
Formal Methods in System Design, 22, 205–224, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

BDD Based Procedures for a Theory of Equality
with Uninterpreted Functions∗

ANUJ GOEL
Department of ECE, The University of Texas at Austin

KHURRAM SAJID
Intel

HAI ZHOU
Department of ECE, Northwestern University

ADNAN AZIZ
Department of ECE, The University of Texas at Austin

VIGYAN SINGHAL
Tempus-Fugit

Received September 3, 1999; Accepted October 17, 2002

Abstract. The logic of equality with uninterpreted functions has been proposed for verifying abstract hardware
designs. The ability to perform fast satisfiability checking over this logic is imperative for such verification
paradigms to be successful. We present symbolic methods for satisfiability checking for this logic. The first
procedure is based on restricting analysis to finite instantiations of the variables. The second procedure directly
reasons about equality by introducing Boolean-valued indicator variables for equality. Theoretical and experimental
evidence shows the superiority of the second approach.

Keywords: uninterpreted functions, logic of equality, BDDs

1. Verifying high-level designs using the theory of equality

A common problem with automatic formal verification is that the computational resources
required for verification increase rapidly with the size of the design. State-of-the art tools
for verification of gate-level designs cannot as a matter of course verify designs possessing
more than a few hundred binary-valued latches.

This observation motivates the development of tools which can operate on designs at a
higher level of abstraction. The basic premise is that abstract designs, being less specified,

∗This paper extends results reported by the authors at the following conference: A. Goel, K. Sajid, H. Zhou, A.
Aziz, and V. Singhal. “BDD Based Procedures for a Theory of Equality with Uninterpreted Functions,” in Proc.
of Conference on Computer-Aided Verification, Vancouver, Canada, July 1998.

206 GOEL ET AL.

are simpler and thus easier to verify. Another benefit of this approach is that bugs are caught
at earlier stages of the design process.

We are interested in the verification of designs at the high-level. This necessitates reason-
ing about designs where much of the complexity has been abstracted away, e.g., core-based
designs [2]. The use of uninterpreted functions (UIFs) has been proposed as a powerful
abstraction mechanism for hardware verification [15, 23]. Essentially, UIFs allow the ver-
ification tool to avoid getting bogged down by complex details which are irrelevant to the
property being proved. In our work, we will use abstractions where datapath is abstracted
away by using unbounded integers, complex combinational functions such as multipliers
can be abstracted as uninterpreted functions, complex bypass circuitry required in pipeline
designs can be captured by the compare operator, and propositional logic can be used to
derive control signals. Moreover, memories can also be incorporated in this framework as
partially interpreted functions by adding constraints which relate reads and writes [21].

In this context, the primary verification problem we are interested in is design equivalence;
specifically, verifying equivalence between a pipelined and nonpipelined processor. This
can be posed as a problem in satisfiability checking for quantifier-free formulas involving
both equality and UIFs [8]. As shown by Ackermann [1], this problem can be reduced to
satisfiability checking of quantifier-free formulas involving only equality through a suitable
generalization of the following: given a formula φ containing terms f (x1) and f (x2), where
f is a UIF, replace f (x1) and f (x2) and by fresh variables y1 and y2 to obtain a formula ψ ;
then φ is satisfiable iff (x1 = x2 → y1 = y2)∧ψ is satisfiable. Satisfiability checking for the
theory of equality is more complex than satisfiability checking for propositional logic—the
axioms equality need to hold. For example, the formula (x1 = x2)∧ (x2 = x3)∧¬(x1 = x3)
is not satisfiable, since it violates the transitivity of equality.

A number of decision procedures exist for the theory of equality with UIFs and its
extensions. Pioneering work was done by Shostak [21], who considered linear arithmetic in
conjunction with UIFs. His procedure replaces terms generated from UIFs by new variables
as previously described; the formula is then converted to a conjunctive normal form, and
each conjunct is checked for satisfiability using Integer Linear Programming. In this way,
formula satisfiability (and, by duality, validity) can be checked.

Extensions to the basic algorithm of Shostak have been made in many recent papers
on processor verification [3, 8, 15]. Essentially, their approach is a variant of the Davis-
Putnam procedure for validity checking over propositional logic, with suitable extensions
for handling the properties of equality. One source of their efficiency is the ability to split
on subformulas; they also use heuristic rewrite rules for formula simplification. Their target
application was the verification of pipelined processors. Their notion of correctness is
based on the equivalence of the machine state of the nonpipelined machine after processing
an instruction and the state resulting in the pipelined machine after executing the same
instruction and flushing it out. (This is the standard “commutative diagram” approach to
verification [8].) Equivalence is formulated in terms of the validity of a quantifier free
formula involving both equality and UIFs.

One difference of our work with the work of [3] is that while they use formulas to
encode the designs, we use BDDs which also incorporate the constraints that are required
of the UIFs. If these BDDs can be built and manipulated, the validity checking problem

BDD BASED PROCEDURES 207

is considerably simplified, and should work more robustly than a rewrite-based approach.
However, a naive method for building these BDDs does not work; BDDs become too big. We
present a novel encoding technique so that the validity checking problem can be efficiently
represented using BDDs.

Hojati et al. [13, 14] use finite instantiations to handle UIFs (we also discuss a finite
instantiation based method in Section 3.1). In [13], they require an explicit invocation of
Shostak’s method to decide equality between two terms containing UIFs; it is not described
if Shostak’s algorithm is used directly or another approach is used. Their results were
negative from a computational point of view, and they conjectured this was because of the
absence of a good variable ordering; our experiments corroborate this. We have developed
a new approach for encoding the UIF verification problem with BDDs which results in
significantly improved runtime, and enjoys nice theoretical properties—this is the approach
presented in this paper (Section 3.2). In our preferred method, constraints due to UIFs (based
on Ackermann’s reduction) are directly represented by BDDs. We provide experimental
evidence that this method performs much better than a finite instantiation based method.

1.1. Symbolic procedures for the theory of equality

We motivate the use of symbolic procedures for the theory of equality by drawing analo-
gies to the problem of verifying the equivalence of gate-level combinational netlists. One
approach to the equivalence problem is to form a single “product netlist” wherein corre-
sponding inputs are tied together, and corresponding outputs are XOR-ed. Inequivalence can
then be checked by forming a large conjunction of propositional formulas corresponding
to the “characteristic functions” of the gates, and a formula asserting that a pair of outputs
differ; the designs differ iff the conjunction is satisfiable.

Today, state-of-the-art tools for Boolean verification use BDDs and heavily exploit the
structure of the design [16]; the original tools were based on case splitting. Current ap-
proaches for verification in the theory of equality with UIFs proceed by case splitting on
terms occurring in the formula; heuristic rewriting of subformulas is also performed. Based
on experiences with analogous approaches for Boolean verification, we predict that these
techniques may not be viable as the examples get larger or more complex, especially when
the examples are not hand designs but are outputs of automatic CAD tools, e.g., high-level
synthesis tools.

