
BDD-Based Synthesis of Extended Burst-Mode
Controllers

Kenneth Y. Yun,Member, IEEE, Bill Lin, Member, IEEE,
David L. Dill, Member, IEEE, and Srinivas Devadas,Fellow, IEEE

Abstract—We examine the implications of a new hazard-free combina-
tional logic synthesis method [1], which generates multiplexor-based net-
works from binary decision diagrams(BDDs) — representations of logic
functions factored recursively with respect to input variables — on ex-
tended burst-mode asynchronous synthesis. First, this method guarantees
that there exists a hazard-free BDD-based implementation for every legal
extended burst-mode specification. Second, it reduces the constraints on
state minimization and assignment, which reduces the number of additional
state variables required in many cases. Third, in cases where conditional
signals are sampled, it eliminates the need for state variable changes pre-
ceding output changes, which reduces overall input to output latency. Fi-
nally, we describe a circuit that exemplifies how the BDD variable ordering
affects the path delay.

I. I NTRODUCTION

There have been many recent advances in asynchronous cir-
cuits and systems, both in tool design [2], [3], [4], [5], [6], [7],
[8], [9], [10] and actual systems design [11], [12], [13], [14],
[15], [16], [17], [18]. However, for maximum acceptability, it is
imperative to be able to synthesize circuits that work with exist-
ing systems, which are largely made out of synchronous compo-
nents. One particularly promising design style is the extended
burst-mode [19], [10].

This paper describes a new synthesis algorithm for asyn-
chronous controllers specified in extended burst-mode [19],
[10]. This algorithm assumes the target implementation to be a
combinational circuit with both primary outputs and state vari-
ables fed back. The combinational circuit is derived from a Bi-
nary Decision Diagram [20] using a recently developed hazard-
free combinational synthesis method [1]. Finally, this algorithm
guarantees that there exists a hazard-free BDD-based implemen-
tation for every legal extended burst-mode specification.

This new approach has definite advantages over other synthe-
sis methods [21], [7], [19], [22], which implement the combi-
national logic as two-level AND-OR circuits, for asubclassof
extended burst-mode specifications, although the results appear
to be mixed in general. In particular, the circuits synthesized
using this new method have considerably lower output laten-
cies than the circuits synthesized by the method in [19], for the
specifications with conditional input bursts. Furthermore, this
method in conjunction with BDD variable ordering exploration
can be usedto further minimize the delay on user-specified in-
put/output path, which can be very important for achieving high
performance in systems that use asynchronous components. We
describe a circuit that exemplifies this point.

This work was supported in part by the Semiconductor Research Corporation,
Contract no. 93-DJ-205 and by the European Commission under the ESPRIT
(6143) project “EXACT”.

K. Yun and B. Lin are with Dept. of ECE, UC San Diego; D. Dill is with Com-
puter Science Dept., Stanford University; S. Devadas is with Dept. of EECS,
MIT.

II. BACKGROUND REVIEW

In this section, we review extended burst-mode design style
and 3D synthesis method [10]. We point out a limitation associ-
ated with the previous target implementation (two-level AND-
OR). Finally, we provide a brief review of how a multiplexor
network, the target implementation of the 3D machine in this
paper, is derived from a binary decision diagram.

A. Extended Burst-Mode Specification

Fig. 1 describes an extended burst-mode state machine (biu-
dma2fifo) with 4 inputs (ok , cntgt1 , frin , dackn) and 2 outputs
(faout , dreq). Labeled edges represent the specified input be-
havior and the response of the machine during state transitions.
For example, “ok−frin− / faout−” means that in state 6 the
machine waits forok andfrin to fall. After both have fallen, it
lowersfaout and transitions to state 0.

Signals not enclosed in angle brackets, such asok , frin , and
dackn areedge signals. Edge signals ending with+ or − are
terminating signals; the ones ending with∗ aredirected don’t
cares. If a state transition is labeled with a directed don’t care
a∗, then the following state transition must be labeled witha∗
or a+ or a−. A terminating signala+ denotes a0 → 1 tran-
sition of a if a was initially 0, and no transition at all ifa was
initially 1. A sequence of state transitions labeled witha∗ and
terminated witha+ represents asingle0 → 1 transition ofa at
any point in the sequence. A terminating signal not immediately
preceded by a directed don’t care represents acompulsorytran-
sition. Signals enclosed in angle brackets, such ascntgt1 , rep-
resentconditionalor level signals. 〈cntgt1+〉 and〈cntgt1−〉
denote conditional clauses “ifcntgt1 is high” and “if cntgt1 is
low.”

