
BDD-Based Cryptanalysis
of Keystream Generators

Matthias Krause

Theoretische Informatik, Universität Mannheim, 68131 Mannheim, Germany,
krause@informatik.uni-mannheim.de

Abstract. Many of the keystream generators which are used in practice
are LFSR-based in the sense that they produce the keystream according
to a rule y = C(L(x)), where L(x) denotes an internal linear bitstream,
produced by a small number of parallel linear feedback shift registers
(LFSRs), and C denotes some nonlinear compression function. We
present an nO(1)2(1−α)/(1+α)n time bounded attack, the FBDD-attack,
against LFSR-based generators, which computes the secret initial state
x ∈ {0, 1}n from cn consecutive keystream bits, where α denotes the
rate of information, which C reveals about the internal bitstream, and c
denotes some small constant. The algorithm uses Free Binary Decision
Diagrams (FBDDs), a data structure for minimizing and manipulating
Boolean functions. The FBDD-attack yields better bounds on the
effective key length for several keystream generators of practical use,
so a 0.656n bound for the self-shrinking generator, a 0.6403n bound for
the A5/1 generator, used in the GSM standard, a 0.6n bound for the E0

encryption standard in the one level mode, and a 0.8823n bound for the
two-level E0 generator used in the Bluetooth wireless LAN system.

1 Introduction

A keystream generator is a finite automaton, E, determined by a set Q of
inner states, a state transition function δE : Q −→ Q, and an output function
aE : Q −→ {0, 1}. The usual case is that Q = {0, 1}n for some integer n ≥ 1, n
is called the keylength of E. Starting from an initial state x0 ∈ Q, in each time
unit i, E outputs a key bit yi = aE(xi) and changes the inner state according
to xi+1 = δE(xi). For each initial state x ∈ {0, 1}n we denote by y = E(x) the
keystream y = y0, y1, . . . produced by E when starting on x.

Keystream generators are designed for fast online encryption of bitstreams
which have to pass an insecure channel. A standard application is to ensure the
over-the-air privacy of communicating via mobile cellular telephones. A plaintext
bit stream p0, p1, p2, . . . is encrypted into a ciphertext bitstream e0, e1, e2, . . . via
the rule ei = pi⊕yi, where y = E(x). The legal receiver knows x and can decrypt
the bitstream using the same rule. The only secret information is the initial
state x, which is exchanged before starting the transmission using a suitable
key-exchange protocol. It is usual to make the pessimistic assumption that an
attacker knows not only the encrypted bitstream, but even some short piece of

L.R. Knudsen (Ed.): EUROCRYPT 2002, LNCS 2332, pp. 222–237, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

BDD-Based Cryptanalysis of Keystream Generators 223

the plaintext, and, therefore, can easily compute some piece of the keystream.
Consequently, one necessary criterion for the security of a keystream generator is
that there is no feasible way to compute the secret initial state x from y = E(x).
Observe that a trivial exhaustive search attack needs time nO(1)2n.

In this paper we suggest a new type of attack against keystream generators,
which we will call FBDD-attack, and show that LFSR-based keystream
generators are vulnerable against FBDD-attacks. We will call a generator to
be LFSR-based if it consists of two components, a linear bitstream generator
L which generates for each initial state x ∈ {0, 1}n a linear bitstream L(x)
by one or more parallel LFSRs, and a compressor C which transforms the
internal bitstream into the output keystream y = C(L(x)). Due to the ease
of implementing LFSRs in hardware, and due to the nice pseudorandomness
properties of bitstreams generated by maximal length LFSRs, many keystream
generators occuring in practice are LFSR-based.

FBDD is the abbreviation for free binary decision diagrams, a data structure
for representing and manipulating Boolean function, which were introduced by
Gergov and Meinel in [9] and Sieling and Wegener in [16]. Due to specific
algorithmic properties, FBDDs and in particular Ordered BDDs (OBDDs), a
special kind of FBDDs, became a very usefull tool in the area of automatic
hardware verification (see also the paper of Bryant [4] who initiated the study of
graph-based data structures for Boolean function manipulation). The important
properties of FBDDs are that they can be efficiently minimized, that they allow
an efficient enumeration of all satisfying assignments, and that the minimal
FBDD-size of a Boolean function is not much larger than the number of satisfying
assignments. We show that these properties can also be successfully used for
cryptanalysis. The problem of finding a secret key x fulfilling y = E(x) for a
given encryption algorithm E and a given ciphertext y can be reduced to finding
the minimal FBDD P for the decision if x fulfils y = E(x). If the length of y
is close to the unicity distance of E then P is small, and x can be efficiently
computed from P . The main result of this paper is that the special structure
of LFSR-based keystream generators implies a nontrivial dynamic algorithm for
computing this FBDD P .

In particular, the weakness of LFSR-based keystream generators is that the
compressor C has to produce the keystream in an online manner. For getting a
high bitrate, C should use only a small memory, and should consume only a few
new internal bits for poducing the next output bit. These requirements imply
that the decision if an internal bitstream z generates a prefix of a given keystream
y via C can be computed by small FBDDs. This allows to compute dynamically
a sequence of FBDDs Pm, m ≥ n, which test a given initial state x ∈ {0, 1}n

whether C(L≤m(x)) is prefix of y, where L≤m(x) denotes the first m bits of the
internal linear bitstream generated via L on x. On average, the solution becomes
unique for m ≥ �α−1n	, where α denotes the rate of information which C reveals
about the internal bitstream. The FBDDs Pm are small at the beginning and
again small if m approaches �α−1n	, and we will show that all intermediate
FBDDs have a size of at most nO(1)2(1−α)/(1+α)n. For all m the FBDD Pm has

224 Matthias Krause

to read the first �γm	 bits of the keystream, where γ denotes the best case
compression ratio of C. Thus, our algorithm computes the secret initial state
x from the first �γα−1n	 bits of y = E(x). Observe that γ = α if C consumes
always the same number of internal bits for producing one output bit, and α < γ
if not. It holds γα−1 ≤ 2.5 in all our examples. Note that for gaining a high bit-
rate, α and γ should be as large as possible. Our results say that a higher bit-rate
has to be paid by a loss of security.

