existing state-of-the-
art models.

2.1. State-of-the-Art ZS-SBIR Algorithms

Prior to solving ZS-SBIR tasks, the simple SBIR problem re-
ceived a lot of attention (Lei et al., 2019). As already stated,
the major obstacle in solving the SBIR task stems from the
fact that the distributions difference between sketch and im-
age data is exceedingly large. Early works in this area include
conventional pattern recognition methods for retrieval by engi-
neering hand-crafted visual features (Hu and Collomosse, 2013;
Saavedra, 2014). The proposition behind such approaches is to
solve the task at hand by obtaining the edge-map of the natural
images and to further match them with sketches arising from
the same categories. As expected, the low-level SIFT (Lowe,
1999), SURF (Bay et al., 2006), or HoG (Dalal and Triggs,
2005) based descriptors are unable to properly encode the re-
gional variations of the sketch data, resulting in an inferior
cross-modal matching. The performance measures of deep
CNN based SBIR models have witnessed a massive enhance-
ment lately, thanks to the data-driven feature learning capabil-
ities of CNN. Since the retrieval performance benefits from a
discriminative feature space, several endeavors rely on distance
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metric learning strategies like contrastive-loss (Chopra et al.,
2005), triplet-loss (Sangkloy et al., 2016), and HOLEF-based
loss (Song et al., 2017), to name a few. (Bui et al., 2017) pro-
posed an efficient representation for sketch and image features
using triplet loss, while on the other hand (Federici et al., 2020)
provides an information-theoretic approach. Likewise, (Song
et al., 2017; Qi et al., 2016; Yu et al., 2017; Sangkloy et al.,
2016; Wang et al., 2015; Liu et al., 2017; Zhang et al., 2018)
aims to solve a similar task.

The ZS-SBIR literature consists of both the discriminative
and generative deep learning based techniques. Under the gen-
erative umbrella, (Shen et al., 2018) proposes a hashing network
for the semantic knowledge reconstruction (ZSIH). Similarly,
(Yelamarthi et al., 2018) introduces a conditional generative
model for ZS-SBIR based on variational learning. The stacked
auto-encoder (SAN) method (Pandey et al., 2020) deploys a
generative framework based on stacked-adversarial networks
within a Siamese architecture. The paired cyclic consistency
loss proposed in SEM-PCYC (Dutta and Akata, 2019, 2020)
helps in aligning the sketches and images in an encoded seman-
tic space using adversarial training. Inspired by style transfer,
(Dutta and Biswas, 2019; Dutta et al., 2020) develops a style-
guided image to image translation model for ZS-SBIR, while
(Dey et al., 2019) uses a triplet-based network to solve the task
at hand. (Dutta et al., 2020) highlights the implications of data
and class imbalance in ZS-SBIR and introduces an adaptive
margin diversity regularizer (AMD-reg) to combat the same.
As opposed to the real-valued feature embedding, hash-code
based representations are also considered in this regard which
offers a trade-off between performance and storage (Liu et al.,
2017). The generative models for cross-modal style transfer are
also explored (Dutta and Biswas, 2019) in this regard. While all
the techniques showcase their performance on ZS-SBIR, a few
works (Dutta and Akata, 2019, 2020; Pandey et al., 2020) also
demonstrate their experiments for the GZS-SBIR setting.

2.2. Semantic projection and GCN.
The semantic information has an important role to play for at-

taining an improved ZS-SBIR inference. Generally, the visual
modalities are aligned to a fixed semantic space. While (Dutta
and Akata, 2019) uses an encoded semantic space obtained via a
semantic auto-encoder, methods of (Dey et al., 2019; Dutta and
Biswas, 2019) reconstruct the original semantic vectors from
the visual information. Generating visual information from se-
mantic prototypes has been dealt with in this regard (Yelamarthi
et al., 2018). The graph CNN (Kipf and Welling, 2016) can en-
code the structural similarity among several objects and have
been successfully applied for vision tasks like ZSL, image cap-
tioning, and visual question answering (Kampffmeyer et al.,
2019; Yang et al., 2019; Narasimhan et al., 2018). The graph
CNN has been considered in ZS-SBIR recently (Zhang et al.,
2020) where the modality alignment takes place by restricting
the domain-specific graphs to be isomorphic.
How are we different? Contrary to the existing literature, we
choose to look into the ZS-SBIR problem mainly as a domain
adaptation task wherein we propose to do a multi-level adapta-
tion by tackling both spatial and semantic domain drifts. The

notion of multi-level domain adaptation is new in this regard, to
the best of our knowledge. From the theoretical point of view,
we define a new symmetric loss function for the information
bottleneck principle which is found to be well-suited for multi-
modal labeled data pairs, something that the existing asymmet-
ric divergence based functions fail to model. Finally, our se-
mantic projection network offers topology preservation within
minimal overhead and combats hubness effectively where all
the existing techniques overlook this aspect completely.

3. Problem definition and preliminaries

LetZs = {As,Bs,Cs,Ws} be a multi-modal training dataset
consisting of images As and sketches Bs obtained from the
|Cs| seen visual categories. Additionally, we have access to se-
mantic side informationWs which typically corresponds to the
distributed word-vector embeddings of the individual category
names. During inference, image and sketch dataZu = {Au,Bu}

from a non-overlapping set of previously unseen classes Cu are
considered (Cu ∩ Cs = ∅) in the zero shot SBIR setup. We
deal with the unpaired dataset setting in Zs where the num-
ber of sketch and image instances in As and Bs are different:
{as

i }
N
i=1 ∈ A

s and {bs
i }

M
i=1 ∈ B

s. The model is trained to re-
duce the distribution mismatch between As and Bs and subse-
quently to transfer the knowledge from Zs toZu with the help
of the semantic information Ws. The testing phase concerns
the retrieval of images with similar semantic categories from
Au given the sketch queries from Bu. In contrast to ZS-SBIR,
GZS-SBIR assumes the presence of images fromAs ∪Au dur-
ing testing for unseen-class sketch queries coming from Bu.