A number of very sophisticated satisfiability checkers exist for propositional logic, e.g.,
[22]. However, even the best checkers timeout when performing equivalence checking on
medium and large sized circuits unless they are structurally very similar [16]. This is indeed
the case say when performing ATPG, where the circuits differ only in the existence of a
stuck-at fault, where clauses relating the two netlists can be added to “guide” the search, but
not so for design verification, where specification and implementation are very different.
In part, the failure of propositional satisfiability checkers stems from the huge number of
variables (one for each gate) that arise in the formulas, and the loss of the knowledge of the
design topology.

Symbolic approaches and their variants have performed well on equivalence checking
for circuits which are structured very differently. In particular Reduced Ordered Binary

208 GOEL ET AL.

Decision Diagrams (henceforth BDDs) and their variants have proved to be very useful in
verifying gate-level combinational and sequential designs [4, 5].

The previously mentioned approaches [3, 21] to satisfiability checking for the quantifier
free formulas in the theory of equality are all formula based; by analogy to the propositional
case, they will not fare well on designs specified as netlists.

It is, therefore, natural to ask the question whether netlists operating on integer-valued
inputs where the only operation on integers is equality checking can be verified by BDD-
like techniques. The answer is in the affirmative—in this paper we provide two distinct
symbolic procedures for the equivalence checking problem. The first approach, presented
in Section 3.1, is a naive transformation of the design into a Boolean-valued netlist of
gates by appealing to a “small model” property that the existential fragment of the logic
of equality enjoys [18]; we refer to this as the finite instantiation approach. The second
approach, described in Section 3.2, uses more insight—a Boolean valued variable ei j is
introduced for every pair of inputs xi and x j that are compared in the design. We provide
both theoretical and experimental evidence for the superiority of this encoding.

1.2. Paper organization

The remainder of this paper is structured as follows. We begin in Section 2 by presenting our
modeling machinery, which is in the form of integer equality (IE) netlists; in Section 2.1 we
show how satisfiability of quantifier-free formulas in the theory of equality with UIFs can be
reduced to satisfiability problems for IE netlists. In Section 3, we describe the theory behind
two symbolic algorithms for verifying the equivalence of such designs. Experimental results
are presented in Section 4. We conclude with suggestions for future work in Section 5.

2. Definitions

Designs will be specified as netlists. Before entering into a formal discussion of syntax and
semantics for designs, we provide some illustrative examples. The design of figure 1(a)
takes 4 integer-valued inputs—x1, x2, x3, x4. The signal t1 is Boolean-valued, and takes the
value 1 exactly when x1 and x2 are equal. Intuitively, the structure labeled with “=” returns
1 when its inputs are equal, and 0 otherwise. The signal u1 is integer-valued; it is equal to
x1 when t1 is 1, and x2 when t1 is 0. The structure labeled MUX operates as a multiplexer.
The signal t2 is Boolean-valued; it takes the value 1 exactly when x4 is equal to u1.

Figure 1. Design examples.

BDD BASED PROCEDURES 209

The design of figure 1(b) is identical to the example presented in figure 1(a), except that
the 1-input to the multiplexer has been replaced by x2. Observe however, that the signals t2
and s2 take the same value for any input, since the 0-inputs to the corresponding multiplexers
are the same, and the 1-input is selected exactly when x1 = x2.

Definition 1 (IE Netlist Syntax). An integer equality (IE) netlist is a directed acyclic
graph, where the nodes correspond to primitive circuit elements, and the edges correspond
to connections between these elements. Each node is labeled with a distinct variable. The
four basic primitive circuit elements are inputs, multiplexers, equality checkers, and 2-input
NAND gates. Some nodes are also labeled as being outputs. If an edge (u, v) exists in
the IE netlist, u is said to be a fanin of v. The set of fanins of a node is assumed to be
ordered.

Nodes will be of two types—Boolean-valued and integer-valued. Inputs and multiplexers
are defined to be of integer valued type; equality checkers and 2-input NAND gates are
defined to be of Boolean valued type. Input nodes are required to have empty fanin lists;
2-input NAND gate nodes must have two Boolean-valued fanins. Multiplexers are required
to have a single Boolean-valued fanin, and two integer-valued fanins; we will often use
c to denote the Boolean-valued fanin of a multiplexer node, and u and v to denote the
integer-valued fanins. Equality checkers must have two integer-valued fanins.

Figure 1(c) presents an example of an IE netlist.

The restriction to 2-input NAND gates is not serious, since they are functionally complete.
Constant-valued nodes and Boolean-valued inputs can also be handled in the framework
presented above. The technical issues they bring up are minor, but impinge on the clarity
of presentation; for simplicity we ignore them. Additionally, in the interests of exposition,
we will often identify the variable corresponding to a node by the node itself.

In the sequel it will be convenient to refer to the level of a node.

Definition 2. Given an IE netlist, level is the function whose domain is the set of nodes
and range is the natural numbers ω = {0, 1, 2, . . .} defined below:

1. If the node α is of type input, then level(α) = 0,
2. otherwise, level(α) = 1 + max{level(β) | β is a fanin of α}.

The fact that this definition is sound, i.e., assigns each node to a unique value can be found
in [10, p. 659].

Formally, an input to an IE netlist is a function whose domain is the set of input nodes
and range is ω. We will often use the Greek letter ι (iota) to denote an input to an IE
netlist.

An input can be canonically extended to a function mapping the set of all nodes to ω by
evaluating the nodes in topological order as follows:

Definition 3 (IE Netlist Semantics). Let ι be an input, and s an arbitrary node in the netlist.
Then ι uniquely defines a value νι(s) to s as follows:

210 GOEL ET AL.

1. If s is an input then νι(s) = ι(s).
2. If s is the output of an equality node with fanins v and w then νι(s) = 1 if νι(v) = νι(u),

and 0 otherwise.
3. If s is the output of a multiplexer node with fanins c, v and w, then νι(s) = νι(v) if

νι(c) = 1, and νι(w) otherwise.
4. If s is the output of a 2-input NAND with fanins v and w, then νι(s) = 1 if νι(v) = 0 or

νι(u) = 0, and 0 otherwise.

It follows from induction on the level of s that νι assigns a unique value to s.

In this manner, an IE netlist D on inputs a1, a2, . . . , an and outputs b1, b2, . . . , bm defines
a function fD : ωn �→ ωm . Intuitively, two designs are functionally equivalent if in any
environment they can be used interchangeably; a necessary and sufficient condition for this
is that they define identical functions. Note that an IE netlist can operate on inputs drawn
from an arbitrary set, and not just integers, since no operation other than equality is applied
to the integer-valued nodes.

