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Abstract

This paper describes an efficient technique for out-of-core rendering and management of large textured terrain

surfaces. The technique, called Batched Dynamic Adaptive Meshes (BDAM) , is based on a paired tree structure:

a tiled quadtree for texture data and a pair of bintrees of small triangular patches for the geometry. These small

patches are TINs and are constructed and optimized off-line with high quality simplification and tristripping

algorithms. Hierarchical view frustum culling and view-dependent texture and geometry refinement is performed

at each frame through a stateless traversal algorithm. Thanks to the batched CPU/GPU communication model,

the proposed technique is not processor intensive and fully harnesses the power of current graphics hardware.

Both preprocessing and rendering exploit out-of-core techniques to be fully scalable and to manage large terrain

datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture and Image Gen-

eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction

Interactive visualization of massive textured terrain datasets

is a complex and challenging problem: the size of current

geometry and texture datasets easily exceeds the capabilities

of current hardware. Various dynamic multiresolution mod-

els have been proposed to face this problem, usually based

on the idea of constructing, on the fly, a coarser adaptively

approximated representation of the terrain to be rendered in

place of the complete terrain model.

Unfortunately current dynamic multiresolution algo-

rithms are very processor intensive: the extraction of an ad-

equate terrain representation from a multiresolution model

and its transmission to the graphics hardware is usually the

main bottleneck in terrain visualization. Nowadays, con-

sumer graphics hardware is able to sustain rendering rate of

tens of millions of triangles per second, but current multires-

olution solutions fall short of reaching such performance.

This because the CPU is not able to generate and extract

such variable resolution data at the requested rate; moreover

these data must be sent to the graphics hardware in the cor-

rect format and through a preferential data path. The gap be-

tween what could be rendered by the graphics hardware and

what we are able to batch to the GPU, is doomed to widen

because CPU processing power grows at a much slower rate

than GPU’s one.

Therefore our goal is to propose a technique that is able to

manage massive textured terrain datasets without burdening

the CPU and to fully exploit the power of current and fu-

ture graphics hardware. As highlighted in the short overview

of the current solutions for interactive visualization of large

terrains (Sec. 2), the techniques based on hierarchy of right

triangles are the ones which ensure maximum performance,

while TIN based multiresolution solutions reach maximal

accuracy for a given triangle count. In this paper we intro-

duce a new data structure that gets the best out of the above

approaches. Moreover, our approach efficiently supports the

combination of high resolution elevation and texture data in

the same framework. Our proposed BDAM † technique is

based on a paired tree structure: a tiled quadtree for texture

data and a pair of bintrees of small triangular patches for

the geometry (Sec. 3). These small patches are TINs and are

† The sound of a gunshot16
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constructed and optimized off-line with high quality simpli-

fication and tristripping algorithms. A hierarchical view frus-

tum culling and view-dependendent texture/geometry refine-

ment can be performed, at each frame, with a stateless traver-

sal algorithm, which renders a continuous adaptive terrain

surface by assembling these small patches (Sec. 4). An out-

of-core technique has been designed and tested for con-

structing BDAMs using a generic high quality simplification

algorithm (Sec. 5). The efficiency of the BDAM approach

has been succesfully evaluated on a standard terrain bench-

mark (Sec. 6).

2. Related Work

The problem of rapidly rendering a continuous represen-

tation of a given terrain where the resolution adaptively

matches with the current viewing position is an active re-

search area. Since first approaches (8, 21, 13) many differ-

ent data structures have been proposed. A comprehensive

overview of this subject is beyond the scope of this paper. In

the following, we will discuss the approaches that are most

closely related to our work. Readers may refer to recent sur-

veys 15, 18 for further details.

From the point of view of the rapid adaptive construc-

tion and display of continuous terrain surfaces, two main

approaches have been proposed to manage this problem: a)

techniques that exploit a regular hierarchical structure to ef-

ficiently represent the multiresolution terrain, b) techniques

that are based on more general, mainly unconstrained, trian-

gulations.

The most successful examples of the first class of tech-

niques include hierarchies of right triangles (HRT) 5 or

longest edge bisection 15, triangle bintree 13, 4, restricted

quadtree triangulation 17, 22. The scheme permits the creation

of continuous variable resolution surfaces without having to

cope with the gaps created by other regular grid schemes.