4. BDA-SketRet

The goal of BDA-SketRet is to align the images and sketches
from the same class in a semantically meaningful shared la-
tent space. It is composed of cross-modal triplets where the
sketch data from Bs serves as the anchor (α) while the positive
(p) and negative (n) counterparts are selected fromAs (Fig. 2).
The feature networks for As and Bs are defined by φ(·) and
ψ(·) which are convolutional neural networks with integrated at-
tention sub-networks φatt(·) and ψatt(·).The attention block out-
puts are simultaneously projected to the local adversarial do-
main classifier l(·) to highlight spatially indistinct features of
the same-class samples from As and Bs and to the shared la-
tent space. We further introduce two cross-modal feature re-
construction modules (Vα(·),Vp(·)) which aim to reconstruct
φ(p) from ψatt(α) and ψ(α) from φatt(p) through variational bot-
tlenecks. On the other hand, the outputs of φ(·) and ψ(·) need
to be synchronized for defining the shared embedding space. In
this regard, the global domain adaptation on φ(p/n) and ψ(α) is
carried out considering a combination of the domain classifier
f (·) and a multi-class category classifier h(·). A semantic sub-
network g(·, ·) comprising of an MLP g1(·) and a graph CNN
g2(·, ·) is used to non-linearly project the semantic vectors into
the shared space. The outputs of g1(·) and g2(·, ·) are concate-
nated and projected onto the latent space by another MLP g3(·).
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Figure 2: A depiction of our BDA-SketRet architecture.The images and sketches undergo a bi-level domain adaptation at the outputs of (φatt, ψatt) and (φ, ψ),
respectively. The important learning objectives: (i) domain losses, (ii) cross-modal multi-level reconstruction loss, and (iii) neighborhood preserving semantic
projection loss are shown and how they are evaluated in the network. In the semantic graph, thicker edges means more discriminativeness. In the semantic graph,
thicker edges means more discriminativeness. 0/1 represent the domain labels.

There are mainly three learning objectives that together train
BDA-SketRet, namely, (i) spatial and semantic domain losses
(ii) cross-modal multi-level reconstruction loss, and (iii) neigh-
borhood preserving semantic projection loss. They are detailed
in the following subsections.

4.1. Multi-level Sketch Image Alignment
The semantic adaptation works on the final features obtained

from the last dense layer (φ and ψ) of the backbone, while the
spatial adaptation is carried out on the mid-level feature maps
obtained from the final convolutional layer (φatt and ψatt).
(i) Semantic Adaptation. We aim to maximise the information
between the probability distributions Pα = P(ψ(α)|α) and Pp =

P(φ(p)|p), and minimise the information they share with Pn =

P(φ(n)|n). We employ a posterior distribution matching method
to generate a latent space in which α and p are as aligned as
possible, while α and n are sufficiently disjoint. We model the
probability distributions Pα, Pp, and Pn by appropriate normal
distributions.

We follow the deep variational information bottleneck frame-
work (Alemi et al., 2017; Federici et al., 2020) where the classi-
fication task is considered for data from both the visual modal-
ities with the combined cross-entropy loss as Lclass. The aim
is to maximise information between latent variables and out-
put space by minimising cross entropy loss between the distri-
butions, and minimises information between source and latent
variables by using the standard normal distribution as a varia-
tional approximation to their marginal. We restrain this latent
space to be a standard normal distribution. We minimize the
symmetric KL divergence between Pα and Pp is to reduce their
relative entropy. Apart from reducing the distance between Pα

and Pp, our framework also requires that Pα and Pn be dis-
joint in the feature space. For this, we define Lskl(Pα, Pp/n) as
1
2

(
DKL(Pα‖Pp/n)+DKL(Pp/n‖Pα)

)
. Hence, we introduce a novel

symmetric KL divergence triplet loss Lt-skl as,

Lt-skl = βmax{0,Lskl(Pα, Pp) − Lskl(Pα, Pn) + λ} (1)

Here β and λ are hyper-parameters which denote the weight
of SKL divergence and the margin respectively. By definition
of the loss function, our goal is to bring Pα and Pp closer while
maintaining a difference of at least λ from the distance between
Pα and Pn.

Along with Lt-skl, we also use instance-based triplet loss
Ltriplet here so that the cross-modal data become class-wise
dense clusters in the embedding space. They complement each
other in obtaining a dense feature space highlighting only the
domain-shared features while neglecting any artifact. While
Lt-skl maximizes the information between latent variables and
output space, Ltriplet makes the cross-modalities dense in the
embedding space. The cross-modal triplet loss aims to bring
the same class sample φ(p) from the image modality closer to
a given sketch anchor ψ(α) while pushing the negative image
sample φ(n) far from ψ(α) at least by a margin of µ as per Eq. 2
using the Euclidean distance metric D.

Ltriplet = min
φ,ψ

Eα∈Bs,p,n∈As [max{0, µ + D(ψ(α), φ(p))

−D(ψ(α), φ(n))}]
(2)

Therefore, the combined semantic adaptation loss is: L1 =

minφ,ψ,hLt-skl +Ltriplet +Lclass.
(ii) Spatial Adaptation encourages the learning of abstract lo-
cal spatial concepts common toAs and Bs. This is done by ad-
versarially adapting the spatially average-pooled feature-map
outputs of φatt(p) and ψatt(α). Most adversarial domain adap-
tation frameworks employ a binary domain classifier l(·). We
observed that sketches and images are extremely disparate in
terms of spatial and spectral properties. Therefore, it is fairly
unchallenging for a discriminator to learn distributions corre-
sponding to domains promptly, defeating the purpose of ad-
versarial training. The root of this problem is the hard deci-
sion boundaries we set for the domain classifier in the min-max
optimisation. We argue that the margin between the decision
boundaries is still substantially large for the generator to over-
come, given the inherently huge domain gap. Therefore, we

4



introduce a pseudo-decision boundary between spatial features
of α and p that helps the generator to surpass the margin.