An input burst is a non-empty set of input edges (terminating

0

1

2

3

4

5

ok− frin− /
faout−

6

frin+ dackn+ /
faout+

frin− /
dreq+ faout−

ok+ frin* /
dreq+

<cntgt1+>
frin* dackn− / dreq−

<cntgt1+>
frin* dackn− / dreq−

ok* frin+ dackn+ /
faout+

<cntgt1−>
frin* dackn− / dreq−

<cntgt1−>
frin* dackn− / dreq−

Fig. 1. Extended burst-mode specification.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

or directed don’t care) at least one of which must be a compul-
sory transition. An output burst consists of a possibly empty set
of output edges. If a state transition is not labeled with a level
signal, the signal may change freely during the transition. How-
ever, if an edge signal is not mentioned in a transition, it is not
allowed to change.

In a given state, when all the specified conditional signals
have correct values and when all the specified terminating sig-
nals in the input burst have changed, the machine generates the
corresponding output burst and moves to a new state. Speci-
fied edges in the input burst may appear in arbitrary temporal
order. However, the conditional signals must stabilize to correct
levels somesetup timebefore any compulsory edge in the input
burst appears and must retain their values until somehold time
after all of the terminating edges appear. The setup and hold
time requirements between conditionals and compulsory edges
are similar to those for synchronous flip-flops. Outputs may be
generated in any order, but the next set of compulsory edges
from the next input burst may not appear until the machine has
stabilized.

The following formal definition of the extended burst-mode
specification is from [10]. An extended burst-mode specifica-
tion is a directed graph,G = (V, E, C, I, O, v0, cond, in, out),
whereV is a finite set of states;E ⊆ V × V is the set of state
transitions;C = {c1, . . . , cl} is the set of conditional inputs;
I = {x1, . . . , xm} is the set of edge inputs;O = {z1, . . . , zn}
is the set of outputs;v0 ∈ V is the unique start state;cond :
E → {0, 1, ∗}l defines the values of the conditional inputs;
in : V → {0, 1, ∗}m defines the values of the edge inputs;
out : V → {0, 1}n defines the values of the outputs upon entry
to each state.

,QSXW
ZYZYX ×→××:δ
2XWSXW

6WDWH+D]DUG�)UHH
1HWZRUN

+D]DUG�)UHH+D]DUG�)UHH
1HWZRUN1HWZRUN

Fig. 2. 3D asynchronous state machine.

B. 3D Implementation

A 3D asynchronous finite state machine is a 4-tuple
(X, Y, Z, δ) whereX is a non-empty set of primary input sym-
bols, Y a non-empty set of primary output symbols,Z a pos-
sibly empty set of internal state variable symbols, andδ :
X × Y × Z → Y × Z is anext-state function. The hardware
implementation of a 3D state machine (see Fig. 2) is a combina-
tional network, which implements the next-state function, with
the outputs of the network fed back as inputs to the network.

A 3D implementation of an extended burst-mode specifica-
tion is obtained from thenext-state table, a 3-dimensional tabu-
lar representation ofδ. The next state of everyreachablestate

must be specified in the next-state table; the remaining entries
are don’t cares.

A Type I machine cycle1 [10] consists of an input burst fol-
lowed by a concurrent output and state burst. Initially or after
completion of the previous output and state burst, the machine
waits for an input burst to arrive. When the machine detects that
all of the terminating edges of the input burst have appeared, it
generates a concurrent output/state burst (it may not include any
output or state variable transition at all in some cases).

In the 3D implementation of extended burst-mode machines,
no fed-back output or state variable change arrives at the net-
work input until all of the specified edges in the output and state
burst have appeared at the network output. These conditions are
met by inserting delays in the feedback paths as necessary. A
3D machine can then be viewed as a combinational network al-
ternately excited by a set of input edges (during an input burst)
and by a set of fed-back output and state variable edges (during
an output/state burst). Thus each burst is a generalized transition
of inputs to the combinational network, as described below.