Observe that for an input ι, the value taken by any integer-valued node in the IE netlist
will be the value assigned to some input node by ι. This is because there are no functions
which can be applied to the integers propagated in the IE netlist; integers can only be tested
for equality. Indeed, a stronger claim can be asserted—for a given input, the value taken by
an integer valued node can be traced back to a specific input node. With this in mind, we
define the function Fs(ι) as follows:

Definition 4 (Flows function). Let s be an integer valued node, and ι an input. We define
Fs(ι) as follows:

1. If s is an input then Fs(ι) = s.
2. Otherwise, s must be a multiplexer. Let its fanins be c, v, and w. Then Fs(ι) = Fv(ι)

when νι(c) = 1, and Fs(ι) = Fw(ι) when νι(c) = 0.

As in Definition 3, induction on the level of s demonstrates that Fs(ι) is assigned a unique
value for each ι.

We will say the input xi flows to s under the input assignment ι exactly when Fs(ι) = xi .
For example, the input x1 flows to u1 for the design in figure 1(a) under the input x1 = 2,
x2 = 2, x3 = 3, x4 = 4. Note that x2 does not flow to u1 under this assignment, even though
the value taken at u1 is the same as that at x2.

The flow function has the following property:

Lemma 2.1. Let ι an input, and s be an integer valued node. Then if Fs(ι) = xk, we must
have νι(s) = ι(xk).

Proof: We use induction on the level of s.

BDD BASED PROCEDURES 211

Induction Hypothesis: Lemma 2.1 holds for each integer valued node of level ≤q.
Base Case: level(s) = 0. From Definition 2, we see s must be of type input. By Definition 4

[Case 1], Fs(ι) = s; furthermore, by Definition 3 [Case 1], νι(s) = ι(s), proving the base
case.

Induction Step: level(s) = q + 1. We assume the IH for all integer valued nodes of level
≤q .

Let s be any integer valued node whose level is q + 1. Examining Definition 2, we see
that s must be a multiplexer node.

Let the fanins of s be c, v, and w. Note that the level of c, v, and w must be less than the
level of s, and hence we can apply the induction hypothesis to them.

Suppose νι(c) = 1. Let Fv(ι) = xk . By Definition 4 [Case 2], Fs(ι) = Fv(ι) = xk .
Furthermore, by Definition 3 [Case 3], νι(s) = νι(v). By the IH, νι(v) = νι(xk), so νι(s) =
νι(xk). The case when νι(c) = 0 is symmetric. Thus the induction step holds.

By the principle of mathematical induction, we see Lemma 2.1 holds for all nodes.

2.1. Relating designs, equality with UIFs, and IE netlists

As stated in the introduction, we are concerned with designs which operate on unbounded
integers, wherein the datapath has been abstracted away using UIFs, and equality is the
only operation which is applied to integer nodes; design inequivalence can then be cast
as the satisfiability of a quantifier-free formula involving equality and UIFs. IE netlists
cannot directly represent UIFs; however, the outputs of the UIF blocks can be replaced by
new inputs. When comparing the resulting IE netlists, these new inputs must satisfy the
constraint that if the inputs to two instances of the same UIF are equal, then the outputs
of the two instances are equal; this constraint can be added to the IE circuit using simple
circuitry (an equality checker and a gate). As is the case for Shostak’s procedure [21], the
soundness and completeness of this construction follows from [1].

3. IE netlist satisfiability checking

IE Netlist Satisfiability Checking consists of taking an IE-netlist and determining if an input
assignment exists for which a specified Boolean-valued output can take the value 1.

Note that the usual “product construction” for checking the equivalence of gate-level
netlists can be applied to the problem of equivalence checking for IE netlists; this is il-
lustrated in figure 2. Observe that the construction results in exactly one Boolean-valued

Figure 2. Product construction for equivalence checking.

212 GOEL ET AL.

output, and so the equivalence problem for IE netlists can be easily reduced to IE netlist
satisfiability checking.

It is natural to ask if the IE netlist satisfiability checking problem is decidable, and if so,
what computational complexity class it lies in.

3.1. Finite model approach

The existence of a decision procedure follows immediately from the fact that a “finite model”
folk-theorem holds for the existential fragment of the theory of equality: an existential
formula in the language of equality is satisfiable iff it is satisfiable in some model whose
universe has cardinality equal to the number of variables occurring in the formula.

We review this result below; details can be gleaned from [18]. A tolerance for mathemat-
ical logic will be needed to appreciate the next few paragraph; Chapter 2 of Enderton [11]
provides an excellent introduction.

The set of quantifier free formulas of the first order logic of pure equality consists of
Boolean combinations of formulas of the form (xi = x j). A formula σ is said to be an
existential sentence if it is of the form ∃xi1∃xi2 . . . ∃xik φ where φ is a quantifier free formula,
and no variables occur in φ save for those in the set {xi1 , xi2 , . . . , xik }.

The formulas ∃x1∃x2(¬(x1 = x2)) and ∃x3∃x4∃x2((x3 = x2) ∧ (x4 = x3) → (¬(x2 = x4))
are existential sentences; ∃x1((x1 = x2) → (x1 = x1)) is not an existential sentence (since
x2 is not a quantified variable), ∃x1∃x2(x1 = x2) → ∃x3∃x4(¬(x3 = x4)) is not existential
sentence (since not all quantifier symbols appear at the beginning).

Let σ be an existential sentence in this language, with n distinct variable symbols occur-
ring in it. Then it is easily seen (for example by an exercise in [18]) that σ is satisfiable iff it
is satisfiable when the variables are taken to range over a set (the “universe”) of cardinality
n. The bound is “tight”, i.e., there are existential sentences σ on n variables so that no less
than n elements are required in the universe. This result follows from the fact that since there
are only n variables in the formula, and they are only being compared, in any interpretation
in which the sentence is true, at most n distinct values are being assigned to the variables.

3.1.1. Reduction to Boolean network satisfiability. The problem of determining if there
is an input to an IE netlist which sets a designated Boolean-valued output to 1 can be
reduced to checking the satisfiability of an existential sentence in the first order logic of pure
equality; the encoding is very similar to that used to convert an instance of Boolean network
satisfiability to an instance of CNF formula satisfiability [17]. As an example, the output of
the IE netlist in figure 2 can be 1 iff the formula ∃x1∃x2∃x3∃x4((φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)) is
satisfiable, where φ abbreviates the expression (((x1 = x2) → (x4 = x1))∧ (¬(x1 = x2) →
(x4 = x3))) and ψ abbreviates the expression (((x1 = x2) → (x4 = x2)) ∧ (¬(x1 = x2) →
(x4 = x3))).

Observe that when reducing an instance of IE netlist satisfiability to an instance of
satisfiability of an existential sentence in the first order logic of pure equality, we can
always produce an existential sentence for which the number of variables is equal to the
number of input nodes in the netlist: that is because an IE netlist can be “flattened”, i.e.,
output node functions can always be defined by quantifier-free logical expressions of the

BDD BASED PROCEDURES 213

input nodes. (A formal proof of this fact can be established using induction on the level of
nodes.) Thus if an IE netlist with n input nodes is satisfiable, it is satisfiable for an input
whose range is of size n.