This decision boundary introduces a certain degree of do-
main invariance before projecting them onto the latent space,
leading to stable training, i.e. l(x) = 0.5, if x ∈ As or x ∈ Bs.
In an adversarial setup, the generator competes with the dis-
criminator to increase P(x ∈ As) to be greater than 0.5 and
P(x ∈ Bs) to be less than 0.5. The decision boundary is sym-
metrical to both the domains in the feature space, rendering 0.5
as a good value for a pseudo decision boundary. So the local
domain adaptation is given as:

L2 = min
φatt,ψatt

max
l

Eα∈Bs,p∈As [0.5 log(1 − l(ψatt(α)))

+0.5 log l(φatt(p))]
(3)

(iii) Cross-modal multi-level reconstruction. Although L2
adapts the intermediate feature maps of As and Bs, it does not
guarantee that the feature maps of a given modality are aware
of the final latent feature distributions for the other modality.
In this regard, it is essential that the high-level feature distri-
butions Pα and Pp characterised by domain-independence do
not completely lose out class-related information about their
conjugate modality i.e. α and p. To better equip the feature
maps with the cross-modal information, we introduce the class-
wise cross-modal reconstruction loss using generative mod-
elling. Specifically, the cross-modal encoder-decoder modules
Vα = (Ve

α,V
d
α) and Vp = (Ve

p,V
d
p) reconstruct the latent

feature embedding of sketch anchor ψ(α) given the outcome
of φatt(p) and vice-versa. Both Ve

α and Ve
p are designed to

be stochastic encoders and their outputs follow the standard
normal distributions as per the principles of variational learn-
ing. Let DKL be the Kullback-Leibler divergence, referred to as
equation 4.

LKL(V, F, x) = DKL(q(V(F(x)))‖N(0, 1)) (4)

The cross-modal reconstruction loss is given as follows.

L1
rec =

∥∥∥Vp(φatt(p)) − ψ(α)
∥∥∥2 +LKL(Ve

p, φatt, p)

L2
rec = ‖Vα(ψatt(α)) − φ(p)‖2 +LKL(Ve

α, ψatt, α)

L3 = min
Vp,Vα,φ,ψ

Eα∈Bs,p∈As [L1
rec +L2

rec] (5)

The overall domain loss is given by equation 6.

Ldomain = L1 +L2 +L3 (6)

4.2. Neighborhood Preserving Semantic Projection Loss
The semantic side information is obtained by taking vari-

ous combinations of text-based and hierarchical word embed-
dings for the category names. For the distributed word-vector
models, we consider the pre-trained Word2Vec (Mikolov et al.,
2013) and fasttext (Bojanowski et al., 2017) while the Jiang-
Conrath (Jiang and Conrath, 1997) and path similarity are used
for the latter.

As aforementioned, the neighborhood information is
severely affected when the semantic prototypes are directly pro-
jected onto the latent space using non-linear dense layers, lim-
iting the overall performance. Hence, we desire to ensure the

latent space to mimic the neighborhood information of the orig-
inal semantic space, in addition to being discriminative. We
project the semantic prototypes Ws together with the topol-
ogy information of the original semantic space to the shared
latent space. The topology information, which is found to
bring in a regularization effect into the latent space is encap-
sulated in the weighted semantic adjacency matrix Γ|Cs |×|Cs | de-
fined by the pairwise cosine dissimilarity among the seman-
tic prototypes of the seen classes. Ideally, the outputs of
g1(Ws) and g2(Γ,Ws) are concatenated and subsequently pro-
jected onto the latent space by another MLP g3(·): g(Ws,Γ) =

g3([g1(Ws), g2(Γ,Ws)]) where [·, ·] defines the vector concate-
nation operation. The semantic reconstruction loss brings φ(p)
and ψ(α) closer to the projected class embedding g(w+,Γ) while
maximizing the divergence between φ(n) and g(w+,Γ). This
is accomplished through the graph regularized semantic loss
Lsemantic as follows,

Lsemantic = min
g,φ,ψ

Eα∈Bs,p,n∈As,w+∈Ws [S (ψ(α), g(w+,Γ), 1)

+S (φ(p), g(w+,Γ), 1) + S (φ(n), g(w+,Γ), 0)]

where the distance S between the vectors (x, y) is defined
in terms of the cosine distance for a given threshold t as,
S (x, y, t) = 1

2 (t − xyT

‖x‖‖y‖ ). The overall objective function for the
BDA-SketRet framework can now be put forward as Ltotal =

Ldomain +Lsemantic.

5. Theoretical proof for IB-based alignment for tighter gen-
eralization bound

In this section, we provide a theoretical proof to show that
the proposed semantic adaptation and information bottleneck
framework generate a latent space with two properties: the pro-
jections of α and p are coalesced, while those of α and n are dis-
joint. To prove this, we show that the distance between proba-
bility distributions of α and n is always greater than the distance
between α and p using the theory of learning from different do-
mains.

Adopting the notation from (Ben-David et al., 2009), we de-
note error given by a hypothesis h ∈ H on a source domain S
and target domain T by εS and εT respectively, where H de-
fines the hypothesis space. The error is defined as the probabil-
ity according to the distribution D that a hypothesis h disagrees
with a true labeling function f .

Let us first consider the objective of generating fused Pα and
Pp. Without any loss of generality, we fix the source domain
to be Dα = {x ∈ As} and target domain to Dp = {x ∈ Bs| x
belongs to class w+}. Translating our notations to the theoreti-
cal bound obtained in (Ben-David et al., 2009), we provide the
bound for the error on target domain as

εp ≤ dH∆H (Pα, Pp) + εα(h) + min
h′∈H

εp(h′) + εα(h′) (7)

The constraints on the latent distributions to be the standard
normal distribution as per the variational upper bound princi-
ple, results in the following inequality by using the triangular
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Table 1: Comparing our BDA-SketRet with SOTA on ZS-SBIR (top) and GZS-SBIR (bottom) on both the splits of Sketchy-extended (S1 and S2), TU Berlin-
extended and Quickdraw-extended datasets. All models use VGG-16 feature backbone. The ’-’ represents the evaluation metrices which were not mentioned in the
respective papers.