One advantage of the FBDD-attack is that it is a short-keystream attack, i.e.,
the number of keybits needed for computing the secret initial state x ∈ {0, 1}n

is at most cn for some small constant c ≥ 1. We apply the FBDD-attack to
some of the keystream generators which are most intensively discussed in the
current literature, the A5/1 generator which is used in the GSM standard, the
self-shrinking generator, and the E0-encryption standard, which is included in
the Bluetooth wireless LAN system. For all theses ciphers, the FBDD-attack has
a better time behaviour than all short-keystream attacks known before. In some
cases there have been obtained long-keystream attacks which have a better time
behaviour. They use a time-memeory tradeoff technique suggested by Golić [8]
and are based on the assumption that a long piece of keystream of length 2dn,
d < 1 some constant, is available. We give an overview on previous results and
the relations to our results in section 7.

The paper is organized as follows. In section 2 we give some formal
definitions concerning LFSR-based keystream generators and present the
keystream generators which we want to cryptanalyze. In section 3 FBDDs are
introduced. In section 4 we derive FBDD-relevant properties of LFSR-based
keystream generators. In section 5 we define the relevant parameters of LFSR-
based keystream generators and formulate the main result. Our cryptanalysis
algorithm is presented in section 6 and is applied to particular generators in
section 7. Due to space restrictions we cannot present all proofs and BDD-
constructions in this extended abstract. The complete version of this paper can
be received from [11].

At the first glance it may seem contradictory that we consider practical
ciphers like the A5/1 generator with variable keylength n. But observe that
definitions of LFSR-based keystream generators, even if they originally were
designed for fixed keylength, can be generalized to variable keylength in a very
natural way, simply by considering the internal LFSRs to have variable length.
Considering variable key-length n allows to evaluate the security of ciphers in
terms of how many polynomial time operations are necessary for breaking the
cipher. This ’rough’ way of security evaluation is sufficient in our context, since
the aim of this paper is to present only the general algorithmic idea of the FBDD-
attack, to give a rather rough estimation of the time behaviour, and to show an
inherent weakness of LFSR-based generators. For practical implementations of
FBDD attacks against real-life generators much more effort has to be invested
for making the particular polynomial time operations as efficient as possible, see
the discussion in section 8.

BDD-Based Cryptanalysis of Keystream Generators 225

2 LFSR-Based Keystream Generators

Let us call a keystream generator to be LFSR-based if the generation rule
y = E(x) can be written as y = C(L(x)), where L denotes a linear bitstream
generator consisting of one or more LFSRs, and C : {0, 1}∗ −→ {0, 1}∗ a
nonlinear compression function, which transforms the internal linear bitstream
L(x) into the nonlinear (compressed) output keystream y = C(L(x)). 1 Formally,
an n-LFSR is a device which produces a bitstream

L(x) = L0(x), L1(x), . . . , Lm(x), . . .

on the basis of a public string c = (c1, . . . , cn) ∈ {0, 1}n, the generator
polynomial, and a secret initial state x = (x0, . . . , xn−1) ∈ {0, 1}n, according
to the relation Li(x) = xi for 0 ≤ i ≤ n − 1 and

Lm(x) = c1Lm−1(x)⊕ c2Lm−2(x)⊕ . . . ⊕ cnLm−n(x) (1)

for m ≥ n. Observe that for all m ≥ 1, Lm(x) is a GF(2)-linear Boolean function
in x0, . . . , xn−1 which can be easily determined via iteratively applying (1).

A linear bitstream generator L of keylength n is defined to be an algorithm
which, for some k ≥ 1, generates a linear bitstream L(x)

L(x) = L0(x), L1(x), L2(x), . . .

by k parallel LFSRs L0, . . . , Lk−1 of keylengths n0, . . . , nk−1, where n = n0 +
. . . + nk−1. The initial states x ∈ {0, 1}n for L are formed by the initial states
xr ∈ {0, 1}nr , r = 0, . . . , k − 1, of L0, . . . , Lk−1. L produces in each time unit
j ≥ 0 the bit Lj(x) according to the rule Lj(x) = Lr

s(x
r), where r = j mod k

and s = j div k. Observe that for all j ≥ 0 Lj(x) is a GF(2)-linear function in
x.

The motivation for taking LFSRs as building blocks for keystream generators
is that they can be easily implemented using n register cells connected by
a feedback channel. Moreover, if the generator polynomial is primitive, they
produce bit streams with nice pseudorandomness properties (maximal period,
good auto correlation and local statistics). See, e.g., the monograph by Golomb
[10] or the article by Rueppel [15] for more about the theory of shift register
sequences. Clearly, LFSR-sequences alone do not provide any cryptographic
security. Thus, the aim of the compression function C : {0, 1}∗ −→ {0, 1}∗

is to destroy the low linear complexity of the internal linear bit stream while
preserving its nice pseudorandomness properties. Many keystream generators
occuring in practice are LFSR-based in the above sense. We investigate the
following types of generators.