Hence the integer valued variables can be replaced by n-valued variables; each such
variable can then be encoded by a vector of �lg n� Boolean-valued variables. Thus an
instance of IE netlist satisfiability can be polytime reduced to an instance of Boolean
network satisfiability.

This reduction also shows that satisfiability of IE netlists is in NP; furthermore, it is
readily seen that the presence of 2-input NAND gates implies that an instance of CNF
satisfiability can be polynomial time reduced to an instance of IE netlist satisfiability, and
hence IE satisfiability is NP-complete [12].

3.2. A better encoding

In this section we develop a superior reduction of IE netlist satisfiability to Boolean network
satisfiability. We introduce a set of Boolean valued variables—one for each distinct com-
parison which is made between input nodes. We will show that the IE netlist functionality
can be characterized by Boolean-valued functions of these Boolean variables.

Specifically, for an IE netlist D on inputs x1, . . . , xn introduce Boolean variables ei j for
1 ≤ i < j ≤ n. We now define for a Boolean-valued node s in D a Boolean function f s

defined over the set of variables E = {ei j | 1 ≤ i < j ≤ n}, and for an integer-valued
node t , a vector of n Boolean-valued functions 〈 f t

1 , f t
2 , . . . , f t

n 〉 defined over the same set
of variables:

Definition 5 (ei j Encoded Functions).

1. If s is an input, say xk , we define f s
k = 1 and for j �= k, f s

j = 0.
2. If s is a 2-input NAND gate with inputs u and v, then f s = (f u · f v)′.
3. If s is the output of a mux with control input c, and data inputs v, w, then for each

k ∈ {1, 2, . . . , n}, we define f s
k = f c · f v

k + (f c)′ · f w
k .

4. If s is the output of an equality node with inputs u, and v then

f s =
n∑

i=1

(
f u
i · f v

i

) +
n∑

i=1

n∑

j=1
j �=i

(
f u
i · f v

j · emin(i, j) max(i, j)
)

Intuitively, the ei j variables indicate whether the i-th and j-th integer inputs are equal or
not. We will soon prove that for a Boolean valued node s, the function f s represents the
condition on the input under which the node evaluates to 1, and that for an integer valued
node t , f t

k represents the condition under which the circuit node assumes the value of the
k-th input.

Note the distinction between the input that flows to t under ι, and the value νι(t): it may
be the case that νι(t) is equal to the value of more than one input, but there will still be a
unique input xk which flows to t .

214 GOEL ET AL.

Example. Consider the IE netlist shown in figure 2. The functions at the nodes are as
follows:

〈
f x1
1 , f x1

2 , f x1
3 , f x1

4

〉 = 〈1, 0, 0, 0〉 〈
f x2
1 , f x2

2 , f x2
3 , f x2

4

〉 = 〈0, 1, 0, 0〉〈
f x3
1 , f x3

2 , f x3
3 , f x3

4

〉 = 〈0, 0, 1, 0〉 〈
f x4
1 , f x4

2 , f x4
3 , f x4

4

〉 = 〈0, 0, 0, 1〉
f t1 = e12〈

f u1
1 , f u1

2 , f u1
3 , f u1

4

〉 = 〈e12, 0, e′
12, 0〉 〈

f v1
1 , f v1

2 , f v1
3 , f v1

4

〉 = 〈0, e12, e′
12, 0〉

f a1 = e12 · e14 + e′
12 · e34 f b1 = e12 · e24 + e′

12 · e34

f Out = e12 · (e14 · e′
24 + e′

14 · e24)

Note that f Out does not depend on e34.
Encoding the network using these functions allows us to directly store the relationship

between the value taken by a node and the inter-relationships between the inputs. Of course,
as we see later in this section, to prevent false positives, we will need to introduce procedures
that ensure the axioms of equality, particularly transitivity.

The claim that the functions defined above characterize the IE netlist is formalized by
the following two lemmas:

Lemma 3.1 (Completeness). Let ι be an input and s a node in the IE netlist. Define the
Boolean-valued function ε whose domain is the set E = {ei j | 1 ≤ i < j ≤ n} by ε(ei j) = 1
iff ι(xi) = ι(x j). Then if s is Boolean-valued, f s(ε) = νι(s), and if s is integer-valued, then
f s
k (ε) = 1 iff Fs(ι) = xk.

The proof of Lemma 3.1, though fairly straightforward, consists of a tedious series of
case analyses; readers are encouraged to bypass it on a first reading.

Proof: We use induction on the level of the node.
Induction Hypothesis: Lemma 3.1 holds for every node s for which level(s) ≤q.
Base Case: level(s) = 0. From Definition 2, s must be an input node, say xk . By

Definition 4, we see F xk (ι) = xk . From Definition 5 [Case 1], we have f s
k = 1, and

for j �= k, we have f s
l = 0. Thus the base case holds.

Induction Step: level(s) = q + 1. We assume the IH for all nodes of level ≤q.
There are three cases for s:

Case 1: s is a 2-input NAND, say with fanins u and v. Note that the level of u and v is at most
q , and so we can apply the IH to them. By Definition 5 [Case 2], f s(ε) = (f u(ε) · f v(ε))′.
Applying the IH to u and v, we see f s(ε) = (νι(u) · νι(v))′. But by Definition 3 [Case 4],
νι(s) = (νι(u) · νι(v))′, and so f s(ε) = νι(s); thus the induction step holds for Case 1.

Case 2: s is a multiplexer, say with fanins c, v, and w. Note that the level of c, v, and w is at
most q , and so we can apply the induction hypothesis to them. Examining Definition 5
[Case 3], we see f s

k (ε) = f c(ε) · f v
k (ε) + (f c(ε))′ · f w

k (ε) = 1.
Suppose f c(ε) = 1. By the IH, f c(ε) = νι(c). Examining Definition 4 [Case 2] we see

Fs(ι) = Fv(ι). Applying the induction hypothesis to v, we see Fv(ι) = xk iff f v
k (ε) = 1.

But since we have taken f c(ε) = 1, it follows that Fs(ι) = xk iff f s
k (ε) = 1.

BDD BASED PROCEDURES 215

A symmetric argument holds when f c(ε) = 0. Hence the induction step holds for
Case 2.

Case 3: s is an equality node, say with fanins u and v. Note that the level of u and v is most
q , and so we can apply the IH to them.

We need to prove that f s(ε) = νι(s). We do this in two stages; in the first we show
f s(ε) = 1 ⇒ νι(s) = 1, and in the second we show νι(s) = 1 ⇒ f s(ε) = 1.