Sketchy-ext (S2) Sketchy-ext (S1) TU Berlin-ext Quickdraw-ext
Model P@ 200 mAP @200 mAP P@ 100 mAP P@ 100 mAP P@ 100
ZSIH (Shen et al., 2018) - - - - 22.0 29.1 13.1 18.8
CVAE (Yelamarthi et al., 2018) 19.6 - 33.3 22.5 00.5 - - -
ZS-SBIR (Yelamarthi et al., 2018) - - 19.6 28.4 00.5 00.1 00.6 00.1
SEM-PCYC (Dutta and Akata, 2019) 37.0 45.9 34.9 46.3 29.7 42.6 17.7 25.5
Doodle2search (Dey et al., 2019) 37.0 46.1 - - 10.9 - 07.5 -
Style-guide (Dutta and Biswas, 2019) 40.0 35.8 37.6 48.4 25.4 35.5 - -
Style-guide+AMDReg (Dutta et al., 2020) - - 41.0 51.2 29.1 37.6 - -
SEM-PCYC+AMDReg (Dutta et al., 2020) - - 39.7 49.4 33.0 47.3 - -
BDA-SketRet (Ours) 45.8 55.6 43.7 51.4 37.4 50.4 15.4 44.0
ZS-SBIR (Yelamarthi et al., 2018) - - 14.6 19.0 00.3 00.1 00.2 00.1
SEM-PCYC (Dutta and Akata, 2019) - - 30.7 36.4 19.2 29.8 14.0 22.1
SEM-PCYC+AMDReg (Dutta et al., 2020) - - 32.0 39.8 24.5 30.3 - -
Style-guide (Dutta and Biswas, 2019) - - 33.0 38.1 14.9 22.6 - -
GZS-BDA-SketRet (Ours) 22.6 33.7 33.8 41.3 25.1 35.7 15.4 28.6

inequality for the d-divergence.

dH (Pα, Pp) ≤ dH (Pα,N(0, I)) + dH (Pp,N(0, I)) (8)

Similarly, by virtue of the information bottleneck, we can
again use the triangle inequality for dH (Pα, Pp) as

dH (Pα, Pn) ≤ dH (Pα,N(0, I)) + dH (Pn,N(0, I)) (9)

By Subtracting Eq. 8 from 9, we get

dH (Pα, Pn) − dH (Pα, Pn) ≤ dH (Pp,N(0, I))−
dH (Pn,N(0, I)) (10)

We would like to point out that the RHS consists of terms
that are minimized by the variational bottleneck framework.
Therefore from Eq. 5 , under optimal conditions on Lt-skl,
dH (Pα, Pp) − dH (Pα, Pn) ≤ 0. Therefore, we can conclude
that the generated latent space probability distributions follow
dH (Pα, Pn) ≥ dH (Pα, Pp).

6. Experiments

Datasets. We validate the efficacy of the BDA-SketRet
by performing experiments on the benchmark Sketchy-
extended (Sangkloy et al., 2016), TU Berlin-extended
(TUB) (Eitz et al., 2012), and the newly introduced
QuickDraw-extended (Dey et al., 2019) datasets. Sketchy con-
sists of 125 categories of unpaired sketch and photo images. We
use the two conventional train-test splits. In split 1 (S1) we ran-
domly select 25 classes as the unseen test data, while in split 2
(S2) we use |Cs| : |Cu| = 104 : 21 as mentioned in (Yelamarthi
et al., 2018) where the 21 unseen classes are carefully chosen
not to be part of ImageNet (Deng et al., 2009). For the remain-
ing datasets, we follow the same protocol as (Dutta and Akata,
2020).

Training and Evaluation Protocol. We select around 5000
triplets in each training iteration based on the aforementioned
triplet-mining protocol. µ (Eq. 2) and λ (Eq. 1) for Sketchy:
(0.1, 0.1), Tu-Berlin: (1, 1), and QuickDraw: (1, 1), while β
is set to 0.0001 for all the datasets. These parameters were
estimated using grid search with cross-validation (Yelamarthi
et al., 2018). We use batch-normalization and leaky-ReLU non-
linearity after each of the layers to ensure a stable training.
Ltotal is optimized using the stochastic gradient descent (SGD)
with momentum as the optimizer with a mini-batch size of 32.
An initial learning rate of 0.0001 and a momentum of 0.9 are
set. We find that Ltotal converges for all the datasets within 50
epochs. We report the performance of BDA-SketRet in terms of
mAP@all (mean average precision), mAP@200, P@100, and
P@200, respectively, where P stands for precision.

Implementation Details. The feature backbone networks φ(·)
and ψ(·) are the ImageNet pre-trained VGG-16 model (Si-
monyan and Zisserman, 2014). Two modality specific spatial
attention learning modules consisting of convolution kernels
with sigmoid non-linearity are applied on the outputs of the fi-
nal convolution layer (conv-5) of φ and ψ, and the network upto
the attention blocks each producing 512 feature maps of size
7×7. The attention blocks are followed by three new dense lay-
ers which project the attended feature maps onto the final latent
space with dimensions R256. Besides, a spatial average pool-
ing across the channels is applied on the outputs of (φatt, ψatt)
to obtain a single channel feature map of resolution 7 × 7. The
encoder and decoder modules of Vα and Vp are single dense
layers of 128-d. The local and global domain classifiers l(·)
and f (·), and the multi-class category classifier h(·) are also one
dense layer each. For the semantic projection network g(·), g1
and g3 are three dense layers each. g2 is a graph convolution
layer, followed by the pooling and flattening layers. During
training, VGG-16 layers prior to conv-5 are frozen while the
proposed layers are updated.
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7. Results

We choose the following state of the art methods,
ZSIH (Shen et al., 2018), SEM-PCYC (Dutta and Akata,
2019), Doodle2search (Dey et al., 2019), Style-guide (Dutta
and Biswas, 2019), AMD regularizer with SEM-PCYC and
Style-guide (Dutta et al., 2020), respectively, for analyzing our
performance. While SEM-PCYC, and Style-guide are based
on adversarial training, ZS-SBIR utilizes variational encoder-
decoder networks. AMD regularizer helps in tackling the
data/class imbalance between the training and test sets. The
performance of our full BDA-SketRet model on the Sketchy
dataset with its two splits, the Tu-Berlin dataset and Quickdraw-
extended datasets in comparison to the state of the art (SOTA)
is reported in table 1. The mAP value for ZS-SBIR in Sketchy
S2 is 43.5. Similar to BDA-SketRet, these techniques report
their performances using the VGG-16 (Simonyan and Zisser-
man, 2014) based feature backbone networks. We have not
compared our results with (Xu et al., 2020b; Chaudhuri et al.,
2020) as the subset of test data considered is different from ours.
For Sketchy, split 2 is considered to be more difficult than split
1 as it consists of test classes which are unseen to the ImageNet
pre-trained networks.