One classical construction (see, e.g., [10] and [15]) is to combine k parallele
LFSRs L0, . . . , Lk−1 with an appropriate connection function c : {0, 1}k −→
1 C compresses the internal bit-stream in an online manner, i.e., C(z′) is prefix of

C(z) if z′ is prefix of z, for all z, z′ ∈ {0, 1}∗. This justifies to write y = C(L(x))
despite of the fact that L(x) is assumed to be infinitely long.

226 Matthias Krause

{0, 1}. The keystream y = y0, y1, y2, . . . is defined via the rule

yj = c(L0
j (x

0), . . . , Lk−1
j (xk−1)), j ≥ 0,

where xr denotes the initial state for Lr, for r = 0 . . . , k−1. Let us call generators
of this type Connect-k constructions.

The Self-Shrinking Generator was introduced by Meier and Staffelbach in
[14]. It consists of only one LFSR L. The compression is defined via the shrinking
function shrink : {0, 1}2 −→ {0, 1, ε}, defined as shrink(ab) = b, if a = 1, and
shrink(ab) = ε, the empty word, otherwise. The shrinking-function is extended
to bit-strings of even length r as

shrink(z0z1 . . . zr−1) = y0y1 . . . yr/2−1,

where yi = shrink(z2iz2i+1) for i = 0, . . . , r/2 − 1. For each initial state
x for L, the self-shrinking generator produces the keystream y according to
y = shrink(L(x)).

The E0 Generator is the keystream generator used in the Bluetooth wireless
LAN system [3]. It is defined as E0(x) = C(L(x)), where the linear bitstream
generator L of E0 consists of 4 LFSRs L0, . . . , L3. The compression is organized
by a finite automaton M with external input alphabet {0, 1, 2}, state space Q =
{0, 1, . . . , 15} and output alphabet {0, 1}, which is defined by an output function
a : Q×{0, 1, 2} −→ {0, 1} and a state transition function δ : Q×{0, 1, 2} −→ Q.
The exact specification of M is published in [3] but does not matter for our
purpose and is therefore omitted.

The compression C(z) = y = y0y1 . . . ym−1 of an internal bit-stream

z = z0
0z

1
0z

2
0z

3
0z

0
1z

1
1z

2
1z

3
1 . . . z0

m−1z
1
m−1z

2
m−1z

3
m−1

is defined as yj = a(qj , sj) ⊕ tj , where sj = (z0
j + z1

j + z2
j + z3

j) div 2 and
tj = (z0

j + z1
j + z2

j + z3
j) mod 2, for all 0 ≤ j ≤ m − 1. The actual inner state

is updated in each cycle according to the rule qj+1 = δ(qj , sj), where q0 denotes
the initial state of M . In practice, the E0 generator is used with key length 128,
the four LFSRs have lengths 39, 33, 31, 25.

The E0 Encryption Standard in the two-level mode (for short, E2
0-

Generator) of keylength n combines two E0 devices of internal keylength
N ≥ n in the following way. For x ∈ {0, 1}n it holds y = E2

0(x) = E0(z),
where z denotes the prefix of length N of E0(u), and where

u = (x0, . . . , xn−1, Un(x) . . . , UN−1(x)).

Ui, i = n . . .N − 1, are public GF(2)-linear functions in (x0, . . . , xn−1). In
practice, the string u results from putting n secret bits together with N − n
known dummy bits into the LFSRs and running them a certain number of steps.
The Bluetooth system uses N = 128, and n can be chosen as 8, 16, 32, or 64.
The reason for choosing a larger internal key length N is to achieve a larger
effective key length in n.

BDD-Based Cryptanalysis of Keystream Generators 227

The A5/1 Generator is used in the GSM standard. The definition was
discovered by Briceno et. al. [5] via reverse engineering. The A5/1 generator
of key-length n consists of 3 LFSRs L0, L1, and L2 of key-lengthes n0, n1, and
n2. In each time step i, the output key bit yi is the XOR of the actual output
bits of the 3 LFSRs. A clock control decides in each timestep which of the 3
LFSRs are shifted, and which not. The clock control takes for all k ∈ {0, 1, 2} a
control value ck from the Nk − th register cell of Lk, and computes the control
value m = maj3(c0, c1, c2). 2 LFSR Lk is shifted if m = ck, for k = 0, 1, 2. The
control positions Nk are fixed and fulfil Nk ∈ {⌈

nk

2

⌉ − 1,
⌈

nk

2

⌉}
.

This keystream generation rule can be written down in a y =
C(L(x)) fashion in the following way. Given an internal bitstream z =
(z0

0 , z
1
0 , z

2
0 , . . . , z

0
m, z1

m, z2
m, . . .) the keystream y = C(z) is defined as follows. In

each timestep, C holds 3 output positions i[0], i[1], i[2] and 3 control positions
j[0], j[1], j[2]. C outputs x0

i[0] ⊕ x1
i[1] ⊕ x2

i[2], computes the new control value
m = maj3(x0

j[0], x
1
j[1], x

2
j[2]), and updates the i- and j-values via i[k] := i[k] +

1 and j[k] := j[k] + 1, for those k ∈ {0, 1, 2} for which m = xk
j[k]. The output

positions are initialized by 0. The control positions are initialized by N0, N1, N2.
Note that in the GSM standard the A5/1 generator is used with key length 64,
the 3 LFSRs have lengthes 19, 22 and 23

