
bdbms – A Database Management System for Biological
Data

Mohamed Y. Eltabakh Mourad Ouzzani Walid G. Aref
Department of Computer Science

Purdue University
West Lafayette, IN

{meltabak,mourad,aref}@cs.purdue.edu

ABSTRACT

Biologists are increasingly using databases for storing and
managing their data. Biological databases typically consist
of a mixture of raw data, metadata, sequences, annotations,
and related data obtained from various sources. Current
database technology lacks several functionalities that are
needed by biological databases. In this paper, we intro-
duce bdbms, an extensible prototype database management
system for supporting biological data. bdbms extends the
functionalities of current DBMSs with: (1) Annotation and
provenance management including storage, indexing, ma-
nipulation, and querying of annotation and provenance as
first class objects in bdbms, (2) Local dependency track-
ing to track the dependencies and derivations among data
items, (3) Update authorization to support data curation via
content-based authorization, in contrast to identity-based
authorization, and (4) New access methods and their sup-
porting operators that support pattern matching on vari-
ous types of compressed biological data types. This paper
presents the design of bdbms along with the techniques pro-
posed to support these functionalities including an exten-
sion to SQL. We also outline some open issues in building
bdbms.

1. INTRODUCTION
Biological databases are essential to biological experimen-

tation and analysis. They are used at different stages of life
science research to deposit raw data, store interpretations of
experiments and results of analysis processes, and search for
matching structures and sequences. As such, they represent
the backbone of life sciences discoveries. However, current
database technology has not kept pace with the prolifer-
ation and specific requirements of biological databases [25,
37]. In fact, the limited ability of database engines to furnish
the needed functionalities to manage and process biological
data properly has become a serious impediment to scientific
progress.

This publication is licensed under a Creative Commons Attribution 2.5
License; see http://creativecommons.org/licenses/by/2.5/ for further details.
CIDR 2007 Asilomar, CA USA

In many cases, biologists tend to store their data in flat
files or spreadsheets mainly because current database sys-
tems lack several functionalities that are needed by biolog-
ical databases, e.g., efficient support for sequences, anno-
tations, and provenance. Once the data resides outside a
database system, it loses effective and efficient manageabil-
ity. Consequently, many of the advantages and functionali-
ties that database systems offer are nullified and bypassed.
It is thus important to break this inefficient and ineffective
cycle by empowering database engines to operate directly
on the data from within its natural habitat; the database
system.

Biological databases evolve in an environment with
rapidly changing experimental technologies and semantics
of the information content and also in a social context that
lacks absolute authority to verify correctness of information.
Furthermore, because the only authority is the scientific
community itself, biological databases often require some
form of community-based curation. These characteristics
make it difficult, even using good design strategies, to com-
pletely foresee the kinds of additional information (termed
annotations) that, over time, may become necessary to at-
tach to data in the database.

In this paper, we propose bdbms, an extensible proto-
type database engine for supporting and processing biolog-
ical databases. While there are several functionalities of
interest, we focus on the following key features: (1) Anno-
tation and provenance management, (2) Local dependency
tracking, (3) Update authorization, and (4) Non-traditional
and novel access methods. bdbms will make fundamental
advances in the use of biological databases through new
native and transparent support mechanisms at the DBMS
level.

Annotations and provenance data are treated as first-class
objects inside bdbms. bdbms provides a framework that al-
lows adding annotations/provenance at multiple granulari-
ties, i.e., table, tuple, column, and cell levels, archiving and
restoring annotations, and querying the data based on the
annotation/provenance values. In bdbms, we introduce an
extension to SQL, termed Annotation-SQL, or A-SQL for
short, to support the processing and querying of annotation
and provenance information. A-SQL allows annotations and
provenance data to be seamlessly propagated with query an-
swers with minimal user programming.

In bdbms, we propose a systematic approach for tracking
dependencies among database items. As a result, when a
database item is modified, bdbms can track and mark any

196

This article is published under a Creative Commons License Agreement

(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make derivative

works and make commercial use of the work, but you must attribute the

work to the author and CIDR 2007.

3rd Biennial Conference on Innovative Data Systems Research (CIDR)

January 7-10, 2007, Asilomar, California, USA.

… Gene_seq Protein_seq

•Complex procedures

•Lab experiments

•Prediction tools

Chemical

reaction

Enzymes

Proteins

Product

•Complex procedures

•Lab experiments

•Use of equipments

Figure 1: Local dependencies

other item that is affected by this modification and that
needs to be re-verified. This feature is particularly desirable
in biological databases because many dependencies cannot
be computed using coded functions. For example (refer to
Figure 1), protein sequences are derived from gene (DNA)
sequences. If a gene sequence is modified, the correspond-
ing protein sequence(s), derived calculated quantities (such
as molecular weight), and annotations may become invalid.
Similarly, we may store descriptions of chemical reactions,
e.g., substrates, reaction parameters, and products. If any
of the substrates in the reaction are modified, the products
of the reaction are likely to require re-evaluation. However,
since these dependencies are complex and involve lab ex-
periments and external analysis, database systems cannot
systematically re-compute the other affected items. Lack
of system support to automatically track such dependencies
raises significant concerns on the quality and the consistency
of the data maintained in biological databases.

Authorizing database operations is also one of the features
that we extended in bdbms. Current database systems sup-
port the GRANT/REVOKE access models that depend only
on the identity of the user. In bdbms, we propose the con-
cept of content-based authorization, i.e., the authorization
is based not only on the identity of an updater but also on
the content of the updated data. For example, lab members
may have the authority to update a given data set. However,
for credibility and reliability of the data, these updates have
to be revised by the lab administrator. The lab administra-
tor can then approve or disapprove the operations based on
their contents. In the mean time, users may be allowed to
view the data pending its approval/disapproval.

The other key feature in bdbms is to provide access meth-
ods for supporting various types of biological data. Our goal
is to design and integrate non-traditional and novel access
methods inside bdbms. For example, sequences and multi-
dimensional data are very common in biological databases
and hence there is a need to integrate new types of index
structures such as SP-GiST [3, 4, 16, 22] and the SBC-
tree [17] inside bdbms along with their supporting operators.
SP-GiST is an extensible indexing framework for support-
ing multi-dimensional data while the SBC-tree is an index
structure for indexing and querying compressed sequences
without decompressing them.

The rest of the paper is organized as follows. In Section 2,
we present the overall architecture of bdbms. In Sections 3–
7, we present each of the bdbms key features. Section 8
overviews the related work, and Section 9 contains conclud-
ing remarks.

2. BDBMS SYSTEM ARCHITECTURE
The main components of bdbms are the annotation man-

ager, the dependency manager, and the authorization man-

ager. A-SQL is bdbms’s extended SQL that supports anno-
tation (Section 3) and authorization commands (Section 6).
bdbms’s annotation manager is responsible for handling the
annotations in an annotation storage space (Section 3). The
dependency manager is responsible for handling the depen-
dencies and derivations among database items. These de-
pendencies are stored in a dependency storage space (Sec-
tion 5). The authorization manager handles content-based
authorizations as well as the standard GRANT/REVOKE
authorizations over the database (Section 6). Index struc-
tures are available in bdbms in support of the multidimen-
sional and compressed data (Section 7).