Amongst the other competing techniques, we find the inclu-
sion of AMDreg boosts the performance of the baseline ZS-
SBIR systems. In spite of this, BDA-SketRet beats SEM-PCYC
+ AMD by a considerable margin of 3 − 5%. The TU-Berlin
dataset is challenging mainly due to the presence of class-wise
as well as domain-wise data imbalance. The performance of
other competing techniques are extremely low. In contrast, we
achieve a boost of 5% over the existing literature. The Quick-
Draw dataset is excessively large consisting of highly ambigu-
ous sketches and is by far the most challenging dataset for ZS-
SBIR. BDA-SketRet beats the P@100 value over the SOTA
with a margin of 10%, while falls marginally to SEM-PCYC
in the mAP value.

Similar to ZS-SBIR, BDA-SketRet showcase overall im-
proved performance measures for GZS-SBIR for all the
datasets. In particular, BDA-SketRet produces high P@100
values of 41.3 for Sketchy (S1), 35.7 for TU-Berlin, and 28.6
for QuickDraw which are at least 2.5 % more than the literary
works. No prior approach report the GZS-SBIR score for S2
for Sketchy yet. However, we find that our performance in this
case is substantially high.

We note that the existing techniques only report P@100 or
P@200 but not both. However, we feel that an effective ZS-
SBIR system should produce high scores for both the metrics
together. In this section, we report the performance of all the
datasets, including the two splits of the Sketchy dataset with
all the evaluation metrics in table 2. The top part report the
ZS:SBIR results, while the bottom part reports the GZS:SBIR.

7.1. Evaluating Effect Of Input Modalities.

In the ZS-SBIR setup, the significance of the semantic in-
formation is imperative in maneuvering the alignment of the

Table 2: Performance of the proposed BDA-SketRet with ZS-SBIR (top) and
GZS-SBIR (bottom) on both the splits of Sketchy, TUB and Quickdraw datasets
on all evaluation metrices.

Dataset mAP P@ 100 P@ 200 mAP @200
Sketchy (S 1) 43.7 51.4 45.7 56.9
Sketchy (S 2) 43.5 51.2 45.8 55.6
TU-Berlin 37.4 50.4 43.8 54.4
QuickDraw 15.4 44.0 35.5 34.6
Sketchy (S 1) 33.8 41.3 31.4 38.6
Sketchy (S 2) 22.7 25.1 22.6 33.7
TU-Berlin 25.1 35.7 32.9 33.3
QuickDraw 15.4 28.6 29.5 27.4

Table 3: Effects of different semantic information on the mAP value for TU-
Berlin and Sketchy (split 2) datasets.

W2v Fasttext Path Jin-Con Sketchy TUB
X 41.1 37.4

X 43.5 36.5
X 40.2 32.9

X 41.9 37.4
X X 40.1 31.4
X X 40.7 37.1

X X 39.1 32.8
X X 39.7 34.6

multi-modal data in the latent space. Different models yield dif-
ferent topological alignment of the classes in the latent space,
which effectively causes the similar classes to cluster in a short
range, while pushing apart the faraway classes. We consider
the individual textual (300-d) and hierarchical embeddings as
well as their concatenations and report the mAP values in ta-
ble 3 for both Sketchy and TU-Berlin. We observe that there is
a variation of up to 4− 6% in the performance of BDA-SketRet
by using different semantic information. It is found that the
individual semantic spaces provide superior performance than
their pairwise combinations as neighborhood topology may not
be consistent in different semantic spaces. We obtain the best
performance of Sketchy is using the fasttext model, while it
is Jiang-Conrath for TU-Berlin produces the best performance
with a mAP of 37.4.

7.2. Evaluating Effect Of Feature Backbones.

Further, different backbone networks have been utilized by
a few existing techniques for ZS-SBIR. It is unjust to directly
compare them with the rest of the literary works which exploit

Table 4: Comparison of different visual backbones on BDA-SketRet and the
corresponding SOTA. * denotes mAP@200. SAKE uses a differently trained
feature backbone.

BDA-SketRet State-of-the-Art
Pretrain Sketchy TUB Reference Sketchy TUB
VGG-16 43.5 37.4 —- Table 1 —-
ResNet-50 40.1 33.2 SkechGCN (Zhang et al., 2020) 38.2 32.4
ResNet-152 43.0∗ 25.8∗ SAN (Pandey et al., 2020) 24.0∗ 14.0∗

SE-ResNet50 51.2∗ 41.0 SAKE (Liu et al., 2019) 49.7∗ 47.5
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Table 5: Ablation of loss functions and model components in terms of mAP
for Sketchy (S2) and TU-Berlin. F denotes the full model. (Ltri = Ltriplet,
Lsem = Lsemantic).

Experimental set up Sketchy TUB

L
os

se
s

Lsem +Ltri 27.6 20.1
Lsem +Ltri +Lt-skl 30.3 23.6
Lsem +Ltri +Lt-skl +Lclass 33.4 27.7
Lsem +Ltri + Lt-skl +Lclass +L2 36.9 33.5
Lsem +Ltri+ Lt-skl +Lclass + L3 40.1 34.8
Lsem +Ltri+ L2 31.5 29.2
Lsem +Ltri+ L3 33.2 27.0
Lsem +Ltri+ L2 + L3 36.5 32.9
Lsem +Ltri+ Lt-skl +Lclass +L2 + L3 43.5 37.4