Stage 1: We prove that f s(ε) = 1 ⇒ νι(s) = 1.
By Definition 5 [Case 4],

f s(ε) =
n∑

i=1

(
f u
i (ε) · f v

i (ε)
) +

n∑

i=1

n∑

j=1
j �=i

(
f u
i (ε) · f v

j (ε) · ε
(
emin(i, j) max(i, j)

))
(1)

Since by hypothesis the expression on the right of Eq. (1) evaluates to 1, one of the
following two possibilities must be true:

Possibility 1: For some i , we have f u
i (ε) · f v

i (ε) = 1. Then by applying the IH to u and
v, we see Fu(ι) = xi and Fv(ι) = xi . But by Lemma 2.1, this implies νι(u) = νι(xi),
and νι(v) = νι(xi). By Definition 3 [Case 2], this implies that νι(s) = 1. Hence for
Possibility 1, f s(ε) = 1 ⇒ νι(s) = 1.

Possibility 2: For some i and j , where i �= j , we have f u
i (ε)· f v

j (ε) · ε(emin(i, j) max(i, j)) =
1. Then by applying the IH to u and v, we must have Fu(ι) = xi and Fv(ι) = x j . By
Lemma 2.1, this implies νι(u) = νι(xi), and νι(v) = νι(x j).Since ε(emin(i, j) max(i, j)) =
1, from the definition of ε in the statement of Lemma 3.1, we know ι(xi) = ι(x j).
Thus νι(v) = νι(u); examining Definition 3 [Case 2], we see νι(s) = 1. Hence for
Possibility 2 also, f s(ε) = 1 ⇒ νι(s) = 1.

Stage 2: Now we prove νι(s) = 1 ⇒ f s(ε) = 1.
Since νι(s) = 1, going by Definition 3 [Case 2], we must have νι(u) = νι(v). Let
Fu(ι) = xi and Fv(ι) = x j . Then by Lemma 2.1, we have νι(u) = νι(xi), and
νι(v) = νι(x j). Since by supposition, νι(u) = νι(v), we must have νι(xi) = νι(x j).
Now applying the IH to u and v, we see f u

i (ε) = 1 and f v
j (ε) = 1.

If i = j , we have f u
i (ε) · f v

j (ε) = 1; examining the right hand side of Eq. (1) we
see f s(ε) = 1. Otherwise, it must be that i �= j ; since νι(xi) = νι(x j), we must have
ε(emin(i, j) max(i, j)) = 1. Hence f u

i (ε) · f v
j (ε) · ε(emin(i, j) max(i, j)) = 1, and so again from

Eq. (1) it follows that f s(ε) = 1.
Hence we have proved that νι(s) = 1 ⇒ f s(ε) = 1.

Thus the induction step holds for Case 3.

By the principle of mathematical induction, it follows that Lemma 3.1 holds for all
nodes.

216 GOEL ET AL.

The functions computed above are not “sound”; values taken by them may not be achiev-
able in the IE netlist. This is because there is no guarantee that the basic axioms equality
are satisfied; figure 2 provides an example. As shown previously, the output of the product
network is assigned the function e12 · (e14 ·e′

24 +e′
14 ·e24). However, closer inspection shows

that it is not possible to find an input ι so that the ε extension causes e12 and e14 to be 1 and
e24 to be 0 or e12 and e24 to be 1 and e14 to be 0 simultaneously; the transitivity of equality
would be violated.

Definition 6. An assignment ε to the ei j variables is said to be consistent if it satisfies

∧

i �= j �=k

(
ε
(
emin(i, j) max(i, j)

) · ε
(
emin(j,k) max(j,k)

) → ε
(
emin(i,k) max(i,k)

))

Intuitively, a consistent assignment is one which satisfied the transitivity of equality.

For consistent assignments, the converse of Lemma 3.1 holds:

Lemma 3.2 (Soundness). Let ε be a consistent assignment to the ei j variables. Let s be
a node in the IE netlist. Then there exists an input ι such that if s is Boolean-valued, then
f s(ε) = νι(s), and if s is integer-valued then f s

k (ε) = 1 iff Fs(ι) = xk.

The proof is based on the fact that ε yields an equivalence relation on the inputs, from which
the desired input ι can be constructed. Again, the proof is relatively straightforward, but
tedious; first time readers are advised to skip it.

Proof: First, define the undirected graph G whose vertex set consists of the input nodes,
i.e., {x1, x2, . . . , xn}; an edge (xi , x j) is present in G exactly when ε(emin(i, j) max(i, j)) = 1.

Take xi , x j , and xk to be distinct vertices such that the edges (xi , x j) and (x j , xk) appear
in the graph G. Recall that the edge (xi , x j) is present exactly when ε(emin(i, j),max(i, j)) = 1.
Similarly, the edge (x j , xk) appears exactly when ε(emin(j,k),max(j,k)) = 1. But since ε is
assumed to be consistent, this implies that ε(emin(i,k) max(i,k)) = 1, i.e., the edge (xi , xk) has
to be present in the graph.

From the above argument we see that every pair of vertices in a connected component of G
must be joined by an edge, i.e., the connected components of G are cliques. Consequently,
any two vertices xa, xb for which ε(emin(a,b) max(a,b)) = 0 must lie in different connected
components.

Let the connected components of this graph be V1, V2, . . . , Vm . Define ι to be the input
which assigns to input nodes the index of the component which they lie in.

Proposition 3.3. The input ι discharges the requirement of Lemma 3.2, i.e., if s is Boolean-
valued, then f s(ε) = νι(s), and if s is integer-valued, f s

k (ε) = 1 iff Fs(ι) = xk.

We use induction on the level of the node to prove the above proposition.
Induction Hypothesis: The claim holds for every node s such that level(s) ≤ q.

BDD BASED PROCEDURES 217

Base Case: level(s) = 0. From Definition 2, s must be an input node, say xk . From
Definition 5 [Case 1], f s

i (ι) = 1 when i = k, and f s
i (ι) = 0 when i �= k. By Definition 4

[Case 1], Fs(ι) = xk . Thus the base case holds.
Induction Step: level(s) = q + 1. We assume the IH for all nodes of level ≤q.
There are three cases for s:

Case 1: s is a 2-input NAND, say with fanins u and v. Note that the levels of u and u
are at most q , and so we can apply the IH to them. By Definition 5 [Case 2], f s(ε) =
(f u(ε) · f v(ε)′. Applying the IH to u and v, we see f u(ε) = νι(u) and f v(ε) = νι(v).
But by Definition 3 [Case 4], we have νι(s) = (νι(u) · νι(v))′ = (f u(ε) · f v(ε))′ = f s(ε).
Hence the induction step holds for Case 1.

Case 2: s is a multiplexer, with fanins c, v, and w. Note that the levels of c, v and w are
at most q , and so we can apply the IH to them. by Definition 5 [Case 3], for each k, we
have f s

k (ε) = f c(ε) · f v
k (ε) + f c(ε)′ · f w

k (ε).
Suppose f c(ε) = 1. By the IH, νι(c) = f c(ε). Also, by Definition 4, Fs(ι) = Fv(ι).