3 Binary Decision Diagrams (BDDs)

For m a natural number let Xm denote the set of m Boolean variables
{x0, . . . , xm−1}. A BDD P over Xm is an acyclic directed graph with inner
nodes of outdegree 2, a distinguished inner node of indegree 0, the source, and
two sink nodes of outdegree 0, one 0-sink and one 1-sink. All inner nodes, i.e.
nodes of outdegree > 0, are labelled with queries xi?, 0 ≤ i ≤ m − 1, and
are left by one edge labelled 0 (corresponding to the answer xi = 0) and one
edge labelled 1 (corresponding to the answer xi = 1). Each assignment b to the
Xm-variables defines a unique computational path in P , which will be called
the b-path in P . The b-path starts at the source, answers always bi on queries
xi? and, thus, leads to a unique sink. The label of this sink is defined to be the
output P (b) ∈ {0, 1} of P on input b ∈ {0, 1}m. We denote by One(P) ⊆ {0, 1}m

the set of inputs accepted by P , One(P) = {b ∈ {0, 1}m; P (b) = 1}. Each
BDD P over Xm computes a unique function f : {0, 1}m −→ {0, 1}, by
f(b) = 1 ⇐⇒ b ∈ One(P). The size of P , |P |, is defined to be the number
of inner nodes of P . Two BDDs are called equivalent if they compute the same
function.

We call an BDD P to be a free binary decision diagram (FBDD) if along each
computational path in P each variable occurs at most once. In [9] and [16] it was
observed that FBDDs can be efficiently minimized with respect to all equivalent
FBDDs which read the input variables in an equivalent order. The equivalence
of orders of reading the input variables is expressed by using the notion of graph
orderings.
2 maj3 is defined to output c ∈ {0, 1} iff at least 2 of its 3 arguments have value c.

228 Matthias Krause

Definition 1. A graph ordering G of Xm is an FBDD over Xm with only one
(unlabelled) sink, for which on each path from the root to the sink all m variables
occur.

Graph orderings are not designed for computing Boolean functions. Their
aim is to define for each assignments b = (b0, . . . , bm−1) to Xm a unique variable
ordering πG(b) = (xi1(b), . . . , xim(b)), namely the ordering in which the variables
are requested along the unique b-path in G.

Definition 2. An FBDD is called G-driven, for short, G-FBDD, if the ordering
in which the variables are requested along the b-path in P respects πG(b), for all
assignments b. I.e., there do not exist assignments b, variables xi and xj such
that xi is requested above xj at πG(b), but below xj at the b-path in P .

A special, extensively studied variant of FBDDs are Ordered Binary Decision
Diagrams (OBDDs). An FBDD P is called OBDD with variable ordering π (for
short π-OBDD) if all pathes in P respect π.

We need the following nice algorithmic properties of graph-driven FBDDs.
Let f, g : {0, 1}m −→ {0, 1} be Boolean functions, let G be a graph ordering for
Xm, and let P and Q be G-driven FBDDs for f and g, respectively.

Property 3.01 There is an algorithm MIN which computes from P in time
O(|P |) the (uniquely defined) minimal G-driven FBDD min(P) for f .

Property 3.02 It holds that |min(P)| ≤ m|One(P)|.

Property 3.03 There is an algorithm SY NTH which computes in time
O(|P ||Q||G|) a G-driven FBDD P ∧ Q, |P ∧ Q| ≤ |P ||Q||G|, which computes
f ∧ g.

Property 3.04 There is another algorithm SAT which enumerates all elements
in One(P) in time O(|One(P)||P |).

See, e.g., the book by Wegener [17] for a detailed description and analysis of
the OBDD- and FBDD-algorithms. FBDDs together with the procedures MIN ,
SY NTH and SAT will be the basic data structure used in our cryptanalysis.
Instead giving explicite examples of FBDDs we refer to the following relation
between algorithms and FBDDs, see, e.g. [12]. Let F ⊆ {0, 1}∗ decision problem
written as a sequence of Boolean functions (Fm : {0, 1}m −→ {0, 1})m∈IN.

Theorem 1. Suppose that F can be decided by an algorithm A which reads each
input bit at most once and uses for all m ≥ 1 and all inputs of length m at most
s(m) memory cells. Then, for all m ≥ 1, A provides an efficient construction of
an FBDD Pm of size O(m2s(m)) for Fm. ✷

BDD-Based Cryptanalysis of Keystream Generators 229

Scetch of a Proof. The inner nodes of Pm are organized in m disjoint levels.
Each level j, 1 ≤ j ≤ m, contains potentially one node vj

r for each possible
assignment r ∈ {0, 1}s(m) to the memory cells used by A on inputs of length
m. This implies the size bound claimed in the Theorem. Pm is constructed top
down. The first inner node we insert to Pm is the root v1

r0
labelled by xi1 , where

r0 denotes the initial assignment of the memory cells and i1 the position of the
first input bit read by A. If we have inserted an inner node v = vj

r , labelled by xi,
to Pm than for all b ∈ {0, 1} the b-successor v′ of v is constructed as follows. If A
starting on configuration r after reading xi = b stops accepting (resp. rejecting)
without reading another input bit then v′ is defined to be the 1-sink (resp. the
0-sink). Otherwise let r′ denote the first configuration when A is going to read
a new input bit, say xk. Then v′ is defined to be vj+1

r′ labelled by xk. ✷

4 FBDD-Aspects of Key-Stream Generators

Let E be a LFSR-based keystream generator of key-length n with linear
keystream generator L and compression function C : {0, 1}∗ −→ {0, 1}∗. Let
x ∈ {0, 1}n denote an initial state for L.