M
od

el

F w/o GCN 41.2 35.0
F w/o attention block in local DA 38.6 32.5
F w/o local attention & GCN 34.2 32.8

the conventional VGG-16 framework. Hence, we deploy differ-
ent encoder networks to train BDA-SketRet and compare with
the respective approaches (table 4) to provide a base-lining for
the future endeavors. Similar to the semantic information, the
chosen visual feature encoder affects the model performance
considerably. SkechGCN (Zhang et al., 2020) considers the
ResNet-50 (He et al., 2016) architecture while SAN (Pandey
et al., 2020) utilizes the ResNet 152 (He et al., 2016), both
pre-trained on the Imagenet dataset. We also test the perfor-
mance of our framework using the trending SE-ResNet-50 fea-
ture extractor. SAKE (Liu et al., 2019) uses a conditional-SE-
ResNet 50 (Hu et al., 2018) architecture, while using an auxil-
iary task to approximately map each image in the training set
to the ImageNet semantic space. SE-ResNet is different from
CSE-ResNet as it does not use any conditional variable. Simi-
larly, (Thong et al., 2020) follow a different evaluation protocol
from the remaining literature. While the other works use the
entire seen classes along with the unseen classes for the GZS-
SBIR experiments, in this paper the authors claim that they just
use 20% of the samples from the seen classes for evaluation.
Hence, a direct comparison of results with (Thong et al., 2020;
Liu et al., 2019) may not be fair. Apart from these two, overall
it can be observed that BDA-SketRet beats the concerned tech-
niques consistently when adopting the respective visual feature
extractors.

7.3. Ablation Studies And Qualitative Results

Ablation of model components: The full model consists of a
group of sub-modules, each contributing in its own way to en-
hance the performance. In the ablation analysis, the baseline
network comprises of Ltriplet + Lsemantic. The global adapta-
tion is performed on the latent features to reduce the domain-
gap between the data from the two modalities by increasing the
domain confusion. This improves the performance marginally,
as seen from table 5 . This is expected to yield a class-wise
overlapping embedding space for sketches and images. Simply
adding the binary domain classifier without the label classifier
leads to mode collapse. To avoid this and ensure class-wise
discriminativeness, we add the full L1 loss and observe an in-
crease in the overall performance. We then append the network
with the local adaptation module applied on the intermediate

(a) Sample sketch and photo images.

(b) Grad-CAM plots highlighting the ROI on the model without
L

global
dom , Lt-skl, L2 and L3.

(c) Grad-CAM plots highlighting the ROI on the model without
Lt-skl, L2 and L3 losses.

(d) Grad-CAM plots highlighting the ROI on the model without
L2 and L3 losses.

(e) Grad-CAM plots highlighting the ROI when trained with the
full model.

Figure 3: Ablation of domain adaptation stages using Grad-CAM plots to high-
light the region of interest (ROI).

feature maps to highlight important local constructs common
to both the modalities. When we add the cross-modal recon-
struction modules, we observe significant improvements in the
results (43.5 / 37.4). To study the individual contributions of
L2 and L3, we use them individually and in conjunction with
each other to the baseline model. A clear fall of about 7− 10%
is observed, highlighting the contribution of the semantic adap-
tation module. As evident from table 5, the full model incurs a
boost of 12−13% on the mAP values for both the datasets than
the baseline, ranging from 27.6 to 43.5 in the Sketchy and 20.1
to 37.4 in the TU-Berlin.

Further, we study the effects of the GCN module in g(·) and
the spatial attention layers in φatt and ψatt, respectively. We ob-
serve a marginal performance drop of 1 − 2% when the GCN
layer is removed from the full BDA-SketRet. Similarly, the at-
tention module is crucial in highlighting the domain-invariant
mid-level features and BDA-SketRet without the attention lay-
ers is found to marginally degrade the performance. We also
look into the effect of removing the GCN module for the GZS-
SBIR experiments and notice a drop of 10% in mAP.
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Giraffe 4 H 4 4 H H 4 7 Giraffe 4 4 4 7 4 7 4 4

Tree H 4 4 4 4 H H 4 Tree 4 4 4 4 4 7 7 4

Windmill 4 7 H H H 4 H 4 Windmill 4 4 4 7 4 4 4 4

Figure 4: Top-8 retrieval instances for a few sketch queries from the Sketchy dataset without using the local adaptation on the left and BDA-SketRet on the right.
The green checks denote correctly retrieved classes, while the red crosses denote incorrect class images. The blue stars denote the hub instances.

Qualitative analysis of hubness. Hubness prob-
lem (Radovanovic et al., 2010) occurs when a model has a train-
ing bias and retrieves images only from a subset of the available
categories. This occurs as some embedding vectors of images
(also called as “hubs”) appear in the nearest neighborhood of
many test query sketches. An ineffective feature alignment be-
tween the visual modalities may trigger the generation of hubs.
In order to show the role of domain losses in retrieving more
discriminative image samples, we first train the model with just
the adversarial global adaptation (withoutL2 andL3), followed
by training the entire BDA-SketRet model. In the first case, we
notice the presence of hubs. Precisely, the left column of Fig. 4
shows a scenario where the instances of rifle class are re-
trieved for nearly many query samples as its embeddings are
cluttered in the feature space with multiple classes. This ad-
versely affects the overall performance. In the second case, no
particular class is visibly found to clutter the retrieval results in
the latent space. It depicts that by jointly using the global and
local adaptations and using cross-modal reconstruction mod-
ules, we achieve a hub-free retrieval results for the same set of
queries.

Preservation of semantic space using GCN In this section, we
aim to show that the leveraging a graph convolution network
(GCN), we preserve the semantic topology in the embedding
feature space. The semantic information has an important role
to play for attaining an improved ZS-SBIR inference. Gener-
ally, the visual modalities are aligned to a fixed semantic space.
While (Dutta and Akata, 2019) uses an encoded semantic space
obtained via a semantic auto-encoder, methods of (Dey et al.,
2019; Dutta and Biswas, 2019) reconstruct the original seman-
tic vectors from the visual information. These methods could
lead to a drastic change of the semantic topology in the em-
bedding feature space. Fig. 5 (a) from the main manuscript
shows the co-variance matrix of the 250 classes of the TU-
Berlin dataset, while Fig. 5 (b) shows the co-variance matrix of
the same after passing through a semantic auto-encoder. It can
be seen that the semantic topology is visibly distorted, which
would lead to improper mapping of visual and semantic space
for the unseen classes.

In the proposed BDA-SketRet framework, we utilize graph
CNN (Kipf and Welling, 2016) to encode the structural similar-
ity among the different classes. We model an independent latent

(a) Original word embed-
dings.

(b) Auto-encoded word
embeddings in latent
space.