The main idea shared by of all these approaches is to build

a regular multiresolution hierarchy by refinement or by sim-

plification. The refinement approach starts from an isosce-

les right triangle and proceeds by recursively refining it by

bisecting its longest edge and creating two smaller right tri-

angles. In the simplification approach the steps are reversed:

given a regular triangulation of a gridded terrain, pairs of

right triangles are selectively merged. The regular structure

of these operations enables to implicitly encode all the de-

pendencies among the various refinement/simplification op-

erations in a compact and simple way: a simple binary tree

together with a smart error tagging of the tree nodes.

The second class of algorithms is based on less con-

strained triangulations of the terrain (TINs) and includes

multiresolution data structures like Multi-Triangulations 21

adaptive merge trees 24, hypertriangulations 1, and the exten-

sion of Progressive Meshes 9 to the view-dependent manage-

ment of terrains 10. As pointed out and numerically evaluated

in 5, TIN outperform right triangles hierarchies in terms of

number of triangles / error counts; in other words, using an

HRT scheme you need a number of triangles that is much

higher (even an order of magnitude) than the one needed by

TINs to achieve the same terrain resolution. This is mainly

due to the fact that TINs adapt much better to high fre-

quency variations of the terrain. On the other hand, this class

of methods requires much more memory and more compli-

cated multiresolution data structures. For this reason, when

they are used in real-time environments, they are able to out-

put smaller models in the same frame time, possibly yielding

lower quality images.

HRT and TIN techniques also considerably differ in the

way they interact with LOD texture management. Very few

techniques full decouple texture and geometry LOD man-

agement. To our knowledge, the only general approach is

the SGI-specific clip-mapping extension23 and 3DLabs Vir-

tual Textures, which requires, however, special hardware. In

general, large scale textures are handled by explicitly par-

titioning them into tiles and possibly arranging them in a

pyramidal structure3. Clipping rendered geometry to texture

tile domains imposes severe limitations on the geometry re-

finement subsystem. General TIN approaches are difficult to

adapt to this context, and the few systems able to support

multiresolution geometry and texture are mostly based on

hierarchical techniques.

Our work aims to combine the benefits of TINS and HRT

in a single data structure for the efficient management of

multiresolution textured terrain data. A first attempt towards

this aim was given by Pajarola et al. 19, presenting a tech-

nique to build a HRT starting from a TIN terrain. The main

idea is to adaptively build a HRT following the TIN data dis-

tribution and allowing vertex positions to be not constrained

to regular grid positions. Among the other differences, in our

proposal the advantages of TINS are much better exploited,

because each patch is a completely general triangulation of

the corresponding domain.

A common point of all adaptive mesh generation tech-

niques is that they spend a great deal of the rendering time to

compute the view-dependent triangulation. For this reason,

many authors have proposed techniques to alleviate popping

effects due to small triangle counts 2, 10 or to amortize con-

struction costs over multiple frames 13, 4, 9. Our proposal is,

instead, to reduce the per-triangle workload by composing

pre-assembled surface patches during run-time. The idea of

grouping together sets of triangles in order to alleviate the

CPU/GPU bottleneck was also presented in Rustic 20 and

in the CABTT 12 data structures. RUSTiC is a extension

of the ROAM algorithm in which subtrees of the ROAM

bintree are, in a preprocessing phase, statically freezed and

saved. The CABTT approach is very similar to RUSTIC, but

clusters are dynamically created, cached and reused during

rendering. With respect to both CABBT and RUSTIC al-

gorithms our proposal makes explicit the simple edge error

c© The Eurographics Association and Blackwell Publishers 2003.
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Figure 1: a) the binary tree representing a Right Triangle

Hierarchy, b) an example of a consistent triangulation built

by a simple visit of the bintree, c) each triangle of the bintree

represents a small mesh patch with error ek+1 along the two

shortest edges and error ek elsewhere.

property needed for cluster consistency, exploits high qual-

ity, fully adaptive triangulation of clusters, cache coherent

tri-stripping of clusters for efficient rendering, and multires-

olution texturing; finally, it supports out-of-core rendering

and construction of huge datasets.