But by the IH, Fv(ι) = xk iff f v
k (ε) = 1. Hence, Fs(ι) = xk iff Fv

k (ε) = 1 iff f s
k (ε) = 1.

A symmetric argument holds when f c(ε) = 0. Hence the induction step holds for
Case 2.

Case 3: s is an equality node, say with fanins u and v. Note that the levels of u and v are at
most q , and so we can apply the IH to u and v.

We need to prove that νι(s) = f s(ε). We do this in two stages; in the first we show
f s(ε) = 1 ⇒ νι(s) = 1, and in the second we show νι(s) = 1 ⇒ f s(ε) = 1.

Stage 1: We prove f s(ε) = 1 ⇒ νι(s) = 1.
By Definition 5 [Case 4],

f s =
n∑

i=1

(
f u
i · f v

i

) +
n∑

i=1

n∑

j=1
j �=i

(
f u
i · f v

j · emin(i, j) max(i, j)
)

(2)

Since we have assumed f s(ε) = 1, we must have one of the following two possibilities:

Possibility 1: for some i , we have f u
i = 1 and f v

i = 1. By the IH, this implies that
Fu(ι) = xi and Fv(ι) = xi . By Lemma 2.1, we know that νι(u) = νι(v) = νι(xi).
By Definition 3 [Case 2], we have νι(s) = 1, so assuming Possibility 1, f s(ε) =
1 ⇒ νι(s) = 1.

Possibility 2: for some i and j , where i �= j , we have f u
i = 1, f v

j = 1 and
ε(emin(i, j),max(i, j)) = 1. By the IH, f u

i = 1 and f v
j = 1 imply Fu(ι) = xi

and Fv(ι) = x j , respectively. By Lemma 2.1, this implies that νι(u) = νι(xi),
and νι(v) = νι(x j).

In the graph G used to construct ι, since ε(emin(i, j),max(i, j)) = 1, both xi and x j

must lie in the same connected component. Hence they are assigned the same value
by ι. Consequently, we must have νι(xi) = νι(x j). This implies that νι(u) = νι(v),
and so by Definition 3 [Case 2], we have νι(s) = 1, i.e., assuming Possibility 2,
f s(ε) = 1 ⇒ νι(s) = 1.

218 GOEL ET AL.

Thus we have shown f s(ε) = 1 ⇒ νι(s) = 1.
Stage 2: Now we prove νι(s) = 1 ⇒ f s(ε) = 1.

By Definition 3 [Case 2], νι(s) = 1 implies that νι(u) = νι(v). Let Fu(ι) = xi , and
Fv(ι) = x j . By Lemma 2.1, νι(u) = νι(xi), and νι(v) = νι(x j), hence νι(xi) = νι(x j),
i.e., by Definition 3 [Case 1], ι(xi) = ι(x j).

Consider f u
i (ε); by the IH, f u

i (ε) = 1 iff Fu(ι) = xi . Similarly, by the IH, f v
j (ε) = 1

iff Fv(ι) = x j .
There are two possibilities:

Possibility 1: i = j . Then the corresponding term in
∑n

i=1(f u
i · f v

i) in Eq. (2) becomes
1, and so νι(s) = 1 ⇒ f s(ε) = 1 for Possibility 1.

Possibility 2: i �= j . Since ι(xi) = ι(x j) we must have had ε(emin(i, j),max(i, j)) = 1. Thus
the corresponding term in

∑n
i=1

∑n
j=1, j �=i (f u

i · f v
j · emin(i, j) max(i, j)) must evaluate to

1, and so νι(s) = 1 ⇒ f s(ε) = 1 for Possibility 2.

Thus we have shown νι(s) = 1 ⇒ f s(ε) = 1.

Hence the induction step holds for Case 3.

By the principle of mathematical induction, it follows that Lemma 3.2 holds for all
nodes.

3.3. Satisfiability checking using the ei j encoding

It follows from Lemmas 3.1 and 3.2 that the functions in Definition 5 characterize the IE
netlist. In particular, they suggest the following approach to satisfiability checking for IE
netlists: build BDDs for the ei j -encoded Boolean functions, and then check if there is a
consistent assignment under which the output BDD evaluates to 1.

Unfortunately, finding a consistent satisfying assignment for a BDD over the ei j variables
will not be easy. The problem we are concerned about can be formulated as follows.

BDD Satisfiability under Consistency (BDD ConSAT)

INSTANCE: A BDD on variables ei j , 1 ≤ i < j ≤ n
QUESTION: Is the BDD satisfiable under some minterm ε satisfying the consistency re-

quirement:
∧

i �= j �=k(ε(ei j) · ε(e jk) → ε(eik))

Theorem 3.4. BDD ConSAT is NP-Complete.

Proof: Given an assignment for the ei j variable, both the BDD and the consistency re-
quirement can be evaluated in polynomial time. This tells us the simple fact that BDD SAT
is in NP.

BDD BASED PROCEDURES 219

We now show BDD ConSAT to be NP-hard by transforming the problem of PATH WITH
FORBIDDEN PAIRS [12] to it.

INSTANCE: Directed graph G = (V, A), specified vertices s, t ∈ V , collection C =
{(a1, b1), . . . , (an, bn)} of pairs of vertices from V .

QUESTION: Is there a directed path from s to t in G that contains at most one vertex from
each pair in C?

This problem remains NP-complete even under the restriction that G is acyclic with no
in- or out-degree exceeding 2 and all the given pairs are disjoint. Our transformation will
use a version with this restriction.

Given such an instance of PATH WITH FORBIDDEN PAIRS, we can construct an
instance of BDD ConSAT as follows.

First, we will modify the instance of PATH WITH FORBIDDEN PAIRS such that each
vertex appearing in the pairs has exactly one out-edge. This can be done as follows. For
each vertex v, which appears in the pairs and whose out-degree is not 1, we will split it into
two vertices v1 and v2. All in-edges now end on v1 and all out-edges now start from v2 and
there is one edge goes from v1 to v2. We also substitute v1 for v in the pairs. It is obvious
that the new instance still obeys the restriction and it has a “yes” answer if and only if the
original one has one.

Now we will transform the modified DAG into a BDD by labeling and adding vertices
and edges. First we will add one vertex labeled en+1,n+2 with an out-edge labeled 0 going
to s. We also label vertex t as constant 1. For each pair (ai , bi), we will label them as
ei,n+1, ei,n+2, respectively, and their out-edges as 1. For any vertex which is still not labeled,
we will label it as e1,k , where k is an index different with any previously used one. We will
also add a new vertex and label it as constant 0, and add an additional edge to this vertex
from each vertex whose out-degree is only 1. The unlabeled edges are then labeled 1 or 0 in
such a way that exactly one out-edge from each vertex is labeled 1 and exactly one is labeled
with 0. Because of the restriction we added on the instance of PATH WITH FORBIDDEN
PAIRS, it is easy to check that what we have constructed is actually a BDD, though it may
have redundancy.