(c) GCN preserved word
embeddings in latent
space.

Figure 5: Co-variance matrices of the word embeddings under different exper-
imental set-ups.

space given the original modalities but constraint the space to be
influenced by the characteristics of the original semantic space.
Fig. 5 (c) shows the co-variance matrix of the 250 classes of
the TU-Berlin dataset. It can be seen that the semantic topol-
ogy is visibly preserved in the embedding space. In effect, this
helps us in obtaining a better mapping of the visual and seman-
tic space for the unseen classes.

7.4. Grad-CAM Visualization

Gradient-weighted class activation mapping (Selvaraju et al.,
2017) (Grad-CAM) primarily uses the gradients of the target
class at the final convolution layer to synthesize an intermediate
localization map which highlights the most important regions
in the image. It effectively helps in displaying the region which
gets the most importance for any particular target-class.
Effect of bi-level adaptation. We ablate among the various
domain adaptation modules in the network and provide a visu-
alization of the same in Fig. 3 and show the Grad-CAM plots
of both the models for a few sketch and photo images.

In Fig. 3 (b), we train the model without theLglobal
dom ,Lt-skl,L2

and L3 losses. Notice that this causes improper distribution of
weights especially in the sketch images. The network primarily
learns from the background of the sketch images, while for the
photo images, the region of importance is scattered all over the
image. Adding the Lglobal

dom , relatively constricts the scattered re-
gion of importance to a more localized form. When we further
go ahead and add the Lt-skl loss to the model, from Fig. 3 (d)
we start noticing that the alignment of important region in the
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(a) Alarmclock (b) Cactus (c) Clock (d) Bulldozer (e) Ice-cream (f) Frog (g) Brain (h) SUV (i) Piano (j) Skull

Figure 6: Grad-CAM plots of full model of a few sample photo and sketch images.

sketch images start improving. We can see that the full model
produces better highlight to the local constructs.

This establishes our claim that the notion of fine-grained do-
main adaptation helps in obtaining a more discriminative latent
space to combat hubness and negative knowledge transfer judi-
ciously. The Grad-CAM plots displays the region which gets
the most importance (ROI) when we train the model. We can
see that the full model produces better highlight to the local
constructs. Notice in the butterfly image, without the bi-level
adaptation, the attention is splattered across the image and this
leads to incorrect class assignment during retrieval. Using the
full model of BDA-SketRet with bi-level adaptation, although
the foreground consists of both the butterfly and the flower, the
importance is layed properly on the concerned butterfly
class.

Qualitative results. In Fig. 6 we show the GradCAM plots of
a few sample photo and sketch images. From the photo images
it can be seen that query class is properly highlighted in each
image, keeping the remaining image as a background. For ex-
ample, it can be seen from the Alarmclock images that the
attended region is carefully just the clock, leaving out the hu-
man as the background. Similarly, the dendritic-structure of the
cactus receives the most attention as they contribute more to-
wards the overall recognition of its class. It can also be seen that
out of the two power vehicles, the network correctly chooses the
bulldozer and puts more weight on it.

Similarly, for the sketch classes it is seen that the highlighted
region is the most important characteristic part of the sketch.
For example, for frog, the webbed feet are the most impor-
tant region, while for a skull, the cross-bones commonly
drawn under skulls along with the hollow eye sockets con-
veyed the most information. It can be noted that since CNNs
have a tendency to learn from image textures (Geirhos et al.,
2018), the network provides more weights towards the image
boundaries (as seen from Fig. 3 (b)). This is exactly the rea-
son why sketch-based learning tasks are challenging. The pro-
posed BDA-SketRet helps the network to learn the most im-
portant regions and their corresponding weights properly even
from sketch images as shown in Fig. 6. In Fig. 7, we show the
ZS-SBIR results for a few sample sketches from the Sketchy-
extended dataset.

Table 6: Sensitivity analysis of hyper-parameters in terms of mAP value for
TU-Berlin and Sketchy (split 2) datasets.

µ λ β Sketchy TUB
1 1 0.0001 41.8 37.5

0.1 1 0.0001 42.2 37.1
0.01 1 0.0001 42.7 36.7
0.1 0.1 0.0001 43.5 35.2
0.1 0.01 0.0001 40.6 32.0
1 1 0.001 42.5 35.9
1 1 0.01 38.5 33.4
1 1 0.00001 41.6 36.8

7.5. Sensitivity To Hyper-parameters

In the proposed work, we have primarily 3 hyper-parameters,
i.e., λ, β, and µ from the equations 1 and 2 of the main
manuscript. For tuning the hyper-parameters, we follow the
standard protocol of the zero-shot learning community by split-
ting the training data for cross-validation into training and vali-
dation data (psuedo-seen and psudeo-unseen split). The overall
performance of the proposed framework by varying these pa-
rameters with some of the settings are shown in Table 6 for
both Sketchy and TU-Berlin in terms of mAP values. We ex-
periment the model performance by choosing different values
in the range of 0.01 to 1 for µ and λ, while 0.00001 to 0.01 for
β, as the Lt-skl loss is found to converge the fastest amongst the
rest. We choose the combination of µ, λ, and β values that result
in the best model performance.

8. Conclusions

We introduce a novel ZS-SBIR framework called BDA-
SketRet in this paper. The main premise of our model is to
perform improved alignment between the image and sketch fea-
tures based on both the mid-level and high-level CNN based
feature embeddings. Together, we introduce two generative
cross-modal reconstruction modules to ensure the learning of
robust modality-independent features. We further propose to
project the semantic information into the shared latent space
through a two-stream fusion network by jointly exploiting both
the prototypes and the semantic class neighborhood. Overall,
BDA-SketRet learns a discriminative and compact latent space
and wisely tackles both the negative transfer and the hubness
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Figure 7: Top-15 retrieval instances for a few sketch queries from the Sketchy dataset using the full model. The green checks denote correctly retrieved classes,
while the red crosses denote images from incorrect class. Notice that there are no hub instances generated here.

issues of domain adaptation and ZSL, respectively. Experi-
mentally, we outperform the recent techniques in all the per-
formance metrics on all the existing datasets. We are currently
interested in extending BDA-SketRet to support the paradigm
of lifelong learning.
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Federici, M., Dutta, A., Forré, P., Kushman, N., Akata, Z., 2020. Learning
robust representations via multi-view information bottleneck, in: ICLR.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Bren-
del, W., 2018. Imagenet-trained cnns are biased towards texture; in-
creasing shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231 .