3. ANNOTATION MANAGEMENT
Annotations are extra information linked to data items

inside a database. They usually represent users’ com-
ments, experiences, related information that is not mod-
eled by the database schema, or the provenance (lineage)
of the data. Adding and retrieving annotations represent
an important way of communication and interaction among
database users. In biological databases, annotations are
used extensively to allow users to have a better understand-
ing of the data, e.g., how a piece of data is obtained, why
some values are being added or modified, and which exper-
iments or analyses are being performed to obtain a set of
values. Annotations can be also used to track the prove-
nance of the data, e.g., from which source a piece of data
is obtained or which program is used to generate the data.
Tracking the provenance of the data is very important in
assessing the value and credibility of the data and in giving
credit to the original data generators.

Users can annotate the data at multiple granularities, e.g.,
annotating an entire table, an entire column, a subset of the
tuples, a few cells, or a combination of these.

Despite their importance, annotations are not systemat-
ically supported by most database systems. While anno-
tation management has been addressed in previous works,
e.g., [7, 8, 10, 35], most of the proposed techniques usu-
ally assume simple annotation schemes and focus mainly on
annotation propagation, i.e., propagating annotations along
with the query answers. Other aspects of annotations man-
agement, e.g., mechanisms for their insertion, archival, and
indexing as well as more efficient annotation schemes such
as multi-granularity schemes, have not been addressed.

In bdbms, we address several challenges and requirements
of annotation management. We highlight these challenges
and requirements through the following example. We con-
sider two gene tables, DB1 Gene and DB2 Gene that have been
obtained from two different databases (Refer to Figures 2
and 3 for illustration). Each table has a set of annotations
attached to it. We assume a straightforward storage scheme
for storing the annotations, e.g., the one used in [7], where
each column in the database has an associated annotation
column to store the annotations (Figure 3).

Adding annotations: Users want to annotate their data
at various granularities in a transparent way. That is, how
or where the annotations are stored should be transparent
from end-users. However, current database systems do not
provide a mechanism to facilitate annotating the data. For
example, to add annotation A2 over table DB1 Gene (Fig-
ure 2), the user has to know that the annotations are stored
in the same user table in columns Ann GID, Ann GName,
and Ann GSequence. Then, the user issues an UPDATE

197

GTGAAACTGGA…fruRJW0078

ATGAAAGTATC…yabPJW0055

ATGAAAGCAGC…ftsIJW0082

ATGATGGAAAA…mraWJW0080

GSequenceGNameGID

DB1_Gene

A3: Involved in methyltransferase activity

A1: These genes are published in …

A2: These genes were obtained from RegulonDB

ATGAAAGTATC…yabPJW0055

ATGCAGATCCT…ispHJW0027

ATGGATCATCT…caiBJW0037

ATGAACACGTT…fixBJW0041

ATGATGGAAAA…mraWJW0080

GSequenceGNameGID

DB2_Gene

B3: obtained from GenoBase

B5: This gene has an unknown function

B4: pseudogene

B2: possibly split by frameshift

B1: Curated by user admin

Figure 2: Annotating tables DB1 Gene and DB2 Gene

A2

A1, A2

A1

Ann_GName

GTGAAACTGGA…

ATGAAAGTATC…

ATGAAAGCAGC…

ATGATGGAAAA…

GSequence

A2

A1, A2

A1

Ann_GID

A2fruRJW0078

A2yabPJW0055

ftsIJW0082

A3mraWJW0080

Ann_GSequenceGNameGID

A2

A1, A2

A1

Ann_GName

GTGAAACTGGA…

ATGAAAGTATC…

ATGAAAGCAGC…

ATGATGGAAAA…

GSequence

A2

A1, A2

A1

Ann_GID

A2fruRJW0078

A2yabPJW0055

ftsIJW0082

A3mraWJW0080

Ann_GSequenceGNameGID

DB1_Gene ATGCAGATCCT…

ATGAAAGTATC…

ATGGATCATCT…

ATGAACACGTT…

ATGATGGAAAA…

GSequence

B2

B2

B1, B4

B1

B1, B5

Ann_GName

B3

B3

B3, B4

B3

B3, B5

Ann_GSequence

B1, B4

B1

B1, B5

Ann_GID

yabPJW0055

ispHJW0027

caiBJW0037

fixBJW0041

mraWJW0080

GNameGID

ATGCAGATCCT…

ATGAAAGTATC…

ATGGATCATCT…

ATGAACACGTT…

ATGATGGAAAA…

GSequence

B2

B2

B1, B4

B1

B1, B5

Ann_GName

B3

B3

B3, B4

B3

B3, B5

Ann_GSequence

B1, B4

B1

B1, B5

Ann_GID

yabPJW0055

ispHJW0027

caiBJW0037

fixBJW0041

mraWJW0080

GNameGID

DB2_Gene

Figure 3: Simple annotation storage scheme: Every data column has a corresponding annotation column

statement to update these columns by adding A2 to the de-
sired annotation cells (Figure 3).

To support data annotation, the system has to provide
new mechanisms for seamlessly adding annotations at var-
ious granularities. It is essential to provide new expressive
commands as well as visualization tools that allow users to
add their annotations graphically.

Storing annotations at multiple granularities: As
in Figure 2, users may annotate a single cell, e.g., A3, few
cells, e.g., A1 and B2, entire rows, e.g., A2 and B4, or entire
columns, e.g., B3. Multi-granularity annotations motivate
the need for efficient storage and indexing schemes. Other-
wise, storing and processing the annotations can be very ex-
pensive. For example, annotations A2 and B3 are repeated
in the annotation columns 6 and 5 times, respectively. The
need for such efficient schemes is especially important in the
context of provenance where a single provenance record can
be attached to many tuples or even entire columns or tables.

Categorizing annotations: Although all annotations
are metadata, they may have different importance, mean-
ing, and creditability. For example, annotations that are
added by a certain user or group of users can be more im-
portant than annotations added by the public or unknown
users. Moreover, annotations that represent the lineage of
the data have different purpose and importance from the
annotations that represent users’ comments. For example,
annotations A2 and B3 represent the lineage of some data,
and users may be interested only in these annotations. As
will be discussed later in the paper, the different types of
annotations will also have an impact on the storage mech-
anism adopted for each type. This diversity in annotations
motivates the need for separating or categorizing the anno-
tations. bdbms provides a mechanism that allows users to
categorize their annotations at the storage, query process-
ing, and annotation propagation levels.