Generalized transition.
A generalized transitionis a triple (T, A, B) whereT is a

mapping from a set of inputs to a set ofinput types, A a start-
cube, andB anend-cube. There are three types of inputs:ris-
ing edge, falling edge, andlevelsignals. Edge inputs can only
change monotonically. Level inputs must remain constant or
undefined (don’t care), which implies that each level input must
hold the same value in bothA andB or be undefined in both
A andB. Level inputs, if they are undefined, may change non-
monotonically,

A generalized transition cube[A, B] is the smallest cube that
contains the start- and end-cubesA and B. It represents the
set of all minterms that can be reached during alegal transition
from a point in start-cubeA to a point in end-cubeB, assuming
that the inputs can change in arbitrary order.Open generalized
transition cubes, [A, B), (A, B], and(A, B), denote[A, B]−B,
[A, B]−A, and[A, B)−A respectively. Note that[A, B) = ∅,
if A = B. The start-subcubeA′ is a maximal subcube ofA
such that the value of every rising edge inputi in A′ is 0, if it
is ∗ in A, and the value of every falling edge inputj in A′ is 1,
if it is ∗ in A. Theend-subcubeB′ is a maximal subcube ofB
such that the value of every rising edge inputi in B′ is 1, if it
is ∗ in B, and the value of every falling edge inputj in B′ is 0,
if it is ∗ in B. Intuitively, the longest transitions, disregarding
non-monotonic signals, are those that lead fromA′ to B′.

A generalized transition(T, A, B) is a static transition forf
iff f(A) = f(B); it is a dynamic transition forf iff f(A) 6=
f(B). No change in level inputs can enable output changes di-
rectly, that is, at least one edge input must change from 0 to 1 or
from 1 to 0 in a generalized dynamic transition. During a gen-
eralized transition(T, A, B), each output signal is assumed to
change its value at most once. If not, a function hazard is said
to be present.

An extended burst-mode transition is a generalized transition
with the following requirements:

1Type II machine cycle — an input burst followed by an output burst followed
by a state burst — can also be used.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

1. For every pair of mintermsX and Y in [A, B), f(X) =
f(Y).
2. For every pair of mintermsX andY in B, f(X) = f(Y).
Every extended burst-mode transition is function-hazard-free
[10].

An edge signal that changes from 0 or∗ to 1 or from 1 or∗
to 0 during an extended burst-mode transition fromA to B is a
terminatingsignal in[A, B]. An edge signal whose value is∗ in
B is adirected don’t carein [A, B]. A level signal whose value
is ∗ in [A, B] is anundirected don’t care. In a dynamic extended
burst-mode transition, the output is enabled to change only after
all of the terminating edges appear.

Delay model.
In order to simplify the synthesis, we use the unbounded

wire delay model for the circuit with feedback wires cut. In
other words, for each burst, the combinational circuit generated
by cutting feedback wires functions correctly,for any value of
gate/wire delay. However, once the feedback wires are con-
nected together, we must assumebounded wire delay. Likewise,
the setup/hold time constraints are calculated based on bounded
gate/wire delay.

Limitations of two-level implementation.
In order for a 2-level AND-OR implementation of an output

or a state variable function to be hazard-free, a set of covering
requirements [19], [7] must be satisfied for each burst, i.e., ex-
tended burst-mode transition. It was shown in [19] that it is not
always possible to satisfy the covering requirements for all of
the specified bursts under the presence of non-monotonically
changing (undefined) conditionals, if asingle transition time
(STT) state assignment [23], [24] is used. The approach taken in
[19] was to insert a state burst between a conditional input burst
and the corresponding output burst in order to guarantee that
the covering requirements can be satisfied for all of the spec-
ified bursts. Unfortunately, the early state burst between the
input burst and output burst increased the input/output latency
significantly. Section III-C provides a specific example which
illustrates this point.

C. Multiplexer Networks Derived from BDDs

The following definition of a Binary Decision Diagram is
from [20].

Definition 1 A Binary Decision Diagramis a rooted, directed
graph with vertex setV containing two types of vertices. A
non-terminal vertex v has as attributes an argument index
index(v) ∈ {1, . . . , n} and two childrenlow (v), high(v) ∈ V .
A terminal vertexv has as attributes a valuevalue(v) ∈ {0, 1}.

The correspondence between a BDD and a Boolean function
is defined as below:

Definition 2 A binary decision diagramG having root vertexv
denotes a functionfv defined recursively as:
1. If v is a terminal vertex:
(a) If value(v) = 1, thenfv = 1;
(b) If value(v) = 0, thenfv = 0.