Based on our construction, we can now prove that the instance of PATH WITH FOR-
BIDDEN PAIRS has yes answer if and only the constructed BDD is satisfiable under the
consistency requirement.

(⇒) If there is a path from s to t in G that contains at most one vertex from each pair
in C , then corresponding vertices will form a path in BDD, which, when adding en+1,n+2

at the head, forms a path from en+1,n+2 to 1. This path gives an assignment which satisfies
the BDD. We need only prove it obeys the consistency requirement. This is trivial because
only those vertices appearing in a pair can give trouble but the path contains at most one of
them.

(⇐) If the BDD is satisfiable under the consistency requirement, then there is a path from
en+1,n+2 to 1. It corresponds to a path in G from s to t . This path can only contains at most
one vertex from each pair. Otherwise, the assignment will make ei,n+1 = 1, ei,n+2 = 1 and
en+1,n+2 = 0, which is contradictory with the fact that the assignment obeys the consistency
requirement.

220 GOEL ET AL.

3.4. Heuristically finding a consistent minterm

We now develop a heuristic for solving the BDD ConSAT problem. First, observe that a cube
c whose literals are drawn from the set of variables E = {e12, e13, . . . , e(n−1)n} naturally
gives rise to a partial assignment εc to the variables. For example, the cube κ = e12 ·e′

14 ·e23

corresponds to the partial assignment εκ where εκ (e12) = 1, εκ (e14) = 0, εκ (e23) = 1.

Lemma 3.5. For any cube c, if the resulting partial variable assignment εc is consistent,
then there is a minterm in the cube which is consistent.

Proof: The result follows from the following construction: start with the partition of the
set {1, 2, . . . , n} into n distinct equivalence classes; recursively merge equivalence classes
to which i and j belong if εc(ei j) = 1. Call the resulting partition Pε . Since εc is consistent,
there cannot be a and b so that a and b lie in the same equivalence class of Pε but εc(eab) = 0.
Hence the minterm ε̂ given by ε̂(ei j) = 1 iff i and j lie in the same equivalence class of Pε

is consistent; furthermore, it lies in c.

The proof is constructive, and yields an algorithm for checking cube satisfiability; efficient
querying and updating of the partition can be performed by a variant of the union-find
algorithm [10]. Thus, a procedure for finding a consistent minterm in a BDD is to iterate
over a set of cubes (a “cover”) which contains all the minterms in the BDD. Such a cover can
be derived from the BDD by recursive application of the Shannon decomposition, starting
from the top variable.

The iteration time is potentially exponential in the size of the BDD; the search can be
made far more efficient by bounding the search. If cube c1 contains cube c2, and c1 has no
consistent assignments, then c2 has no consistent assignments. When iteratively generating
cubes, we prune the search by finding early contradictions; this is the source of a major
speedup. This is similar to the procedure of Chan et al. [9] for pruning BDDs over variables
corresponding to complex arithmetical constraints. One source of relative efficiency for us is
that because we are dealing purely with equality, we can incrementally check inconsistency
as we explore the BDD.

Another potential way to prune the search is to identify nodes appearing in the BDD for
which the corresponding subfunction rooted at that node has no satisfying assignments; we
have not experimented with this.

4. Experiments

We implemented the procedure for constructing the ei j -encoded functions from an IE netlist
on top of VIS [7], which is a popular gate-level BDD-based verification tool. (For the finite
instantiation approach, there was no code to write, since VIS has the capability of building
BDDs for binary netlists.)

In order to perform a comparison of the two symbolic methods for IE netlist satisfiability
checking we first created a series of examples. These correspond to verifying processors
using commutative diagrams [15]. Specifically, they arise in the verification of a pipelined

BDD BASED PROCEDURES 221

processor; the approach taken is that of Burch and Dill, wherein a pipelined processor is
flushed after executing one instruction; the resulting state is compared with the state resulting
from execution of the same instruction on a nonpipelined implementation. Our examples
are derived from the comparison of the pipelined and non-pipelined version of the 3-stage
pipelined ALU used in [8]; this design has uninterpreted functions which correspond to the
ALU and Reads/Writes to the register file.

Constraints corresponding to the UIFs are added to the designs: for the ALU, each
constraint ensures that if the inputs to a pair of ALUs is the same, the outputs with be
the same; for Reads/Writes, each constraint ensures that if we read a memory address
that has been written to, we will read the same data was that written. The five examples
correspond to different number of constraints. The entire set of constraints is not necessary
to show that the designs are equivalent; PIPE1, PIPE2, PIPE3 all contain enough constraints
to prove equivalence. (We were able to find a minimal set of constraints by starting with no
constraints, and iteratively adding constraints to eliminate false negatives.) PIPE3 has more
constraints than PIPE2, which in turn has more than PIPE1; this is reflected in the increased
computational effort to perform verification. The constraints used in PIPE4, PIPE5 are not
enough to prove equivalence, but they do have some superfluous constraints, resulting in
higher verification times. A feel for complexity of the designs can be had from the fact that
they had approximately 28 inputs, 60 equality blocks, 200 2-input NAND gates, and 40
Mux elements.

Table 1 shows the results we obtained. For both approaches, we report the computational
resources expended in verification—memory in the form of peak and final BDD size, and
total computation time. These experiments were performed on a Pentium-200 with 64
Mbytes running Linux. The column headed Sat.? indicates whether the netlist output was
satisfiable. Note that for the finite instantiation approach, the resulting BDD has only one
node (the 0 node) when the output is not satisfiable; in contrast, the ei j -encoded function
for the output may be nonzero, but it will have no consistent minterms.

It is noteworthy that for the finite instantiation approach, the default BDD variable or-
dering always resulted in memory overflows; dynamic variable reordering [20] had to be
enabled for the process to complete. Even so, the example PIPE5.v exhausted available
memory. For the ei j encoding, variables were allocated dynamically and added to the end
of the order; no variable re-ordering was needed.

Table 1. Comparing symbolic procedures for equality.

Finite instantiations ei j encoding

Ex. Max BDD Final BDD Time Max BDD Final BDD Time Sat.?

PIPE1 3,932 1 12.5 62 36 0.3 No

PIPE2 42,875 1 137.2 218 146 0.3 No

PIPE3 131,889 1 447.0 536 355 0.4 No

PIPE4 141,016 79,336 590.7 413 376 0.5 Yes

PIPE5 ∞ ? ∞ 1523 1335 0.5 Yes

222 GOEL ET AL.

We observed that the number of BDD variables needed for the ei j encoding was never
more than twice the number of inputs and hence substantially smaller than for the finite
instantiation approach, which always required n · �log(n)� Boolean variables (where n is
the number of inputs). This may seem surprising, since the ei j encoding could require as
many as n · (n −1)/2 Boolean variables. However, not all inputs are compared in the design;
in fact input comparisons are “sparse”. Thus, if variables are only created on demand, the
number of variables required is relatively small.