Archiving annotations: Users may need to archive or
delete annotations as they become obsolete, old, or simply
invalid. Archived annotations should not be propagated to

users along with query answers. For example, annotation
B5 in Figure 2 states that gene JW0080 has an unknown
function. But if the function of this gene becomes known
and gets added to the database, then B5 becomes invalid
and users do not want to propagate this annotation along
with query answers. Without providing a mechanism for
archiving annotations, the archival operation may not be an
easy task. For example, to archive annotation B5, the user
needs to find out which tuples/cells in the database has B5,
then the contents of each of these cells are parsed to archive
then delete B5.

Propagating annotations: A key requirement in
allowing annotation propagation is to simplify users’
queries. This can be only achieved by providing database
system support for annotation propagation; for example,
by extending the query operators. Otherwise, users’ queries
may become complex and user-unfriendly. For example,
consider a simple query that retrieves the genes that
are common in DB1 Gene and DB2 Gene along with their
annotations (Figure 3). To answer this query, the user has
to write the following SELECT statements (a–c):

(a) R1(GID, GName, GSequence) =
SELECT GID, GName, GSequence
FROM DB1 Gene
INTERSECT
SELECT GID, GName, GSequence
FROM DB2 Gene;

In Step (a), the user selects only the data columns
from both gene tables, i.e., GID, GName, GSequence, and
performs the intersection operation.

(b) R2(GID, GName, GSequence, Ann GID,

Ann GName,Ann GSequence) =
SELECT R.GID, R.GName, R.GSequence,

G.Ann GID, G.Ann GName, G.Ann GSequence
FROM R 1 R, DB1 Gene G

198

CREATE ANNOTATION TABLE <ann_table_name>

ON <user_table_name>

DROP ANNOTATION TABLE <ann_table_name>

ON <user_table_name>

Figure 4: The A-SQL commands CREATE and

DROP

WHERE R.GID = G.GID;

In Step (b), the user joins the output from Step (a) back
with Table DB1 Gene in order to retrieve the annotations
from this table. Notice that we cannot select the annotation
columns in Step (a) because, since the annotation values
in the annotation attributes may vary in the two tables, in
this case the intersection operation would not return any
tuples.

(c) R3(GID, GName, GSequence, Ann GID,

Ann GName, Ann GSequence) =
SELECT R.GID, R.GName, R.GSequence,

R.Ann GID+G.Ann GID,
R.Ann GName+G.Ann GName,
R.Ann GSequence+G.Ann GSequence

FROM R 2 R, DB2 Gene G
WHERE R.GID = G.GID;

In Step (c), a join is performed between R2 and DB2 Gene

to consolidate the annotations from DB2 Gene with R2’s an-
notations, where + is the annotation union operator.

The main reason for the complexity of querying and prop-
agating the annotations is that users view annotations as
metadata, whereas the DBMSs view annotations as normal
data. For example, from a user’s view point, the two tu-
ples corresponding to genes JW0080 and JW0055 in Table
DB1 Gene are identical to those in Table DB2 Gene (Fig-
ure 3). They only have different annotations. Whereas,
from the database view point, these tuples are not identical
because annotations are viewed as normal attribute data.
As a result, users’ queries may become complex in order to
overcome the mismatch in interpreting the annotations.

In the following subsections, we introduce our initial in-
vestigations through bdbms to address the challenges and
requirements highlighted above along with some preliminary
results.

3.1 Storing and Indexing Annotations
bdbms allows a user relation to have multiple annotation

tables attached to it. For example, table DB1 Gene may have
an annotation table that stores the provenance information
and another annotation table that stores users’ comments.
To create an annotation table over a given user relation, the
A-SQL command CREATE ANNOTATION TABLE (Fig-
ure 4) is used. CREATE ANNOTATION TABLE allows
users to design and categorize their annotations at the stor-
age level. This categorization will also facilitate annotation
propagation (discussed in Section 3.4), where users may re-
quest propagating a certain type of annotations. To drop an
annotation table, the DROP ANNOTATION TABLE com-
mand (Figure 4) is used.

To efficiently store the annotations, we are investigating

Columns

Tuples

Time

(B1, T1)

(B2, T2)

(B3, T3)

(B4, T4)

(B5, T5)

Figure 5: Compact storage for annotations

several storage and indexing schemes. One possible direc-
tion is to consider compact representation of annotations
that would improve the system performance with respect to
storage overhead, I/O cost to retrieve the annotations, and
the query processing time. For example, instead of stor-
ing the annotations at the cell level, we may store some of
the annotations at coarser granularities. For instance, the
annotations over Table DB2 Gene (Figure 2) can be repre-
sented as rectangles attached to groups of contiguous cells
as illustrated in Figure 5, where DB2 Gene is viewed as two-
dimensional space, e.g., columns represent the X-axis and
tuples represent the Y-axis. In this case, an annotation over
any group of contiguous cells can be represented by a sin-
gle annotation record. So, in general, an annotation over a
subset of a table will map to multiple rectangular regions.
Other annotation characteristics that may need to be taken
into account include whether the annotation is linked to
multiple data items in different tables or is linked to very
few specific cells.

3.2 Adding Annotations at Multiple Granu
larities

To add annotations using A-SQL, we propose the ADD
ANNOTATION command (Figure 6(a)). The annota-
tion table names specifies to which annotation table(s) the
added annotation will be stored. The annotation body spec-
ifies the annotation value to be added. The output of the
SQL statement specifies the data to which the annotation is
attached. Since annotations may contain important infor-
mation that users want to query, we plan to support XML-
formatted annotations. That is, annotation body is an XML-
formatted text. In this case, users can (semi-)structure their
annotations and make use of XML querying capabilities over
the annotations. The output of the SQL statement can be at
various granularities, e.g., entire tuples, columns, or group
of cells. For example, to add annotation B3 over the en-
tire GSequence column in Table DB2 Gene (as illustrated in
Figure 2), we execute the following ADD ANNOTATION
command:

ADD ANNOTATION

TO DB2 Gene.GAnnotation

VALUE ’< Annotation >

obtained from GenoBase

< /Annotation >’

ON (Select G.GSequence

From DB2 Gene G);

199

ADD ANNOTATION

TO <annotation_table_names>

VALUE <annotation_body>

ON <SQL_statement>

ARCHIVE ANNOTATION

FROM <annotation_table_names>

[BETWEEN <time1> AND <time2>]

ON <SELECT_statement>

RESTORE ANNOTATION

FROM <annotation_table_names>

[BETWEEN <time1> AND <time2>]

ON <SELECT_statement>

(a)

(b) (c)

Figure 6: The A-SQL commands ADD, ARCHIVE,

and RESTORE

In this case, the annotation is attached to the entire GSe-
quence column because no WHERE clause is specified. The
annotation is stored in the annotation table GAnnotation.
Notice that < Annotation > is the XML tag that encloses
the annotation information.