3. Batched Dynamic Adaptive Meshes (BDAM)

Current multiresolution algorithms are designed to use the

triangle as the smallest primitive entity. We can synthesize

the main idea of our approach as designing a multiresolution

approach that uses a more complex primitive: small surface

patches (composed of a batch of a few hundreds of trian-

gles). The benefit of this approach is that the per-triangle

workload to extract a multiresolution model is highly re-

duced and small patches can be preprocessed and optimized

off line for a more efficient rendering, using, for example,

cache coherent triangle strips11. In other words, the approach

we propose is based on the idea of moving up the grain of

multiresolution models from triangles to small contiguous

mesh portions.

A hierarchy of right triangles can be coded as a binary

tree of triangles (Fig. 1.a); this binary tree representation is

the base of ROAM4 and of many other terrain multiresolu-

tion data structures. This is because it can be used to easily

extract a consistent set of contiguous triangles which cover

a particular region accordin to a given error thresholds (Fig.

1.b). Similarly to the ROAM algorithm, our structure, called

Batched Dynamic Adaptive Meshes (BDAM), uses a right

triangle hierarchy stored as a bintree, to give a high level

representation of the data partitioning. On the other hand,

Figure 2: An example of a BDAM: each triangle represents a

terrain patch composed by many triangles. Each error value

is marked by a different color; the blending of the color in-

side each triangle corresponds to the smooth error variation

inside each patch.

we replace single triangles with small mesh patches as the

minimal manageable entities to be batched (hence the name)

to the graphics hardware in the most efficient way. There-

fore, each bintree node contains a small chunk (in the range

of 256..8k) of contiguous well packed tri-stripped triangles.

To ensure the correct matching between triangular patches,

we exploit the HTR property that each triangle can correctly

connect either to: triangles of its same level; triangles of the

next coarser level through the longest edge; and triangles of

the next finer level through the two shortest edges. The above

property works well for triangles, but, switching from trian-

gles to small patches, the correct connectivity along borders

of different simplification level patches is not directly guar-

anteed. This simple edge error property is exploited, as ex-

plained in Sec. 5, to design an out-of-core high quality sim-

plification algorithm that builds each triangular patch so that

the error is distributed as shown in figure 1.c: each triangle of

the bintree represents a small mesh patch with error ek inside

and error ek+1 (the error corresponding to the next more re-

fined level in the bintree) along the two shortest edges. In this

way, each mesh composed by a collection of small patches

arranged as a correct bintree triangulation still generates a

globally correct triangulation.

In Fig. 2 we show an example of these properties. In the

upper part of the figure we show the various levels of a HRT

and each triangle represents a terrain patch composed by

many graphics primitives. Colors correspond to different er-

rors; the blending of the color inside each triangular patch

represents the smooth error variation inside each patch as

shown in Fig. 1.c. When composing these triangular patches

using the HRT consistency rules, the color variation is al-

ways smooth: the triangulation of adjacent patches correctly

matches.

c© The Eurographics Association and Blackwell Publishers 2003.
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3.1. The texture quadtree

Terrain textures have dimensions which are typically sim-

ilar or larger than the corresponding ones of elevation data.

Since such a big texture sizes cannot be handled by commod-

ity graphics boards, we need to partition them into chunks

before rendering. Total size also generally exceeds typical

core memory size, hence the texture management unit has to

deal with out-of-core memory handling techniques. These

considerations lead to a multiresolution texture management

technique similar to the one used for geometry.

For efficiency reasons, textures are however best man-

aged as rectangular tiles, as opposed to the triangular ge-

ometric tiles, leading to a tiled texture quadtree instead of

the geometry bintree. If the original image covers the same

region of the elevation data, each texture quadtree element

corresponds to a pair of adjacent geometry bintree elements

(Fig. 3), and descending one level in the texture quadtree

corresponds to descending two levels in the associated pair

of geometry bintrees. This correspondence can be exploited

in the preprocessing step to associate object-space represen-

tation errors to the quadtree levels, and in the rendering step

to implement view-dependent multiresolution texture and

geometry extraction in a single top-down refinement strat-

egy.

Figure 3: A texture quadtree element is associated to a pair

of adjacent geometry bintree elements. View-dependent re-

finement is performed using a combined top-down traversal

of the texture and geometry trees.

3.2. Errors and Bounding Volumes

To easily maintain the triangulation coherence we exploit the

concept of nested/saturated errors, introduced by Pajarola17

that allows to extract a correct set of triangular patches with

a simple stateless visit of the bintree17, 14.