2. If v is a non-terminal vertex withindex(v) = i, then

fv(x1, . . . , xn) = xi · flow(v)(x1, . . . , xn)
+ xi · fhigh(v)(x1, . . . , xn),

wherexi is called thedecision variablefor vertexv.
In addition,

1. Each decision variable occurs at most once on every path
from a terminal vertex to the root vertex,
2. A reducedBDD is a BDD in whichlow(v) 6= high(v) for
any vertexv and no two subgraphs are identical.

A reduced ordered BDD(ROBDD) is a canonical form with
the following restriction: for any non-terminal vertexv, if
low (v) is a non-terminal, thenindex(v) < index(low (v)), and
if high(v) is a non-terminal, thenindex(v) < index(high(v)).

A reduced free BDD(free BDD) is a BDD which does not
require a strict variable ordering (unlike in an OBDD) but still
requires that each decision variable is encountered at most once
when traversing a path from a terminal vertex to the root vertex.

Every path from the root vertex to a terminal vertex corre-
sponds to a cube. For example, the path from the root to the
terminal vertex 1 via decision variablesa, c, andb corresponds
to an on-set cube,acb, in Fig. 3a; the path from the root to the
terminal vertex 0 via decision variablesa, b, andq corresponds
to an off-set cube,abq.

a

c

0

0 1

01

0

f

b

1

q b
1 1

1

0

0

f

1

11

10

10

0 0

0

1 1 00

10

a

b

q b

c

f

a

b

q

10

c

(a) (b)

(c)

(d)

f

a

b

q

10

c

Fig. 3. (a) BDD; (b) MUX network derived from BDD; (c) Simplified network
(by constant propagation); (d) After “bubble shuffling” is applied.

A multi-level network can be derived directly from a BDD2

by replacing each vertex with a two-input MUX with the deci-
sion variables as theselectinputs of the MUXes. Fig. 3b shows
a MUX network derived from the BDD in Fig. 3a. If one or
more input of a MUX is constant, the MUX can be replaced
with a simpler gate, such as a NAND or a NOR. Thisconstant
propagationis carried out topologically from inputs to outputs.
Figs. 3cd show equivalent networks after constant propagation
and after “bubble shuffling”.

III. BDD-B ASED SYNTHESIS

In this paper, we use a new BDD based combinational syn-
thesis technique from [1]. This approach imposes a different set

2BDDs have been used to generate multi-level synchronous circuits [25], [26].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

of requirements to guarantee freedom from all hazards, but we
will show that it is always possible to meet these requirements
withoutthe multiple transition time state assignment that was re-
quired in the method of [19], resulting in greatly reduced latency
in many cases.

Combinational networks that describe next-state functions are
constructed from a BDD description. The basic gates that com-
prise combinational networks are inverters, NANDs, NORs,
ANDs, ORs, inverting MUXes, and MUXes. We assume that
every basic gate isatomic, i.e., a single transition of a gate input
cannot cause a multiple transitions at the output. Fig. 4 shows
a CMOS pass transistor implementation of an inverting multi-
plexor. This implementation is atomic, if the delayst1 andt2
are closely matched. Note that a hazard-free MUX implemented
in two-level SOP requires 3 two-input NAND gates and 1 three-
input NAND gate.

s 10

a b

y

a b

s

y

1t

2t

Fig. 4. A CMOS inverting multiplexor.

A. Hazard-free Combinational Synthesis

We use the approach from [1] to synthesize hazard-free com-
binational circuits under extended burst-mode transitions. This
method is based on building a BDD for a specified function and
deriving a multi-level circuit from it. To ensure that the resulting
multi-level circuit is hazard-free, a requirement called thetrig-
ger signal ordering(TSO) must be satisfied. This requirement
imposes constraints on the variable ordering of the BDD. It was
shown in [1] that if this variable ordering is satisfied, then the
resulting multi-level circuit is free of logic hazards for a set of
specified transitions. Note that every input change in [1] was
assumed to be monotonic during each transition. We will prove
that the resulting circuit is free of logic hazards for a set of speci-
fied extended burst-mode transitions, in which some inputs may
change non-monotonically, as long as the TSO requirement is
satisfied.

A trigger stateis a state in which an input change enables
the output to change. Atrigger signalis an input signal whose
transition in a trigger state enables the output to change; anon-
trigger signalis an input signal which is enabled to change but
cannot by itself enable the output to change. The TSO require-
ment states thattrigger signals in a trigger state must appear
before the non-trigger signals of the same trigger state in the
variable ordering.