Similarly, to annotate an entire tuple, e.g., annotation B5,
we execute the following ADD ANNOTATION command:

ADD ANNOTATION

TO DB2 Gene.GAnnotation

VALUE ’< Annotation >

This gene has an unknown function

< /Annotation >’

ON (Select G.*

From DB2 Gene G

WHERE GID = ’JW0080’);

In this case, the annotation is attached to the entire tuples
returned by the query since all the attributes in the table
are selected.

To allow users to link annotations to database operations,
i.e., INSERT, UPDATE, or DELETE, the SQL statement
will be an INSERT, UPDATE or DELETE statement. For
example, instead of inserting a new tuple and then anno-
tating it by issuing a separate ADD ANNOTATION com-
mand, users can insert and annotate the new tuple instantly
by enclosing the insert statement inside the ADD ANNO-
TATION command. For the delete operation, the deleted
tuples will be stored in separate log tables along with the an-
notation that specifies why these tuples have been deleted.
Notice that the standard system recovery log cannot be used
for this purpose as the users need the freedom to structure
their annotation schemas the way they want, which system
recovery logs do not support.

We plan to add a visualization tool to allow users to anno-
tate their data in a transparent way. The visualization tool
displays users’ tables as grids or spreadsheets where users
can select one or more cells to annotate. Oracle address
the integration of database tables with Excel spreadsheets
to make use of Excel visualization and analysis power [2]. In
bdbms, we plan to add this integration feature to facilitate
adding and visualizing annotations.

3.3 Archiving and Restoring Annotations
Archival of annotations allows users to isolate old or in-

valid annotations from recent and valuable ones. In bdbms,
we support archival of annotations instead of permanently
deleting them because biological data usually has a degree

SELECT [DISTINCT] Ci [PROMOTE (Cj, Ck, …)], …

FROM Relation_name [ANNOTATION(S1, S2, …)], …

[WHERE <data_conditions>]

[AWHERE <annotation_condition>]

[GROUP BY <data_columns>

[HAVING <data_condition>]

[AHAVING <annotation_condition>]]

[FILTER <filter_annotation_condition>]

Figure 7: The A-SQL SELECT command

of uncertainty and old values may turn out to be the correct
values. Archiving annotations gives users the flexibility to
restore the annotations back if needed. Unlike other anno-
tations, archived annotations are not propagated to users
along with the query answers. However, if archived annota-
tions are restored, then they will be propagated normally.

To archive and restore annotations, we introduce the
ARCHIVE ANNOTATION (Figure 6(b)) and RESTORE
ANNOTATION (Figure 6(c)) commands, respectively. The
FROM clause specifies from which annotation table(s) the
annotations will be archived/restored. The optional clause
BETWEEN specifies a time range over which the anno-
tations will be archived/restored. This time corresponds
to the times-tamp assigned to each annotation when it is
first added to the database. The output from the SE-
LECT statement specifies the data on which the annotations
will be archived/restored. In addition, the output from the
SELECT statement can be at multiple granularities, as ex-
plained in the ADD ANNOTATION command.

3.4 Annotation Propagation and Annotation
based Querying

To support the propagation of annotations and querying
of the data based on their annotations, we introduce the
A-SQL command SELECT, given in Figure 7. A-SQL SE-
LECT extends the standard SELECT by introducing new
operators and extending the semantics of the standard op-
erators. We introduce the new operators ANNOTATION,
PROMOTE, AWHERE, AHAVING, and FILTER.

The ANNOTATION operator allows users to specify
which annotation table(s) to consider in the query. Using
the ANNOTATION operator, users can propagate their an-
notations transparently. That is, users do not have to know
how or where annotations are stored. Instead, users only
specify which annotations are of interest.

The PROMOTE operator allows users to copy annota-
tions from one or more columns, possibly not in the projec-
tion list, to a projected column. For example, if column GID
is projected from Table DB1 Gene, then Annotation A3 will
not be propagated unless the annotations over GSequence
are copied to GID.

The AWHERE and AHAVING clauses are analogous to
the standard WHERE and HAVING clauses except that the
conditions of AWHERE and AHAVING are applied over the
annotations. That is, AWHERE and AHAVING pass a tu-
ple along with all its annotations only if the tuple’s annota-
tions satisfy the given AWHERE and AHAVING conditions.
On the other hand, the FILTER clause passes all the data
tuples of the input relation (keeps user’s data intact) but it

200

copy

Local insertion

update overwrite

What is the source of

this value at time T?

Where do these

values come from?

Source

S2

Source

S3

Program

P1

copySource

S2

Figure 8: Data provenance at multiple granularities

filters the annotations attached to each tuple. That is, any
annotation that does not satisfy filter annotation condition
is dropped.

The standard operators, e.g., projection, selection, and
duplicate elimination, are also extended to process the an-
notations attached to the tuples. For example, the projec-
tion operator selects some user attributes from the input
relation and passes only the annotations attached to those
attributes. For example, projecting column GID from Ta-
ble DB2 Gene (Figure 2) results in reporting GID data along
with annotations B1, B4, and B5 only. The selection oper-
ators in WHERE and HAVING select tuples from the input
relation based on conditions applied over the data values.
The selected tuples are passed along with all their annota-
tions. For example, selecting the gene with GID = JW0080
from Table DB2 Gene results in reporting the first tuple in
DB2 Gene along with annotations B1, B3, and B5. Opera-
tors that group or combine multiple tuples into one tuple,
e.g., duplicate elimination, group by, union, intersect, and
difference, are also extended to handle the annotations at-
tached to the tuples. These operators union the annotations
over the grouped or combined tuples and attach them to the
output tuple that represents the group.

While defining the above commands and operators is only
the first step in supporting annotations and other features
within bdbms, we need to define for each A-SQL operator
its algebraic definition, cost estimate function, and algebraic
properties that can be used by the query optimizer to gen-
erate efficient query plans.

4. PROVENANCE MANAGEMENT
Biologists commonly interact and exchange data with each

other. Tracking the provenance (lineage) of data is very
important in assessing the value and credibility of the data.
Similar to annotations, data provenance can be attached
to the database at multiple granularities, i.e., at the table,
column, tuple levels, or any sub-groupings and subsets of the
data. Also, biological data can be queried by its provenance.
For example (refer to Figure 8), one table may contain data
from multiple sources, e.g., S1 and S2, or data that is locally
inserted. Then, some values may be updated by a certain
program, e.g., P1, and some columns may be overwritten
by data from another source, e.g., S3. Then, users may be
interested to know the source of some values at a certain
moment in time.