Object space embedded error Object-space error is inde-

pendent from the metric used, and can be computed directly

from the finest resolution grid, or incrementally from the

patches of the previous level. Once these errors have been

computed, a hierarchy of errors (that respect nesting condi-

tions) can be constructed bottom up. Texture errors are com-

puted from texture features, and are embedded in a corre-

sponding hierarchy by using a structure similar to the one

used for the geometry errors.

Nested bounding volumes hierarchy Object space errors

are view independent, but for the rendering purpose we need

a view dependent hierarchy of errors where nesting condi-

tions are still valid. Thus, a tree of nested volumes is also

built during the preprocessing, with properties very similar

to the two error rules: 1) bounding volume of a patch in-

clude all children bounding volumes; 2) two patches adja-

cent along hypotenuse must share the same bounding vol-

ume which encloses both. These bounding volumes are used

to compute screen space errors and also for view frustum

culling (Fig. 4).

Figure 4: The nested sphere hierarchy is used for refinement

and view culling (left). Screen space error is the quantity that

drives view-dependent refinement (right).

4. Top-down view-dependent refinement and rendering

The goal of the multiresolution rendering component is to

efficiently extract and render a textured mesh with a small

number of triangles and an associated coarse texture, which

should be a good approximation of the original, dense mesh

for the given view. The algorithm is based on a combined

top-down traversal of the texture and geometry trees, that im-

plicitly guarantees mesh continuity, manages large terrains

datasets through out-of-core paging and data layout tech-

niques, and is designed to fully exploit the rendering ca-

pabilities of modern graphics accelerators through batched

primitive rendering.

4.1. Screen space error

View-dependent refinement is driven by screen space error.

Screen space error is derived at run time from a patch bound-

ing volume and its object-space geometry and texture errors;

it adopts a monotonic projective transformation to preserve

the error nesting conditions. This approach, that supports

variable resolution data extraction with a stateless visit of

the hierarchy, is similar to 14. In our case, however, nested

errors and bounding volumes are associated to the patch hier-

archy, rather than the vertex hierarchy, and we have to com-

bine the geometry error with the texture error. In our current

code, we obtain a consistent upper bound on screen space

error by measuring the apparent size of a sphere centered

at the patch bounding volume point closest to the viewpoint

and having radius equal to the maximum between the tex-

ture and the geometry object space errors (see figure 4). The

refinement condition, once the closest point from the view-

point is found, requires only one multiplication to check if

errorsphereradius>errorthreshold*distance.

c© The Eurographics Association and Blackwell Publishers 2003.
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proc refine(V, tex_tree, geo_tree1, geo_tree2)

B := bounding_volume(geo_tree1)

if visible(V, B)

if view_error(V, B, obj_error(tex_tree)) > eps

for each i in { i_SE, i_SW, i_NW, i_NE }

refine(V,

child(tex_tree, i),

top_grand_child(geo_tree1, geo_tree2, i),

bottom_grand_child(geo_tree1, geo_tree2, i))

end for

else

bind_texture(tex_tree)

define_texcoords(tex_tree)

geo_parent_refine(V, tex_tree, parent(geo_tree1))

geo_parent_refine(V, tex_tree, parent(geo_tree2))

end if

end if

end proc

proc geo_parent_refine(V, tex_tree, geo_tree_parent)

B := bounding_volume(geo_tree_parent)

if view_error(V, B, obj_error(geo_tree_parent)) > eps

geo_refine(V, child(geo_tree, 0))

geo_refine(V, child(geo_tree, 1))

else

enable_clipping(tex_tree)

geo_render(geo_tree_parent)

disable_clipping

end if

end proc

proc geo_refine(V, geo_tree)

B := bounding_volume(geo_tree)

if visible(V, B)

if view_error(V, B, obj_error(geo_tree)) > eps

geo_refine(V, child(geo_tree, 0))

geo_refine(V, child(geo_tree, 1))

else

geo_render(geo_tree)

end if

end if

end proc

Figure 5: View-dependent refinement. Variable resolution

textures and geometry are extracted with a combined state-

less visit of texture quadtree and geometry bintrees.

4.2. Combined texture and geometry traversal

Having defined a criterion for view-dependent refinement,

we now summarize the algorithm for top-down selective re-

finement and on-the-fly textured rendering.