Definition 3. For all m ≥ 1 let GC
m denote the graph ordering, which assigns

to each internal bitstream z the order in which C reads the first m bits of z.

Observe that for the E0 generator, the self-shrinking generator, as well as
for Connect-k generators, the order in which the compressor reads the internal
bits does not depend of the internal bitstream itself, i.e., GC

m has size m and
GC

m-driven FBDDs are OBDDs. But in the case of the A5/1 generator, this
order is governed by the clock control, and can be different for different inputs.
The efficiency of our cryptanalysis algorithm is based on the following FBDD
assumption on E.

FBDD Assumption. The graph ordering GC
m has polynomial size in m.

Moreover, for arbitrary keystreams y, the predicate if for given z ∈ {0, 1}m

C(z) is prefix of y can be computed by GC
m-FBDDs of polynomial size in m.

It is quite easy to see that the compression function of a Connect-k
generators, defined by a function c : {0, 1}k −→ {0, 1}, fulfils the FBDD-
assumption. The compressor reads the internal bits in the canonical order
π = 0, 1, 2, 3, Linear size π-OBDDs which decide whether z ∈ {0, 1}m

generates the first �m/k� bits of a given keystream y via c can be constructed,
via Theorem 1, according to the following algorithm.

1. For j := 0 to �m/k�
2. if c(z0

j , . . . , z
k−1
j) �= yj then stop(0)

3. stop(1)

Quadratic size π-OBDDs which decide for z ∈ {0, 1}m whether shrink(z) is
prefix of a given keystream y can be constructed, via Theorem 1, according to
the following algorithm

230 Matthias Krause

1. k := 0, j := 0
2. while j < m − 1
3. if zj = 0
4. then j := j + 2
5. else
6. if zj+1 = yk

7. then j := j + 2, k := k + 1
7. else stop(0)
8. stop(1)

The FBDD constructions for all the E0-, the E2
0 -, and the A5/1 are sketched

in section 7, resp. can be studied in the long version [11].
We still need to estimate the size of FBDDs which decide whether a given

z ∈ {0, 1}m is a linear bit-stream.

Lemma 1. For all m ≥ n, the decision whether z ∈ {0, 1}m is generated via
linear bitstream generator L of keylength n can be computed by a GC

m-driven
FBDD of size at most |GC

m|2m−n.

Proof: Let Vm denote the set of inner nodes of GC
m. We construct a GC

m-
driven FBDD Rm with the set Wm = Vm × {0, 1}m−n of inner nodes.

For all initial states x ∈ {0, 1}n and all internal positions j, n ≤ j ≤ m − 1,
write Lj(x) as

Lj(x) =
n−1⊕
k=0

Lk,jxk.

GC
m ensures that xk is always read before xj if Lk,j = 1.

Let the root of Rm be the node (v0,
→
0) where v0 denotes the root of GC

m. Let
all nodes (v, b) have the same label as v does in GC

m. The edges of Rm are defined
according to the following rules. Let v ∈ Vm and b = (bn, . . . , bm−1) ∈ {0, 1}m−n

be arbitrarily fixed. For c ∈ {0, 1} let v(c) be the c-successor of v in GC
m. We

have to distinguish two cases.

– v is labelled with some xk, 0 ≤ k ≤ n − 1. Then, for all c ∈ {0, 1}, the c-
successor of (v, b) is (v(c), b(c)), where b(c) = (b0⊕Lk,nc, . . . , br−1⊕Lk,m−1c).

– v is labelled with some xj , n ≤ j ≤ m−1. Then, for all c ∈ {0, 1}, if bj−n �= c,
the c-successor of (v, b) is the 0-sink. If bj−n = c and v(c) is the *-sink, then
let the c-successor of (v, b) be the 1-sink. Otherwise let the c-successor of
(v, b) be (v(c), b).

It can be easily checked that Rm (after removing non-reachable nodes) matches
all requirements of the Lemma. ✷

5 The Main Result

We fix an LFSR-based keystream generator of key-length n with linear bit-
stream generator L and a compression function C. We assume that for all

BDD-Based Cryptanalysis of Keystream Generators 231

m ≥ 1 the probability that C(z) is prefix of y for a randomly chosen and
uniformly distributed z ∈ {0, 1}m is the same for all keystreams y. Observe
that all generators occuring in this paper have this property. Let us denote this
probability by pC(m).

The cost of our cryptanalysis algorithm depends on two parameters of C.
The first is the information rate (per bit) which a keystream y reveales about
the first m bits of the underlying internal bitstream. It can be computed as

1
m

I(Z(m), Y) =
1
m

(
H(Z(m))− H(Z(m)|Y)

)
=

=
1
m

(m − log(pC(m)2m)) = − 1
m

log(pC(m)). (2)

where Z(m) denotes a random z ∈ {0, 1}m and Y a random keystream.
As the compression algorithm computes the keystream in an online manner,

the time difference between two succeeding key bits should be small in the
average, and not vary too much. This implies the following partition rule:
Each internal bit-stream z can be divided into consecutive elementary blocks
z = z0z1 . . . zs−1, such that C(z) = y0y1 . . . ys−1 with yj = C(zj) for all
j = 0, . . . , s − 1, and the average length of the elementary blocks is a small
constant. This partition rule implies that pC(m) can be supposed to behave
as pC(m) = 2−αm, for a constant α ∈ (0, 1]. Due to (2), α coincides with the
information rate of C.