Similarity matching procedure
BLAST-2.2.15

2e-04TTAAGCCCG…ATTTCCCAC…

1e-102TAAACCGGC…TTTGCCGGA…

3e-20ATCCTGGTT…ATCCCGGTT…

EvalueGene2Gene1

(a)

(b)
GeneMatching

ATGAAAGTATC…yabPJW0055

ATGAAAGCAGC…ftsIJW0082

ATGATGGAAAA…mraWJW0080

GSequenceGNameGID

ATGAAAGTATC…yabPJW0055

ATGAAAGCAGC…ftsIJW0082

ATGATGGAAAA…mraWJW0080

GSequenceGNameGID

Hypothetical protein

Cell wall formation

Exhibitor

PFunction

MKVSVPGM…JW0055yabP

MKAAAKTQ…JW0082 ftsI

MMENYKHT…JW0080mraW

PSequenceGIDPName

Hypothetical protein

Cell wall formation

Exhibitor

PFunction

MKVSVPGM…JW0055yabP

MKAAAKTQ…JW0082 ftsI

MMENYKHT…JW0080mraW

PSequenceGIDPName

Prediction tool P

Lab experiment

Gene Protein

Figure 9: Local dependency tracking

In bdbms, we treat provenance data as a kind of anno-
tations where all the requirements and functionalities dis-
cussed in Section 3 are also applicable to provenance data.
However, provenance data has special requirements and
characteristics that need to be addressed including:

• Structure of provenance data: Unlike annotations
that can be free text, provenance data usually has
well-defined structure. For example, the names of the
source database and the source table draw their values
from a list of pre-defined values. Supporting XML-
formatted annotations can be beneficial in structur-
ing provenance data. For example, provenance data
can follow a predefined XML schema that needs to be
stored and enforced by the database system.

• Authorization over provenance data: End-users
are usually not allowed to insert or update the prove-
nance data. Provenance data needs to be automat-
ically inserted and maintained by the system. For
example, integration tools that copy the data from
one database to another can be the only tools that
insert the provenance information. End-users can
only retrieve or propagate this information. There-
fore, we need to provide an access control mechanism
over the provenance data (and annotations in general)
to restrict the annotation operations, e.g., addition,
archival, and propagation, to certain users or programs
as required.

5. LOCAL DEPENDENCY TRACKING
Biological databases are full of dependencies and deriva-

tions among data items. In many cases, these dependencies
and derivations cannot be automatically computed using
coded functions, e.g., stored procedures or functions inside
the database. Instead, they may involve prediction tools,
lab experiments, or instruments to derive the data. Us-
ing integrity constraints and triggers to maintain the con-
sistency of the data is limited to computable dependencies,

201

i.e., dependencies that can be computed via coded functions.
However, non-computable dependencies cannot be directly
handled using integrity constraints and triggers. In Figure 9,
we give an example of the dependencies that can be found
in biological databases. In Figure 9(a), protein sequences
are derived from the gene sequences using a prediction tool
P, whereas the function of the protein is derived from the
protein sequence using lab experiments. If a gene sequence
is modified, then all protein sequences that depend on that
gene have to be marked as outdated until their values are re-
verified. Moreover, the function of the outdated proteins has
to be marked as outdated until their values are re-evaluated.

In Figure 9(b), we present another type of dependency
where the value of the data in the database depends on the
procedure or program that generated that data. For exam-
ple, the values in the Evalue column (Figure 9(b)) depend on
Procedure BLAST-2.2.15. If a newer version of BLAST is
used or BLAST is replaced with another procedure, then
we need to re-evaluate the values in the Evalue column.
These values can be automatically evaluated if BLAST can
be modeled as a database function. Otherwise, the values
have to be marked as Outdated.

In bdbms, we propose to extend the concept of Func-
tional Dependencies [5, 13] to Procedural Dependencies. In
Procedural Dependencies, we not only track the dependency
among the data, but also the type and characteristics of the
dependency, e.g., the procedure on which the dependency is
based, whether or not that procedure can be executed by the
database, and whether or not that procedure is invertible.
For example, we can model the dependencies in Figure 9
using the following rules.

Gene.GSequence Protein.PSequence
Prediction tool P

(Executable,
non-invertible)

(1)

Protein.PSequence Protein.PFunction
Lab experiment

(non-executable,
non-invertible)

(2)

GeneMatching.Gene1, GeneMatching.Gene2 GeneMatching.Evalue
BLAST-2.2.15

(Executable,

non-invertible)

(3)

Rule 1 specifies that Column PSequence in Table Protein

depends on Column GSequence in Table Gene through the
prediction tool P that is executable by the database and
is non-invertible. Rule 2 specifies that column PFunction
in Table Protein depends on Column PSequence through a
lab experiment that is not executable by the database and
is non-invertible. Rule 3 specifies that Column Evalue in
Table GeneMatching depends on both columns Gene1 and
Gene2 through Program BLAST-2.2.15 that is executable
by the database and is non-invertible. For example, from
Rule 2, we infer that when Column PSequence changes, the
database can only mark PFucntion as Outdated. In con-
trast, based on Rule 3, when either of the Gene1 or Gene2
columns or Procedure BLAST-2.2.15 change, the database
can automatically re-evaluate Evalue.

In addition, the notion of Procedural Dependencies allows
us to reason about the dependency rules. For example, in
addition to the closure of an attribute, we can compute the
closure of a procedure, i.e., all data in the database that

depend on a specific procedure. We can also derive new
rules, for example, based on rules (1) and (2) above, we can
derive the following rule:

Gene.GSequence Protein.PFunction

Prediction tool P,

lab experiment

(non-executable,
non-invertible)

(4)

Rule 4 specifies that Column PFunction in Table Protein

depends on Column GSequence in Table Gene through a
chain of two procedures, a perdition tool P and a lab ex-
periment. This chain is non-executable by the database and
is non-invertible. Notice that the chain is non-executable
because at least one of the procedures, namely the lab ex-
periment, is non-executable.

In bdbms, we address the following functionalities to track
local dependencies:

• Modeling dependencies: We use Procedural De-
pendencies to allow users to model the dependencies
among the database items as well as for bdbms to rea-
son about these dependencies, for example, to detect
conflicts and cycles among dependency rules, and to
compute the closure of procedures.

• Storing dependencies: Dependencies among the
data can be either at the schema level, i.e., the en-
tity level, or at the instance level, i.e., the cell level.
Schema-level dependencies can be modeled using for-
eign key constraints, e.g., protein sequences depend
on gene sequences and they are linked by a foreign
key. Instance-level dependencies are more complex to
model because they are on a cell-by-cell basis. In this
case, we can use dependency graphs to model such de-
pendencies.

• Tracking outdated data: When the database is
modified, bdbms uses the dependency graphs to fig-
ure out which items, termed the outdated items, may
be affected by this modification. Outdated items need
to be marked such that these items can be identified
in any future reference. We propose to associate a
bitmap with each table in the database. A cell in
the bitmap is set to 1 if the corresponding cell in the
data table is outdated, otherwise the bitmap cell is set
to 0. For example, assume that the sequences corre-
sponding to genes JW0080 and JW0082 (Figure 9(a))
are modified, then the bitmap associated with Table
Protein will be as illustrated in Figure 10. Notice
that the bits corresponding to PSequence are not set
to 1 because PSequence is automatically updated by
executing Procedure P. In contrast, PFunction cannot
be automatically updated, therefore its corresponding
bits are set to 1 to indicate that these values are out-
dated. To reduce the storage overhead of the main-
tained bitmaps, data compression techniques such as
Run-Length-Encoding [23] can be used to effectively
compress the bitmaps.