The refinement procedure (Fig. 5) starts at the top-level

of the texture and geometry trees and recursively visits the

nodes until the screen space texture error becomes accept-

able. While descending the texture quadtree, corresponding

triangle patches in the two geometry bintree are identified

and selected for processing. Once the texture is considered

detailed enough, texture refinements stops. At this point, the

texture is bound and the OpenGL texture matrix is initial-

ized to define the correct model to texture transformation.

Then, the algorithm continues refining the two geometry bin-

trees until the screen space geometry error becomes accept-

able and the associated patch can thus be sent to the graph-

ics pipeline. Each required texture is therefore bound only

once, and all the geometry data covered by that square is

then drawn, avoiding unnecessary context switches and min-

imizing host to graphics bandwidth requirement.

Since a one level refinement step in the texture quadtree

corresponds to two refinement steps into the geometry bin-

tree, all even geometry levels are skipped during the texture

refinement step, therefore possibly missing a correct geome-

try subdivision. To avoid introducing cracks, after the texture

is bound, the algorithm starts geometry refinement from the

parent patches of those selected by the texture refinement

step, since the error nesting rules ensure that the correct ge-

ometry levels cannot be above that level (see figure 6). If par-

ent patches meet the error criterion, they are rendered using

clipping planes to restrict their extent to that of the selected

texture; otherwise, geometry refinement continues normally,

descending in the geometry bintree. In order to load balance

the graphics pipeline, clipping geometry outside the current

texture domain is done at the pixel level, using fragment

kill operations. Rendering twice the same patch at the par-

ent level uses the same number of triangles of the standard

solution of forcing a refinement step, but requires half of the

graphics memory to store vertex data and it can be imple-

mented in a stateless refinement framework.

Figure 6: Texture continuity. Top: error nesting rules force

neighboring texture patches to differ by at most one level.

Bottom: to ensure continuity, geometry refinement starts

from the even geometry level above the selected texture.

View frustum culling is easily done as part of the recursive

refinement, exploiting the nested bounding volumes. Since a

patch bounding volume contains all the geometry of a given

subtree, recursion can stop without rendering whenever the

bounding volume is detected as invisible. Since the structure

is patch based, there is no need to handle the artifacts gen-

erated by partially visible triangles typical of vertex based

structures 9, 14.

4.3. Memory management

Time-critical rendering of large terrain datasets requires real-

time management of huge amounts of data. Moving data

c© The Eurographics Association and Blackwell Publishers 2003.
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from the storage unit to main memory and to the graphics

board is often the major bottleneck.

Host to GPU communication To take advantage of spa-

tial and temporal coherency, it is worth to spend some CPU

time to build an optimal rendering representation for each

patch, that can be efficiently reused on subsequent frames,

instead of using direct rendering each time. This is the only

way to harness the power of current graphics architectures,

that heavily rely on extensive on board data caching. With

BDAM, a memory manager based on a simple LRU strategy

explicitly manages graphics board memory. Texture data is

used to build OpenGL texture objects, and geometry data is

written directly to graphics memory using the OpenGL Ver-

tex Array Range extension. The primitive geometric element

is a patch composed of multiple triangles, that is heavily

optimized during pre-processing using cache-coherent tri-

stripping. Since we use an indexed representation, the post

trasformation-and-lighting cache of current graphics archi-

tectures is fully exploited.

Figure 7: Texture and Geometry data are stored us-

ing space-filling indexing schemes to improve memory co-

herency.

Out-of-core paging and data layout Since the BDAM al-

gorithm is designed to work in a stand-alone PC (as opposed

to a distributed, network-based solution), we assume that all

data is stored on local secondary storage unit. Our approach,

similarly to Lindstrom and Pascucci’s 14, optimizes the data

layout to improve memory coherency and accesses external

texture and geometry data through system memory mapping

functions. To minimize the number of page faults, data stor-

age order has to reflect traversal order. All data is therefore

sorted by level, then by patches. The patch order inside a

level is defined through two space filling curves, (one for ge-

ometry and one for texture), which achieve good memory

locality. Figure 7 illustrates the indexing schemes used for

data layout. To improve memory locality further, data files

are subdivided into a structure file and a data file. The struc-

ture files contains for each node information on the relative

patch error and the location of the data stored into the data

file. The data file contains all the information required by the

top-down traversal algorithm (error, bounding volume, loca-

tion of information in the associated data file), while the data

file contains the information required for rendering the ob-

ject (image data in for the textures, connectivity and vertex

data for the patches). As we let the operating system manage

the external memory (by means of memory mapping) the

finite size of the address space introduces a data size lim-

itation. On a 32 bit architecture, 4GB is the address space

limit, but operating systems such as Windows or Linux typ-

ically reserve less than 2GB for memory mapped segments.