The second parameter of C is the maximal number of output bits which C
produces on internal bitstreams of length m. Due to the partition rule, this value
can be supposed to behave as γm, for some constant γ ∈ (0, 1]. We call γ to be
the (best case) compression ratio of C.

Observe that if C always reads the same number k of internal bits for
producing one output bit, then α = γ = 1

k . If this number is not a constant
then α can be obtained by the formulae

2−αm = pC(m) =
�γm	∑
i=0

2−iProbz [|C(z)| = i] , (3)

where z denotes a random, uniformly distributed element from {0, 1}m. Observe
that (3) yields γ ≥ α, i.e. γα−1 ≥ 1.

For all x ∈ {0, 1}n and m ≥ 1 let L≤m(x) denote the first m bits of L(x).
Note the following design criterion for well-designed keystream generators.

Pseudorandomness Assumption. For all keystreams y and all m ≤ �α−1n	
it holds that

Probz [C(z) is prefix of y] ≈ Probx [C(L≤m(x)) is prefix of y] ,

where z and x denote uniformly distributed random elements from {0, 1}m and
{0, 1}n, respectively.

232 Matthias Krause

Lemma 2. If the keystream generator fulfils the above pseudorandomness
assumption then for all keystreams y and m ≤ α−1n there are approximately
2n−αm initial states x for which C(Lm(x)) is prefix of y. ✷

Observe that a severe violation of the pseudorandomness assumption implies
the possibility of attacking the cipher via a correlation attack. Our main result
can now be formulated as

Theorem 2. Let E be an LFSR-based keystream generator of key-length n
with linear bit-stream generator L, and compression function C of information
rate α and (best case) compression ratio γ. Let C and L fulfil the BDD-
and the pseudorandomness assumption. Then there is an nO(1)2(1−α)/(1+α)n-
time bounded algorithm, which computes the secret initial state x from the first
�γα−1n	 consecutive bits of y = C(L(x)).

As usual, we define the effective key length of a cipher of key length n to be
the minimal number of polynomial time operations that are necessary to break
the cipher. We obtain a bound of 1−α

1+αn for the effective key length of keystream
generators which fulfil the above conditions.

6 The Algorithm

Let us fix n, E, L, C, α and γ as in Theorem 2. For all m ≥ 1 let Gm denote
the graph ordering defined by C on internal bitstreams of length m. Let y be
an arbitrarily fixed keystream which was generated via E. For all m ≥ 1 let
Qm denote a minimal Gm-FBDD which decides for z ∈ {0, 1}m whether C(z) is
prefix of y. Observe that Qm has to read the first �γm	 bits of y. The FBDD-
assumption yields that Qm has polynomial size in m.

For m ≥ n let Pm denote the minimal Gm-driven FBDD which decides
whether z ∈ {0, 1}m is a linear bitstream generated via L and if C(z) is prefix
of y. Observe that by Property 3.03 and Lemma 1

Lemma 3. |Pm| ≤ |Qm||Gm|22m−n for all m ≥ n. ✷

The strategy of our algorithm is simple, it dynamically computes Pm for
m = n, . . . , �α−1n	. Lemma 2 implies that for m = �α−1n	 with high probability
only one bit-stream z∗ will be accepted by Pm. Due to property 3.04 this bit-
stream can be efficiently computed. The first n components of z∗ form the initial
state that we are searching for.

For all m ≥ n let Sm denote a minimal Gm-FBDD which decides for
z = (z0, . . . , zm) whether zm = Lm(z0, . . . , zn−1). From Lemma 1 we obtain
that |Sm| ≤ 2|Gm|. Now our algorithm can be formulated as

(1) P := Qn

(2) For m := n+ 1 to �α−1n	
(3) P := min(P ∧ Qm ∧ Sm−1)

BDD-Based Cryptanalysis of Keystream Generators 233

For the correctness of the minimization in step (3) observe that the definition
of Gm implies that Gm is Gm′ -driven for all m′ ≥ m. It follows from the
definitions that for all m ≥ n P coincides with Pm after iteration m.

The FBDD-operation min(P ∧Qm ∧ Sm−1) takes time p(m)|Pm−1| for some
polynomial p. Consequently, the running time of the algorithm can be estimated
by

nO(1) max{|Pm|, m ≥ n}.
Observe that on the one hand, by Lemma 3, |Pm| ≤ p′(m)2m−n for some
polynomial p′, while on the other hand, by Property 3.02 and Lemma 2,
|Pm| ≤ m|One(Pm)|, where

|One(Pm)| ≈ 2n−αm = 2(1−α)n−α(m−n).

Consequently, |Pm| does not exceed nO(1)2r(n), where r(n) is the solution of

2r(n) = 2(1−α)n−αr(n)

which yields r(n) = 1−α
1+αn. We have proved Theorem 2. ✷

7 Applications

We apply Theorem 2 to the keystream generators introduced in section 2.
We suppose that these generators fulfill the pseudorandomness assumption,
otherwise the running time estimations of our cryptanalysis hold on average.
It remains to determine the information rate and the compression ratio, and
to prove that the FBDD-assumption is true. For the Connect-k construction it
holds α = γ = 1

k . The FBDD-assumption has shown to be true in section 4.