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: CVPR.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks, in: CVPR.
Hu, R., Collomosse, J., 2013. A performance evaluation of gradient field hog

descriptor for sketch based image retrieval. CVIU .
Jiang, J.J., Conrath, D.W., 1997. Semantic similarity based on corpus statistics

and lexical taxonomy. arXiv .
Kampffmeyer, M., Chen, Y., Liang, X., Wang, H., Zhang, Y., Xing, E.P., 2019.

Rethinking knowledge graph propagation for zero-shot learning, in: CVPR.
Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph con-

volutional networks, in: ICLR.
Lei, J., Song, Y., Peng, B., Ma, Z., Shao, L., Song, Y.Z., 2019. Semi-

heterogeneous three-way joint embedding network for sketch-based image
retrieval. IEEE Transactions on Circuits and Systems for Video Technology
30, 3226–3237.

Liu, L., Shen, F., Shen, Y., Liu, X., Shao, L., 2017. Deep sketch hashing: Fast

11



free-hand sketch-based image retrieval, in: CVPR.
Liu, Q., Xie, L., Wang, H., Yuille, A.L., 2019. Semantic-aware knowledge

preservation for zero-shot sketch-based image retrieval, in: ICCV.
Lowe, D.G., 1999. Object recognition from local scale-invariant features, in:

Proceedings of the seventh IEEE international conference on computer vi-
sion.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of
word representations in vector space. arXiv .

Narasimhan, M., Lazebnik, S., Schwing, A., 2018. Out of the box: Reason-
ing with graph convolution nets for factual visual question answering, in:
NeurIPS.

Pandey, A., Mishra, A., Verma, V.K., Mittal, A., Murthy, H., 2020. Stacked
adversarial network for zero-shot sketch based image retrieval, in: WACV.

Qi, Y., Song, Y.Z., Zhang, H., Liu, J., 2016. Sketch-based image retrieval via
siamese convolutional neural network, in: ICIP.

Radovanovic, M., Nanopoulos, A., Ivanovic, M., 2010. Hubs in space: Popular
nearest neighbors in high-dimensional data. JMLR .

Romera-Paredes, B., Torr, P., 2015. An embarrassingly simple approach to
zero-shot learning, in: ICML.

Saavedra, J.M., 2014. Sketch based image retrieval using a soft computation of
the histogram of edge local orientations (s-helo), in: ICIP.

Sangkloy, P., Burnell, N., Ham, C., Hays, J., 2016. The sketchy database:
learning to retrieve badly drawn bunnies. ACM TOG .

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.,
2017. Grad-cam: Visual explanations from deep networks via gradient-
based localization, in: ICCV.

Shen, Y., Liu, L., Shen, F., Shao, L., 2018. Zero-shot sketch-image hashing, in:
CVPR.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for
large-scale image recognition. arXiv .

Song, J., Yu, Q., Song, Y.Z., Xiang, T., Hospedales, T.M., 2017. Deep spatial-
semantic attention for fine-grained sketch-based image retrieval, in: ICCV.

Thong, W., Mettes, P., Snoek, C.G., 2020. Open cross-domain visual search.
CVIU .

Tishby, N., Zaslavsky, N., 2015. Deep Learning and the Information Bottleneck
Principle, in: ITW.

Wang, M., Wang, C., Yu, J.X., Zhang, J., 2015. Community detection in so-
cial networks: an in-depth benchmarking study with a procedure-oriented
framework. VLDBE .

Xian, Y., Lorenz, T., Schiele, B., Akata, Z., 2018. Feature generating networks
for zero-shot learning, in: CVPR.

Xian, Y., Schiele, B., Akata, Z., 2017. Zero-shot learning-the good, the bad and
the ugly, in: CVPR.

Xu, F., Yang, W., Jiang, T., Lin, S., Luo, H., Xia, G.S., 2020a. Mental re-
trieval of remote sensing images via adversarial sketch-image feature learn-
ing. IEEE Transactions on Geoscience and Remote Sensing 58, 7801–7814.
doi:10.1109/TGRS.2020.2984316.

Xu, X., Yang, M., Yang, Y., Wang, H., 2020b. Progressive domain-independent
feature decomposition network for zero-shot sketch-based image retrieval,
in: IJCAI.

Yang, X., Tang, K., Zhang, H., Cai, J., 2019. Auto-encoding scene graphs for
image captioning, in: CVPR.

Yelamarthi, S.K., Reddy, S.K., Mishra, A., Mittal, A., 2018. A zero-shot frame-
work for sketch based image retrieval, in: ECCV.

Yu, Q., Yang, Y., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.M., 2017.
Sketch-a-net: A deep neural network that beats humans. IJCV .

Zhang, J., Shen, F., Liu, L., Zhu, F., Yu, M., Shao, L., Shen, H.T., Van Gool, L.,
2018. Generative domain-migration hashing for sketch-to-image retrieval,
in: ECCV.

Zhang, Z., Zhang, Y., Feng, R., Zhang, T., Fan, W., 2020. Zero-shot sketch-
based image retrieval via graph convolution network., in: AAAI.

12

http://dx.doi.org/10.1109/TGRS.2020.2984316

	1 Introduction
	1.1 Observations
	1.2 Our Approach

	2 Related Works
	2.1 State-of-the-Art ZS-SBIR Algorithms
	2.2 Semantic projection and GCN.

	3 Problem definition and preliminaries
	4 BDA-SketRet
	4.1 Multi-level Sketch Image Alignment
	4.2 Neighborhood Preserving Semantic Projection Loss

	5 Theoretical proof for IB-based alignment for tighter generalization bound
	6 Experiments
	7 Results
	7.1 Evaluating Effect Of Input Modalities.
	7.2 Evaluating Effect Of Feature Backbones.
	7.3 Ablation Studies And Qualitative Results
	7.4 Grad-CAM Visualization
	7.5 Sensitivity To Hyper-parameters

	8 Conclusions