Our solution is to overcome this limitation by mapping only

a segment of the data file at a time, moving the mapped seg-

ment as needed. This only applies to the data files, since

structure files are small enough to be always maintained in

core.

5. Building a BDAM

In this section we describe how a BDAM can be constructed

starting from a regular terrain height field. The technique

here presented to build the geometry bintrees is quite gen-

eral. The simplification algorithm used to generate the vari-

ous patches could be replaced with any other technique that

is able to remove/insert a given number of vertices and to

constrain the simplification to avoid removal of some ver-

tices. For example, the approach presented in the next para-

graphs could be easily reversed from simplification to refine-

ment and by using the classical greedy Delaunay-insertion

algorithm6.

5.1. High Quality Geometric Simplification

The hierarchical structure described in Section 3 is built

bottom-up, level by level. We refer to figure 8 to explain the

construction of level li from level li+1. As a first step, all

the vertices laying onto triangles’ longest edges are marked

as non-modifiable, which means that they will still exist in

the next level of the hierarchy. As you can see, this marking

splits the mesh into a set of square shaped sub-meshes (bold

gray lines), each one made of four triangular patches joined

along their shortest edges. After a square-shaped sub-mesh

is simplified, it is split along a diagonal into two triangular

patches. This splitting diagonal (lines in black) is taken so

that so that each of the two triangular patches corresponds to

a triangle at the next level of the bintree hierarchy. The sim-

plification is targeted to always halves the number of vertices

of the sub-mesh, thus the size of patches is approximatively

constant everywhere in the hierarchy.

In the right part of figure 2 we show an example of a

mesh that can be assembled by using the patches contained

in the bintree nodes and built following the process described

above. Note that each triangular patch has the longest edge

of the error (color) of the previous level, hence the error dis-

tribution of each patch, shown in figure 2, is respected. The

generality of this approach allows to use high quality feature

preserving simplification techniques (e.g. quadric based7 or

Delaunay insertion6) which produce, with the same number

of triangles, a much better terrain approximation than con-

strained bintree techniques4.

Placement of the vertices on the border of the quadtree

c© The Eurographics Association and Blackwell Publishers 2003.
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Figure 8: Construction of a BDAM through a sequence of simplification and marking steps. Each triangle represents a terrain

patch composed by many triangles. Colors correspond to different errors as in Fig 2.

cells needs extra care to ensure compatibility with textures

boundaries. Their projection must lie exactly on the bound-

ary of the patch triangular shape resulting from the regular

quadtree subdivision of the terrain. This results in a constrain

on the simplification of a region: no triangle must cross the

splitting diagonal if this diagonal is vertical or horizontal in

texture space. This constrain can be dropped when building a

BDAM where when texture are not used: the patches result-

ing from the splitting will have unconstrained zigzag borders

instead of straight ones.

During the construction we save each patch into an in-

termediate format containing vertices, border vertices and

faces. Finally we proceed to convert each level into the final

format. This consists of reordering all the patches to maxi-

mize data locality (as described in section 4.1), building tri-

angle strips and quantizing vertices coordinates to 16 bit, up-

dating errors in order to satisfy the nesting conditions.

5.2. Simplification algorithm

The task of simplifying a surface mesh is a well known prob-

lem. We employ an edge collapse simplification driven by

the well known quadric error metric 7 with few minor mod-

ifications. With respect to the classical formulation our sim-

plification algorithm must respect the constraints on the bor-

der vertices and on the diagonal specified in Section 5.1. The

preservation of the marked vertices is trivially satisfied by

"locking" such vertices and discarding those collapses which

would involve them. In the cases in which no new triangle

must cross the splitting diagonal, we simply force the ver-

tices laying in the diagonal and involved in an edge collapse

to stay in the vertical plane containing the patch’s diagonal:

this means that the minimization of the quadric error is done

only with respect to that plane.

We also introduce two small variations in the process that

improve the output mesh quality. The use of dihedral planes

to build the quadric and a smoothing step at the end of sim-

plification.