• Reporting and annotating outdated data: The
main objective of tracking local dependencies is that
the database should be able to report at all times the
items that need to be verified or re-evaluated. More-
over, when a query executes over the database and

202

Hypothetical protein

Cell wall formation

Exhibitor

PFunction

MKVSVPGM…JW0055yabP

MTATTKTQ…JW0082 ftsI

MKENYKNM…JW0080mraW

PSequenceGIDPName

0000

1000

1000

PFun.PSeq.GIDPName

Protein Protein-Bitmap

Figure 10: Use of bitmaps to mark outdated data

START CONTENT APPROVAL

ON <table_name>

[COLUMNS <column_names>]

APPROVED BY <user/group>

STOP CONTENT APPROVAL

ON <table_name>

[COLUMNS <column_names>]

Figure 11: Content-based approval

involves outdated items, the database should propa-
gate with those items an annotation specifying that
the query answer may not be correct. Detecting the
outdated items at query execution time is a challenging
problem as it requires retrieving and propagating the
status of each item, i.e., whether it is outdated or not,
in the query pipeline. A proposed solution is to con-
sider the status of the database items as annotations
attached to those items. These annotations will be au-
tomatically propagated along with the query answers
as discussed in Section 3.

• Validating outdated data: bdbms will provide a
mechanism for users to validate outdated items. An
outdated item may or may not need to be modified
to become valid. For example, a modification to a
gene sequence may not affect the corresponding pro-
tein sequence. In this case, the protein sequence will
be revalidated without modifying its value.

6. UPDATE AUTHORIZATION
Changes over the database may have important conse-

quences, and hence, they should be subject to authorization
and approval by authorized entities before these changes
become permanent in the database. Update authoriza-
tion (also termed approval enforcement) in current database
management systems is based on GRANT/REVOKE access
models [18, 24], where a user may be granted an authoriza-
tion to update a certain table or attribute. Although widely
acceptable, these authorization models are based only on
the identity of the user not on the content of the data be-
ing inserted or updated. In biological databases, it is of-
ten the case that a data item can make it permanently to a
database based on its value not on the user who entered that
value. For example, a lab administrator may allow his/her
lab members to perform insert and update operations over
the database. However, for reliability, these operations have
to be revised by the lab administrator. If the lab admin-
istrator is the only user who has the right to update the
database, then this person may become a bottleneck in the
process of populating the database.

In bdbms, we introduce an approval mechanism, termed
content-based approval, that allows the database to system-

atically track the changes over the database. The pro-
posed content-based approval mechanism works with, not
in replacement to, existing GRANT/REVOKE mechanisms.
The content-based approval mechanism maintains a log of all
update operations, i.e., INSERT, UPDATE, and DELETE,
that occur in the database. The database administrator can
turn the content-based approval feature ON or OFF for a
certain table or columns using a Start Content Approval and
End Content Approval commands (Figure 11), respectively.
The table name value specifies the user table on which the
update operations will be monitored. The optional clause
COLUMNS specifies which column(s) in table name to mon-
itor. For example, we can monitor the update operations
over only Column GSequence of Table Gene (Figure 9(a)).
The APPROVED BY clause specifies the user or group of
users who can approve or disapprove the update operations.
If the content-based approval feature is turned ON over Ta-
ble T, then bdbms stores all update operations over T in
the log along with an automatically generated inverse state-
ment that negates the effect of the original statement. More
specifically, for INSERT, a DELETE statement will be gen-
erated, for DELETE, an INSERT statement will be gener-
ated, and for UPDATE, another UPDATE statement that
restores the old values will be generated. The log stores
also the user identifier who issued the update operation and
the issuing time. The person in charge of the database,
e.g., the lab administrator, can then view the maintained
log and revise the updates that occurred in the database.
If an operation is disapproved, then bdbms executes the in-
verse statement of that operation to remove its effect from
the database. Executing the inverse statement may affect
other elements in the database, e.g., elements that depend
on the currently existing values. It is the functionality of
the Local Dependency Tracking feature (Section 5) to track
and invalidate these elements.

7. INDEXING AND QUERY PROCESSING
Biological databases warrant the use of non-traditional in-

dexing mechanisms beyond B+-trees and hash tables. To
enable biological algorithms to operate efficiently on the
database, we propose integrating non-traditional indexing
techniques inside bdbms. We focus on two fronts: (1) Sup-
porting multidimensional datasets via multidimensional in-
dexing techniques (suitable for protein 3D structures and
surface shape matching), and (2) Supporting compressed
datasets via novel external-memory indexes that work over
the compressed data without decompressing it (suitable for
indexing large sequences).

In bdbms, we focus on introducing non-traditional index
structures for supporting biological data. For example, com-
pressing the data inside the database is proven to improve
the system performance, e.g., C-store [33]. It reduces signif-
icantly the size of the data, the number of I/O operations
required to retrieve the data, and the buffer requirements.
In bdbms, we investigate how we can store biological data
in compressed form and yet be able to operate, e.g., index,
search, and retrieve, on the compressed data without de-
compressing it.

7.1 Indexing Multidimensional Data
Space-partitioning trees are a family of access methods

that index objects in a multi-dimensional space, e.g., pro-
tein 3D structures. In [3, 4, 16, 22], we introduce an exten-

203

Sequence compression

Protein secondary structure:

LLLEEEEEEEHHHHHHHHHHHHHHHHHHHHHHEEEEEELLEEELHHHHHHHHHHLL
LLLLLLLLHHHHHHHHHHHHHHHHLLLLEEEEEEEHHHHHHHHHHHHEEEEEEEEEE

LLLLHHHHHHHLLLLHHHHHHHHHHHHHHEEEEEEEEEEHHHHHHHEEEEEEEEHH

HHHHHHHHEEEELEEEEEEEEEELLLEEEEEEEELLLLHHHHHHHHHHHHHHHEEEE
EELLEEEELLLLLLLLHHHHHHHHHHHHHHHHHHHHEEEELEEEEEEEEEELEEEEEL

LLLLLLLLEEEEELLLLLLEEEEEEEELEEEEEEEEELLLEEEEHHHHHHHHHHHHHHH
HHHEEEEELLLEEEEEEEEELLLHHHHHHHHHHHHHHHHHHHHLHHHHHHHHHHHH

EEEEELEEEEHHHHHHHHHHHHHHHHHEEEEEELLLLLEEEEEEELLLLEEEEEEEEE

EEEELEEEEEEEEEEEEEEHHHHHHHHHHHHHHLLLLLEEEEEEEEEEHHHHHHHEE
EEEEHHHHHHHHHHLLLLLLHHHHHHHHHHHEEEEEEEEEEEHHHHHHHHHHHHHL

LEEEEELLLLLLLLLLHHHHHHHHHHHHHHHHHHLLLEEEEEEEHHHHHHHHHHLLLL
EEEEEEEEEEEEEEEEEELLLLEEELLHHHHHHHHHLLLLLLLLLLLHHHHHHHHHHHH

HHHHHHHHEEEEEEEEEEELEEEEHHHHHHHHHHHHLHHHHHHHHHHHHHHLLEE

EEEEEELLLLEEEEEEEEELLLLLEEEEELLLLLEEEEEEEEELLLEEEEEEEEELLLEEE
HHHHHHHHHHHHHLLLL

RLE compressed form:

L3E7H22E6L2E3L1H10L10H16L4E7H12E10L4H7L4H14E10H7E8H10E4L1E10L3E8L
4H15E6L2E4L8H20E4L1E10L1E5L9E5L6E8L1E9L3E4H18E5L3E9L3H20L1H12E5L1E

4H17E6L5E7L4E13L1E14H14L5E10H7E6H10L6H11E11H13L2E5L10H18L3E7H9L4E
18L4E3L2H9L11H20E11L1E4H12L1H14L2E8L4E9L5E5L5E9L3E9L3E3H13L4

Indexing compressed sequences

SBC-tree Index

Figure 12: Indexing and querying RLE-compressed

sequences

sible indexing framework, termed SP-GiST, that broadens
the class of supported indexes to include disk-based versions
of space-partitioning trees, e.g., disk-based trie variants,
quadtree variants, and kd-trees. As an extensible indexing
framework, SP-GiST allows developers to instantiate a vari-
ety of index structures in an efficient way through pluggable
modules and without modifying the database engine. The
SP-GiST framework is implemented inside PostgreSQL [34]
and we use it in bdbms. Several index structures have been
instantiated using SP-GiST, e.g., variants of the trie [11,
20], the kd-tree [6], the point quadtree [19], and the PMR
quadtree [29]. We implemented several advanced search op-
erations, e.g., k-nearest-neighbor search, regular expression
match search, and substring searching. The experimental
results in [16] demonstrate the performance potential of the
class of space-partitioning tree indexes over the B+-tree and
R-tree indexes, for the operations above. In addition to the
performance gains and the advanced search functionalities
provided by SP-GiST indexes, it is the ability to rapidly pro-
totype these indexes inside bdbms that is most attractive.

A key challenge is to integrate SP-GiST indexes inside bi-
ological analysis algorithms such as protein structure align-
ment algorithms. Providing the index structures is the first
step to improve the querying and processing capabilities of
the analysis algorithms.

7.2 Indexing Compressed Data
Biological databases consist of large amounts of sequence

data, e.g., genes, alleles, and protein primary and secondary
structures. These sequences need to be stored, indexed, and
searched efficiently. In bdbms, we propose to investigate
new techniques for compressing biological sequences and op-
erating over the compressed data without decompressing
it. Sequence compression has been addressed recently in
the C-Store database management system [33], where some
operators, e.g., aggregation operators, can operate directly
over the compressed data. Sequence compression is demon-
strated to improve system performance as it reduces the size

of the data significantly.
In bdbms, as a first step, we investigate the processing,

e.g., indexing and querying, of Run-Length-Encoded (RLE)
sequences. RLE [23] is a compression technique that re-
places the consecutive repeats of a character C by one oc-
currence of C followed by C’s frequency. One of the main
challenges is how to operate on the compressed data with-
out decompressing it. In [17], we proposed an index struc-
ture, termed the SBC-tree (String B-tree for Compressed
sequences), for indexing and searching RLE-compressed se-
quences of arbitrary length. In Figure 12, we illustrate how
protein secondary structure sequences are stored in bdbms.
We first compress the sequences using RLE, and then build
an SBC-tree index over the compressed sequences. Queries
over the sequences will use the index to retrieve the desired
data without decompression. The SBC-tree is a two-level
index structure based on the well-known String B-tree and
a 3-sided range query structure. The SBC-tree supports
substring as well as prefix matching, and range search oper-
ations over RLE-compressed sequences. The SBC-tree has
an optimal external-memory space complexity as well as op-
timal search time for substring matching, prefix matching,
and range search queries. More interestingly, SBC-tree has
shown to be very practical to implement. The SBC-tree in-
dex is prototyped in PostgreSQL with an R-tree in place of
the 3-sided structure. Preliminary performance results il-
lustrate that using the SBC-tree to index RLE-compressed
protein sequences achieves up to an order of magnitude re-
duction in storage, up to 30% reduction in I/Os for the
insertion operations, and retains the optimal search perfor-
mance achieved by the String B-tree over the uncompressed
sequences.

In bdbms, we plan to address the following challenges re-
garding the processing of compressed data:

• Full integration of the SBC-tree index: To fully
integrate the SBC-tree index inside bdbms we plan to
address several query processing and optimization is-
sues including: (1) supporting subsequence matching,
and (2) providing accurate cost functions for estimat-
ing the cost of the index. Subsequence matching is an
important operation over biological sequences as it is
used in many algorithms such as sequence alignment
algorithms. We plan to extend the supported oper-
ations of the SBC-tree index to include subsequence
matching.

• Processing various formats of compressed data:

Currently, bdbms supports indexing and querying
RLE-compressed sequence data. RLE is effective in
the case of sequences where characters have long re-
peats in tandem. Compression techniques like gzip
and Burrows-Wheeler Transform (BWT) can be more
effective in compressing the other kinds of data. Our
plan is to investigate indexing and querying other
formats of compressed data in addition to RLE-
compressed sequences to efficiently support these data
inside bdbms.

8. RELATED WORK
Periscope [30, 36] is an ongoing project that aims at defin-

ing a declarative query language for querying biological data.
Periscope/SQ [36], a component of Periscope, introduces

204

new operators and data types that facilitate the process-
ing and querying of sequence data. While the main focus of
Periscope is on defining and supporting a new declarative
query language, bdbms focuses on other functionalities that
are required by biological databases, e.g., annotation and
provenance management, local dependency tracking, update
authorization, and non-traditional access methods.

Several annotation systems have been built to manage
annotations over the web, e.g., [1, 26, 27, 28, 31, 32]. Bio-
das (Biological Distributed Annotation System) [1, 32] and
Human Genome Browser [27] are specialized biological an-
notation systems to annotate genome sequences. They allow
users to integrate genome annotation information from mul-
tiple web servers. Managing annotations and provenance in
relational databases has been addressed in [7, 8, 10, 12, 21,
35]. In these techniques provenance data is pre-computed
and stored inside the database as annotations. The main
focus of these techniques is to propagate the annotations
along with the query answer. Other aspects of annotation
management, e.g., insertion, storage, and indexing, have not
been addressed. Another approach for tracking provenance,
termed the lazy approach, has been addressed in [9, 14, 15,
38], where provenance data is computed at query time. Lazy
approach techniques require that the derivation steps of the
data to be known and to be invertible such that the prove-
nance information can be computed. In bdbms, we treat
provenance data as a kind of annotations because the deriva-
tion of biological data is usually ad-hoc and does not neces-
sarily follow certain functions or queries.