Theorem 3. For all k ≥ 2 and all stream ciphers E of key-length n which
are a Connect-k construction, our algorithm computes the secret initial state
x ∈ {0, 1}n from the first n bits of y = E(x) in time nO(1)2

k−1
k+1 n. ✷

This is, as far as we know, the best known general upper bound on the
effective key-length of the Connect-k construction. Observe that the initial state
of one LFSR can be computed efficiently if the initial states of the other LFSRs
are known. This leads to a Divide-and-Conquer attack of time nO(1)2

k−1
k n which

is slightly worth than our result.
For the E0-encryption standard in the one-level mode we obtain α = γ = 1

4 .
The decision if a given internal keystream z ∈ {0, 1}m yields a prefix of a given
keystream y can be computed by π-OBDDs of linear size, see [11], i.e. E0 fulfils
the FBDD-assumption. We obtain

Theorem 4. For the E0-encryption standard with key-length n, our algorithm
computes the secret initial state x ∈ {0, 1}n from the first n bits of y = E0(x) in
time nO(1)20.6n. ✷

234 Matthias Krause

Observe that 128 ·0.6 ≈ 77. Note that the best known attacks against the E0
generator of key length 128 were derived by Fluhrer and Lucks [7] and Canniere
[6]. [7] contains a tradeoff result between time and length of available keystream.
It varies from 284 necessary encryptions if 132 bit are available to 273 necessary
encryptions if 243 bits are available.

Let us now consider the E0 generator in the two level mode with real key
length n and internal key length N ≥ n. Observe that E2

0 needs 4 · 4 = 16
internal bits per key bit for producing the first N/4 key bits, while for later
key bits only 4 internal bits per key bit are needed. Observe further that our
algorithm reaches maximal FBDD-size in iterationm∗ := n+ 1−α

1+αn. For α = 1/16
this gives m∗ = 32/17n. As m∗/16 < N/4 we obtain α = γ = 1/16 as relevant
parameters for our algorithm on E2

0 . The decision if a given internal keystream
z ∈ {0, 1}m yields a prefix of a given keystream y can be computed by π-OBDDs
of size O(m), where the constant hidden in O is quite large, see [11]. Taking into
account that 1−α

1+α = 15
17 ≈ 0.8824 we get

Theorem 5. For the E2
0 -encryption generator with key-length n, our algorithm

computes the secret initial state x ∈ {0, 1}n from the first n bits of y = E2
0(x) in

time nO(1)20.8824n. ✷

As far as we know this is the first nontrivial upper bound on the key length
of the E0

2 generator.
Concerning the self-shrinking generator observe that for all even m and

all keystreams y, shrink(z) is prefix of y for exactly 3m/2 strings z of length
m. We obtain an information rate α = 1 − log(3)/2 ≈ 0.2075 for the self-
shrinking generator by evaluating the relation 2−αm2m = 3m/2. The (best case)
compression ratio of the self-shrinking generator is obviously 0.5. That the self-
shrinking generator fulfils the FBDD-condition was already shown in section 4.
Taking into account that for α = 0.2075 it holds 1−α

1+α ≈ 0.6563 and 0.5α−1 ≈ 2.41
we get

Theorem 6. For the self-shrinking generator of an n-LFSR L, our algorithm
computes the secret initial state x ∈ {0, 1}n from the first �2.41n	 bits of
y = shrink(L(x)) in time nO(1)20.6563n. ✷

Observe that the best previously known short-keystream attacks against
the self-shrinking generator were given by Meier and Staffelbach [14] (20.75n

polynomial time operations) and Zenner et. al. [19] (20.694n polynomial time
operations). Mihaljević [13] presented an attack which yields a tradeoff between
time and length of available keystream. It gives 20.5n necessary polynomial
time operations if 20.5n bits of keystream are available, and matches our bound
of 20.6563n necessary polynomial time operation if 20.3n bits of keystream are
available, which is a quite unrealistic assumption.

The difficulty in applying our algorithm to the A5/1 generator is that the
compression algorithm reads most of the internal bits twice, one time for the
clock control and a certain time later for producing an output key bit. Read-
twice BDDs do not have any of the nice algorithmic properties 3.01 - 3.04,

BDD-Based Cryptanalysis of Keystream Generators 235

unless P = NP . For making the A5/1 generator accessable to our approach we
have to modify the keystream generation rule. We define the internal bitstream
to be mixed of 6 LFSR-sequences L0, . . . , L5, instead of 3. The first 3 LFSR-
sequences are generated by the 3 LFSRs of the A5/1 generator. They are used
for producing the output bits. The sequences L3, L4, L5 are used for computing
the control values. They are shifted copies of the first 3 sequences, defined by
the rules L3+k

j = Lk
j+Nk

, for k = 0, 1, 2. As theses rules are linear restrictions
we get a linear bitstream generated by 6 LFSRs. For this modified version, the
decision if a given internal keystream z ∈ {0, 1}m yields a prefix of a given
keystream y can be computed by Gm-FBDDs of size O(m3). Gm-denotes the
graph ordering induced by the clock control. This is the only example where
OBDDs do not suffice, we really need FBDDs which allow different variable
orderings for different inputs.