Dihedral planes In flat areas, the faces sharing a vertex lay

(almost) in the same plane, and in this plane the quadric er-

ror value is constant and minimal. This means that the ver-

tex resulting from the collapse of two other vertices could

be positioned everywhere in the plane, producing no error.

One way to cope with this problem is to add a measure of

the quality of the triangles generated by the collapses, such

as area and/or aspect ratio. Conversely we prefer to work on

the definition of the initial quadric error able to work also in

flat areas. We add supplementary planes to build the initial

vertex quadrics: for each edge e we add the plane includ-

ing e and with normal p = e× n , where n is the average

normal of the two triangles sharing e, as a contribution to

the quadric construction of the vertices of e. This contribu-

tion is scaled by a factor proportional to the dihedral angle

between the two faces sharing the edge e (Fig. 9). In other

words, the quadric error associated with a vertex will take

account not only of the distance of that vertex from from the

planes of the triangles adjacent to it, but also the distance

from these dihedral planes. We have simply added a con-

tribute from the lower dimension quadrics computed in the

tangent space, which can be easily seen taking a completely

flat mesh. In this case the only contribution to the quadrics

comes from the dihedral planes, which are all vertical and

correspond to the 2D quadric.

Smoothing A final step of Laplacian smoothing is used to

improve the triangle quality, with the constraint that a vertex

is actually moved into its "smoothed" position if and only if

the quadric error associated with the vertex does not worsen

over a given threshold.

Evaluating the error The error of the simplified mesh is

taken as the maximum vertical difference with the origi-

nal one. To perform this computation quickly by exploiting

graphics hardware, we render under orthographic projection

the original and simplified meshes and evaluate the differ-

ence among the corresponding depth buffers.

5.3. Out-of-core Texture LOD construction

In the preprocessing step, textures are converted into a hier-

archical structure containing the original image at different

levels of detail. The quadtree of texture tiles is obtained by a

bottom-up filtering process of the original image, optionally

followed by a compression to the DXT1 format. To ensure

texture continuity, texture tiles at a given level overlap by
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Figure 9: The plane added by edge e is weighted with the

cosine of dihedral angle α

a one texel border. The object space error of a given tex-

ture tile is the size, expressed in original image texels, of the

biggest feature that disappears when replacing the original

image data with the filtered one. A more pessimistic object

space error, used in our current implementation, is just the

magnification factor of the given texture tile. As for geom-

etry, error nesting is ensured by a final bottom-up pass that

combines all object space errors of neighboring and descen-

dant tiles. The entire process is easy to implement out-of-

core, since the filtering and compression process is done in-

dependently for each tile, and the connectivity information

for error propagation has a negligible size even when explic-

itly stored.

6. Results

An experimental software library and a terrain rendering ap-

plication supporting the BDAM technique have been imple-

mented and tested on Linux and Windows NT. The results

were collected on a Linux PC with two AMD Athlon MP

1600MHz processors, 2GB RAM, and a NVIDIA GeForce4

Ti4600 graphics board.

The test case discussed in this paper is a terrain dataset

over the Puget Sound area in Washington state ‡. We used

a 8,193x8,193 elevation grid with 20 meter horizontal and

0.1 meter vertical resolution. On this terrain, we mapped a

16,384x16,384 RGB texture.

6.1. Preprocessing

The input dataset was transformed by our texture and ge-

ometry processing tools. For textures, we used a tile size of

512x512 pixels, which produced a 9 level quadtree and com-

pressed colors using the DXT1 format. Texture preprocess-

ing, including error propagation, took roughly two hours and

produced a structure occupying 178 MB on disk. Processing

time is dominated by texture compression. For geometry, we

generated two 19 levels bintrees, with leaf nodes containing

‡ The dataset at various resolution is freely available from

http://www.cc.gatech.edu/projects/large_models/ps.html and is

now a standard benchmark for terrain rendering applications.

triangular patches of 16x16 vertex side at full resolution and

interior nodes with a constant vertex count of 200. Geom-

etry preprocessing, that included optimized tristrip genera-

tion, exhibits the following times and memory requirements:

Size Tris Time (h:m:s) Output size RAM

1K x 1K 2M 6:35 2 x 14MB 9MB

4K x 4K 32M 1:42:33 2 x 196MB 30MB

8K x 8K 128M 6:39:23 2 x 765MB 115MB

For the sake of comparison, Hoppe’s view dependent pro-

gressive meshes 10, that, like BDAMs, support unconstrained

triangulation of terrains, need roughly 380MB of RAM and

uses 190MB of disk space to build a multiresolution model

of a simplified version of 7.9M triangles of the Puget Sound

dataset. Preprocessing times are similar to BDAM times. By

contrast, SOAR 15 geometry data structure, which is based

on a hierarchy of right triangles, takes roughly 3.4 GB§ on

disk for the processed data set, but is much faster to compute

since the subdivision structure is data independent.