The running time for the ei j -encoded approach includes both the time to build the func-
tions, and to search the output BDD for a consistent minterm; the latter was very fast, taking
of the order of tens of milliseconds. The results clearly are in favor of the ei j encoding;
hence, we propose it as the method of choice for BDD-based satisfiability checking.

The runtimes are higher than those reported in [8]; this is not surprising given the large
over-heads associated with initialization of the data structures we use for design represen-
tation. The results demonstrate that BDD methods are feasible, contradicting prevailing
beliefs. In the next section, we discuss recent enhancements which make the BDD-based
approach competitive with the existing formula-based approaches.

5. Conclusion

In summary, our major contribution is the extension of BDD techniques to the existential
fragment of the theory of equality. On the theoretical side, we have developed semantic
foundations and addressed complexity issues. Our experiments justify the use of symbolic
procedures; encoding each comparison of inputs by a Boolean variable is superior to the
direct mapping of inputs to an appropriately-sized vector of Boolean-valued variables.

There are many ways in which this work can be extended. Perhaps the most important
is the incorporation of the “miter” concept for identifying equivalent nodes; this has been
extremely successful in the Boolean verification world [16], enabling the verification of
million gate circuits. We are currently working on incorporating other interpreted functions
and relations, such as addition and inequality; this is motivated by the observation that the
abstraction of designs to UIFs with equality is too “coarse” for certain applications (e.g.,
replacing increment circuitry for a program counter by a UIF may result in false negatives).
It may be possible to get by with a simple approximation; for example, certain properties
may depend only on the associative and commutative properties of plus.

Recently, Pnueli et al. [19] and Bryant et al. [24] have described extensions to the ap-
proach we have put forth in this paper. Pnueli et al. [19] demonstrated that the cardinality
of the domain we used in the finite instantiation approach can be reduced for certain easily
identifiable classes of formulas, e.g., formulas where the variables can be partitioned into
groups which are in some precise sense “independent”. We had experimented with reduced
domains; however, for our application, namely pipeline verification, it was still extremely in-
efficient. The application treated in [19] is quite different, namely that of certifying compiler
output, for which the functions are not as “deep” as those arising in pipeline verification;
this may be the reason their approach succeeded. The approach taken by Bryant et al. [24] is
to syntactically identify “p-formulas”, which are in a certain sense “monotone”. They prove
a result to the effect that for this fragment, a formula is true iff it is true for a “maximally

BDD BASED PROCEDURES 223

diverse” interpretation; This allows them to dramatically simplify the problem of validity
checking. Their procedure has been successfully used to verify designs containing highly
nontrivial control logic, e.g., dual issue super scalar processors.

In subsequent work, Bryant et al. [6] demonstrated that the BDD representation of the
transitivity constraints for a set E of ei j variables can be exponential in |E |; in certain
respects, this is a stronger result than given in Theorem 3.4. They describe a procedure for
minimizing the size of the set of transitivity constraints which need to be considered when
testing whether a function of the ei j variables is satisfiable. The number of constraints to
be considered is O(N 3) when E is “dense,” i.e., there is an ei j for each 1 ≤ i < j ≤ N ,
but can be exponential when E is sparse. However, by studying the structure of a graph
defined over E they were able to simultaneously minimize (in a heuristic sense) the number
of constraints and the number of variables added to E . This led to dramatic improvements
in performance for their examples.

References

1. W. Ackermann, Solvable Cases of the Decision Problem. Studies in Logic and the Foundations of Mathematics.
North-Holland, Amsterdam, 1954.

2. VSI Alliance. Virtual Socket Interface Proposal 1.0. http://www.vsi.org/, September 1996.
3. C. Barrett, D. Dill, and J. Levitt, “Validity checking for combinations of theories with equality,” in Formal

Methods in CAD, November 1996.
4. R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE Transactions on Computers,

Vol. C-35, pp. 677–691, August 1986.
5. R. Bryant and Y.A. Chen, “Verification of arithmetic circuits with binary moment diagrams,” in Design

Automation Conference, pp. 535–541, June 1995.
6. R. Bryant and M. Velev, “Boolean satisfiability with transitivity constraints,” in Computer Aided Verification,

July 2000.
7. R.K. Brayton et al., “VIS: A system for verification and synthesis,” in Computer Aided Verification, July 1996.
8. J. Burch and D. Dill, “Automatic verification of microprocessor control,” in Computer Aided Verification, July

1994.
9. W. Chan, R. Anderson, P. Deame, and D. Notkin, “Combining constraint solving and symbolic model checking

for a class of systems with non-linear constraints,” in Computer Aided Verification, July 1997.
10. T.H. Cormen, C.E. Leiserson, and R.H. Rivest, Introduction to Algorithms, MIT Press, 1989.
11. H. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.
12. M.R. Garey and D.S. Johnson, Computers and Intractability, W.H. Freeman and Co., 1979.
13. R. Hojati, A. Isles, D. Kirkpatrick, and R. Brayton, “Verification using finite instantiations and uninterpreted

functions,” in Formal Methods in CAD, November 1996.
14. R. Hojati, A. Kuehlmann, S. German, and R. Brayton, “Validity checking in the theory of equality using finite

instantiations,” in Proceedings of the International Workshop on Logic Synthesis, May 1997.
15. R.B. Jones, D. Dill, and J.R. Burch, “Efficient validity checking for processor validation,” in International

Conference on Computer-Aided Design, pp. 2–6, 1995.
16. A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and heaps,” in Design Automation Conference,

June 1997.
17. T. Larrabee, “Efficient generation of test patterns using Boolean difference,” in International Test Conference,

pp. 795–801, 1989.
18. C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
19. A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding equality formulas by small-domains instanti-

ations,” in Computer Aided Verification, July 1999.
20. R. Rudell, “Dynamic variable ordering for binary decision diagrams,” in International Conference on

Computer-Aided Design, pp. 42–47, November 1993.

224 GOEL ET AL.

21. R.E. Shostak, “A practical decision procedure for arithmetic with function symbols,” Journal of the ACM,
Vol. 26, No. 2, pp. 351–360, 1979.

22. J. Silva and K. Sakallah, “GRASP—A new search algorithm for satisfiability,” in International Conference
on Computer-Aided Design, Santa Clara, CA, November 1996.

23. M. Srivas and M. Bickford, “Formal verification of a pipelined microprocessor,” IEEE Software, Vol. 7, No. 5,
pp. 52–64, September 1990.

24. M. Velev and R. Bryant, “Exploiting positive equality and partial non-consistency in the formal verification
of pipelined microprocessors,” in Design Automation Conference, June 1999.