The access control and authorization process in cur-
rent database systems is based on the GRANT/REVOKE
model [18, 24]. Although widely acceptable, this model lacks
being content-based, i.e., the authorization is based only on
the identity of the user. In bdbms, we propose the content-
based approval model that is based on the data as well as on
the identity of the user.

9. CONCLUDING REMARKS
Two applications have been driving the bdbms project:

building a database resource for the Escherichia coli (E. coli)
model organism and a protein structure database project.
Through these two projects, we realized the need for the
functionalities that we address in bdbms, namely (1) Anno-
tation and provenance management, (2) Local dependency
tracking, (3) Update authorization, and (4) Non-traditional
and novel access methods.

bdbms is currently being prototyped using PostgreSQL.
In parallel work, we have extended relational algebra to op-
erate on “annotated” relations. The A-SQL language and
the content-based authorization model are currently under
development in PostgreSQL. The SP-GIST and SBC-tree
access methods are already integrated inside PostgreSQL.
We are currently studying several optimizations, cost esti-
mates, and complex operations over these indexes.

10. REFERENCES

[1] biodas.org. http://biodas.org.

[2] Exploiting the power of oracle using microsoft excel.
Oracle White Paper, December 2004.

[3] W. G. Aref and I. F. Ilyas. An extensible index for
spatial databases. In Statistical and Scientific
Database Management, pages 49–58, 2001.

[4] W. G. Aref and I. F. Ilyas. Sp-gist: An extensible
database index for supporting space partitioning trees.
Journal of Intelligent Information Systems,
17(2-3):215–240, 2001.

[5] W. Armstrong. Dependency structures of database
relationships. In International Federation for
Information Processing (IFIP), pages 580–583, 1974.

[6] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[7] D. Bhagwat, L. Chiticariu, W. Tan, and
G. Vijayvargiya. An annotation management system
for relational databases. pages 900–911, 2004.

[8] P. Buneman, A. P. Chapman, and J. Cheney.
Provenance management in curated databases. In
ACM SIGMOD International Conference on
Management of Data , 2006.

[9] P. Buneman, S. Khanna, and W.-C. Tan. Why and
where: A characterization of data provenance. Lecture
Notes in Computer Science, 1973:316–333, 2001.

[10] P. Buneman, S. Khanna, and W.-C. Tan. On
propagation of deletions and annotations through
views. In Principles of Database Systems (PODS),
pages 150–158, 2002.

[11] W. A. Burkhard. Hashing and trie algorithms for
partial match retrieval. ACM Transactions Database
Systems, 1(2):175–187, 1976.

[12] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya.
Dbnotes: a post-it system for relational databases
based on provenance. In ACM SIGMOD International
Conference on Management of Data, pages 942–944,
2005.

[13] E. Codd. A relational model for large shared data
banks. In Communications of the ACM 13:6, pages
377–387, 1970.

[14] Y. Cui and J. Widom. Practical lineage tracing in
data warehouses. In International Conference on Data
Engineering, pages 367–378, 2000.

[15] Y. Cui and J. Widom. Lineage tracing for general
data warehouse transformations. In International
Conference on Very Large Data Bases, pages 471–480,
2001.

[16] M. Y. Eltabakh, R. H. Eltarras, and W. G. Aref.
Space-partitioning trees in postgresql: Realization and
performance. In International Conference on Data
Engineering, pages 100–111, 2006.

[17] M. Y. Eltabakh, W.-K. Hon, R. Shah, W. G. Aref,
and J. S. Vitter. The sbc-tree: An index for
run-length compressed sequences. Technical Report
CSD TR05-030, 2005.

[18] R. Fagin. On an authorization mechanism. ACM
Transactions on Database Systems (TODS),
3(3):310–319, 1978.

[19] R. A. Finkel and J. L. Bentley. Quad trees: A data
structure for retrieval on composite keys. Acta
Information, 4:1–9, 1974.

[20] E. Fredkin. Trie memory. Communications of the
ACM, 3(9):490–499, 1960.

[21] F. Geerts, A. Kementsietsidis, and D. Milano.
Mondrian: Annotating and querying databases
through colors and blocks. In International Conference

205

on Data Engineering, page 82, 2006.

[22] T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref,
and J. S. Vitter. Bulk operations for
space-partitioning trees. In International Conference
on Data Engineering, pages 29–40, 2004.

[23] S. W. Golomb. Run-length encodings. IEEE
Transactions on Information Theory, 12:399–401,
1966.

[24] P. P. Griffiths and B. W. Wade. An authorization
mechanism for a relational database system. ACM
Transactions on Database Systems (TODS),
1(3):242–255, 1976.

[25] H. V. Jagadish and F. Olken. Database management
for life sciences research. SIGMOD Record,
33(2):15–20, 2004.

[26] J. Kahan and R. S. M. Koivunen, E. Prud’Hommeaux.
Annotea: An open rdf infrastructure for shared web
annotations. WWW10, pages 623–632, 2001.

[27] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin,
T. H. Pringle, A. M. Zahler, and D. Haussler. The
human genome browser at ucsc. Genome Research,
12(5):996–1006, 2002.

[28] D. LaLiberte and A. Braverman. A protocol for
scalable group and public annotations. WWW3, pages
911–918, 1995.

[29] R. C. Nelson and H. Samet. A population analysis for
hierarchical data structures. In ACM SIGMOD
International Conference on Management of Data,
pages 270–277, 1987.

[30] J. M. Patel. The role of declarative querying in
bioinformatics. 7(1):89–92, 2003.

[31] M. A. Schickler, M. S. Mazer, and C. Brooks.
Pan-browser support for annotations and other
meta-information on theworld wide web. WWW5,
pages 1063–1074, 1996.

[32] L. Stein, S. Eddy, and R. Dowell. Distributed
sequence annotation system (das). Washigton
University, Technical Report WUCS-01-07, 2001.

[33] M. Stonebraker, D. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-store: A column oriented dbms. In
International Conference on Very Large Data Bases,
2005.

[34] M. Stonebraker and G. Kemnitz. The postgres next
generation database management system.
Communications of the ACM, 34(10):78–92, 1991.

[35] W.-C. Tan. Containment of relational queries with
annotation propagation. In International Symposium
on Database Programming Languages, 2003.

[36] S. Tata, J. M. Patel, J. S. Friedman, and A. Swaroop.
Declarative querying for biological sequences. In
International Conference on Data Engineering, pages
87–96, 2006.

[37] T. Topaloglou. Biological data management:
Research, practive and opportunities. In International
Conference on Very Large Data Bases, pages
1233–1236, 2004.

[38] A. Woodruff and M. Stonebraker. Supporting
fine-grained data lineage in a database visualization
environment. In International Conference on Data

Engineering, pages 91–102, 1997.

206