6.2. View-dependent Refinement

We evaluated the performance of the BDAM technique on a

number of flythrough sequences over the Puget Sound area.

The quantitative results presented here were collected during

a 50 seconds high speed fly-over of the data set with a win-

dow size of 800x600 pixels and a screen tolerance of 1.0

pixel. The qualitative performance of our view-dependent

refinement is further illustrated in an accompanying video,

showing the live recording of the analyzed flythrough se-

quence (Fig. 10). During the entire walkthrough, the resident

set size of the application is maintained at roughly 160 MB,

i.e. less than 10% of data size, demostrating the effectiveness

of out-of-core data management.

Figure 11(a) illustrates the rendering performance of the

application. We were able to sustain an average rendering

rate of roughly 22 millions of textured triangles per sec-

ond, with peaks exceeding 25 millions, which are close to

the peak performance of the rendering board (Fig. 11(a)

left). By comparison, on the same machine, SOAR peak

performance was measured at roughly 3.3 millions of tri-

angles per second, even though SOAR was using a smaller

single resolution texture of 2Kx2K texels. The increased

performance of the BDAM approach is due to the larger

granularity of the structure, that amortizes structure traver-

sal costs over many graphics primitives, reduces AGP data

transfers through on-board memory management and fully

exploits the post-texture-and-lighting cache with optimized

indexed triangle strips. The time overhead of BDAM struc-

ture traversal, measured by repeating the test without exe-

cuting OpenGL calls, is only about 20% of total frame time

§ The version of SOAR used in this comparison is v1.11, available

from http://www.cc.gatech.edu/∼lindstro/software/soar/
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(a) Frame 400 (b) Frame 1751

Figure 10: Selected flythrough frames. Screen space error tolerance set to 1.0 pixels.
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(c) BDAM overhead per frame

Figure 11: Performance Evaluation.

(Fig. 11(c)), demonstrating that we are GPU bound even for

large data sets.

Rendered scene granularity is illustrated in figure 11(b):

even though the peak complexity of the rendered scenes ex-

ceeds 350K triangles and 20 M texels per frame, the number

of rendered graphics primitives per frame remains relatively

small, never exceeding 1000 patches and 64 texture blocks

per frame. Since we are able to render such complex scenes

at high frame rates (60 to 240 Hz for the entire test path,

Fig. 11(b)), it is possible to use very small pixel threshold,

virtually eliminating popping artifacts, without resorting to

costly geomorphing features. Moreover, since TINs are used

as basic building blocks, triangulation can be more easily

adapted to high frequency variations of the terrain, such as

cliffs, than techniques based on regular subdivision meshes

(Fig. 12).

7. Conclusions

We have presented an efficient technique for out-of-core ren-

dering and management of large textured terrain surfaces.

The technique, called Batched Dynamic Adaptive Meshes

(BDAM), is based on a paired tree structure: a tiled quadtree

for texture data and a pair of bintrees of small triangular

patches for the geometry. These small patches are TINs

and are constructed and optimized off-line with high qual-

ity simplification and tristripping algorithms. Hierarchical

view frustum culling and view-dependendent texture and ge-

ometry refinement is performed at each frame with a state-

less traversal algorithm that renders a continuous adaptive

terrain surface by assembling out-of-core data. Thanks to

the batched CPU/GPU communication model, the proposed

technique is not processor intensive and fully harnesses the

power of current graphics hardware. Both preprocessing and
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(a) BDAM approximation with 14K triangles (b) SOAR approximation with 14K triangles

Figure 12: Quality Evaluation. TINs can easily adapt to high frequency variations of the terrain such as cliffs, while many

subdivision levels are needed for regular subdivision meshes, that spend a large fraction of the triangle budget in edge following.

rendering exploit out of core techniques to be fully scalable

and be able to manage large terrain datasets.
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