The (best case) compression ratio of the modified version of A5/1 is γ = 1
4 ,

as either 4 or 6 new internal bits are used for producing the next output bit. It
can be proved that the information rate α is the solution of

21−4α =
1
4

(
3 + 22α

)
,

which yields α ≈ 0.2193, see [11]. Taking into account that 1−α
1+α ≈ 0.6403 and

γα−1 ≈ 1.14 we obtain

Theorem 7. For an A5/1 generator E of key length n, our algorithm computes
the secret initial state x from the first �1.14n	 bits of y = E(x) in time
nO(1)20.6403n. ✷

The best previously known short-keystream attack was given by Golić [8].
It is against a version of A5/1 generator with keylength 64, which slightly
deviates from the specification discovered in [5]. A tight analysis of the time
behaviour of Golić’s attack, when applied to the real A5/1 generator, was given
by Zenner in [18] and yields 242 polynomial time operations. We get a marginal
improvement, as �64 · 0.6403	 = 41. The best long-keystream attacks were given
by Biryukov, Shamir andWagner in [2], and Biham and Dunkelman in [1]. After
a preprocessing of 242 operations the first attack in [2] breaks the cipher within
seconds on a modern PC if around 220 bits of keystream are available. The
second attack in [2] breaks the cipher within minutes after a preprocessing of
248 operations and under the condition that around 215 bits of keystream are
available. The attack in [1] breaks the cipher within 239.91 A5/1 clockings on the
basis of 220.8 available keystream bits.

8 Discussion

There are classical design criterions for keystream generators like a large period,
a large linear complexity, correlation immunity and good local statistics. In this
paper we suggest a new one: resistance against FBDD-attacks. We have seen

236 Matthias Krause

that there are two strategies to achieve this resistance. The first is to highly
compress the internal bitstream (as in the case of E2

0). This implies a low bit-rate
which is not desirable. The second strategy is to design the compression function
C in such a way that the decision about the consistence of a given internal
bitstream with a given output keystream requires exponential size FBDDs. It is
an interesting challenge to look for such constructions. For demonstrating the
universality of our approach we presented the FBDD-attack in a very general
setting. The obvious disadvantage of this setting is that the algorithm needs a
lot of space as all intermediate FBDDs have to be explicitely constructed. It is
an interesting open question if the algorithmic idea of FBDD-minimization can
be used in a more subtle way for getting, at least for some ciphers, an algorithm
which is less space consuming. Another interesting direction of further research
is to check whether the FBDD-attack could be successfully combined with other
more sophisticated methods of cryptanalysis like the tradeoff attacks suggested
in [8], [2] and [1]. Moreover, it would be interesting to clarify by experiments
how much do the real sizes of the minimized intermediate FBDDs deviate from
the pessimistic upper bounds proved in our analysis.

Acknowledgement

I would like to thank Stefan Lucks, Erik Zenner, Christoph Meinel, IngoWegener,
Rüdiger Reischuk and some unknown referees for helpful discussions.

References

1. E.Biham, O.Dunkelman. Cryptanalysis of the A5/1 GSM Stream Cipher. Proc.
of INDOCRYPT 2000, LNCS 1977, 43-51.

2. A.Biryukov, A. Shamir, D. Wagner. Real Time Cryptanalysis of A5/1 on a PC.
Proc. of Fast Software Encryption 2000, LNCS 1978, 1-18.

3. Bluetooth SIG. Bluetooth Specification Version 1.0 B, http//:www.bluetooth.com/
4. R. E.Bryant. Graph-based algorithms for Boolean function manipulations. IEEE

Trans. on Computers 35, 1986, 677-691.
5. M.Briceno, I.Goldberg, D.Wagner. A pedagogical implementation of A5/1.

http//:www.scard.org, May 1999.
6. C. de Canniere. Analysis of the Bluetooth Stream Cipher. Master’s Project COSIC,

Leuven, 2001.
7. S. R. Fluhrer, S. Lucks. Analysis of the E0 Encryption System. Technical Report,

Universität Mannheim 2001.
8. J.D.Golić.

Cryptanalysis of alleged A5/1 stream cipher. Proc. of EUROCRYPT’97, LNCS
1233, 239-255.

9. J.Gergov, Ch.Meinel. Efficient Boolean function manipulation with OBDDs can
be generalized to FBDDs. IEEE Trans. on Computers 43, 1994, 1197-1209.

10. S.W.Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills, revised
edition 1982.

11. M.Krause. BDD-based Cryptanalysis of Keystream Generators. Report 2001/092
in the Cryptology ePrint Archive (http://eprint.iacr.org/curr/).

BDD-Based Cryptanalysis of Keystream Generators 237

12. Ch.Meinel. Modified Branching Programs and their Computational Power. LNCS
370, 1989.

13. M. J.Mihaljević. A faster Cryptanalysis of the Self-Shrinking Generator. Proc. of
ACIPS’96, LNCS 1172, 182-189.

14. W.Meier, O. Staffelbach. The Self-Shrinking Generator. Proc. of EUROCRYPT’94,
LNCS 950, 205-214.

15. R.A.Rueppel. Stream Ciphers. Contemporary Cryptology: The Science of
Information Integrity. G.Simmons ed., IEEE Press New York, 1991.

16. D. Sieling, I.Wegener. Graph driven BDDs - a new data structure for Boolean
functions. Theoretical Computer Science 141, 1995, 283-310.

17. I.Wegener. Branching Programs and Binary Decision Diagrams. SIAM
Monographs on Discrete Mathematics and Applications. Philadelphia 2000.

18. E. Zenner. Kryptographische Protokolle im GSM Standard: Beschreibung und
Kryptanalyse (in german). Master Thesis, University of Mannheim, 1999.

19. E. Zenner, M.Krause, S. Lucks. Improved Cryptanalysis of the Self-Shrinking
Generator. Proc. of ACIPS’2001, LNCS 2119, 21-35.

	1 Introduction
	2 LFSR-Based Keystream Generators
	3 Binary Decision Diagrams (BDDs)
	4 FBDD-Aspects of Key-Stream Generators
	5 The Main Result
	6 The Algorithm
	7 Applications
	8 Discussion
	Acknowledgement
	References