In the generalized transition cube that corresponds to an ex-
tended burst-mode dynamic transition, allterminatingsignals
are trigger signals in one or more minterms, because terminat-
ing edges can appear in any temporal order and the last one that

appears is a trigger signal. Note that no terminating signal can
be a non-trigger signal, because no output change can be en-
abled untilall terminating edges appear. Furthermore, alldon’t
care signals (directed or undirected) are non-trigger signals in
one or more minterms, because their values may change any-
where, including in the trigger states, in the generalized transi-
tion cube. Clearly, no don’t care signal can be a trigger signal
in any minterm in the generalized transition cube, because don’t
care signals can never enable outputs to change. Therefore, we
can impose a set of ordering requirements, which do not con-
flict, as a sufficient condition for hazard freedomper general-
ized transition cube, although the TSO requirement in [1] is an
imposition on each trigger state in the transition cube.

Now we can state the variable ordering requirements for the
extended burst-mode transitions as follows:Along every path
from root to terminal of the BDD whose corresponding cube
intersects the generalized transition cube, no don’t care signal
of a dynamic transition appears before a terminating signal of
the same.

Here, we prove that the combinational network derived from a
reduced free BDD description is hazard-free during an extended
burst-mode transition as long as the BDD satisfies the variable
ordering requirement for the transition stated above.

Lemma 1 If (T, A, B) is an extended burst-mode transition
for f , thenfs(X) = fs(X) for every don’t care signals in
(T, A, B) and for every mintermX in [A, B], wherefs andfs

are the Shannon cofactors off with respect tos ands respec-
tively.

Proof: Suppose thats is a don’t care in(T, A, B) and
a mintermX is in [A, B]. X = [. . . , xs, . . .] and X ′ =
[. . . , xs, . . .], wherexs and xs are the values ofs in X and
X ′ and all other components are the same. Becauses is a
don’t care,X ∈ B implies X ′ ∈ B andX ∈ [A, B) implies
X ′ ∈ [A, B). Thusf(X) = f(X ′). If xs = 1, f(X) = fs(X)
andf(X ′) = fs(X ′). fs(X ′) = fs(X) becausefs is indepen-
dent ofs. Thusfs(X) = fs(X). On the other hand, ifxs = 0,
f(X) = fs(X) andf(X ′) = fs(X ′) = fs(X). Therefore,
fs(X) = fs(X).

Example. Fig. 5 illustrates a generalized transition cube for an
extended burst-mode transitions∗ a+ b+ enablingf+ (a andb
are terminating signals ands is a directed don’t care).f(X) = 1
for all X ∈ B andf(X) = 0 for all X ∈ [A, B). Becauses is a
don’t care,f is independent ofs. Thusfs(X) = fs(X) for all
X ∈ [A, B].

A

B

b+

a+

s+

[A,B]

s = 0
s = 1

Fig. 5. Generalized transition cube[A, B] for extended burst-mode transition
s∗ a+ b+ / f+. Signalss, a, andb are of rising-edge type in(T, A, B).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Definition 3 Subtransitions:
1. If s is not a constant0 in (T, A, B), (T, As, Bs) is a subtran-
sition of(T, A, B) with the value ofs fixed to1.
2. If s is not a constant1 in (T, A, B), (T, As, Bs) is a subtran-
sition of(T, A, B) with the value ofs fixed to0.

Note that (T, As, Bs) = (T, A, B), if s is a constant 1 in
(T, A, B), and (T, As, Bs) = (T, A, B), if s is a constant 0
in (T, A, B). Bs ⊂ B, i.e.,Bs is a subcube ofB, if X ∈ Bs

implies X ∈ B but Bs 6= B. Sincef(X) = f(Y) for any
pair of mintermsX andY in B for extended burst-mode tran-
sition (T, A, B), we use the notationf(B) to describe the value
of f for all X in B. Likewise,f(X) = f(Y) for any pair of
mintermsX andY in [A, B); thusf([A, B)) denotes the value
of f for all X in [A, B).

Lemma 2 If (T, A, B) is an extended burst-mode transition for
f , then
1. (T, As, Bs) is an extended burst-mode transition forfs, if s
is not a constant0;
2. (T, As, Bs) is an extended burst-mode transition forfs, if s
is not a constant1.

Proof: First, we will prove that(T, As, Bs) is an extended
burst-mode transition forfs, if s is not a constant0.
1. s is a constant 1in (T, A, B).
Thenfs = f in [A, B] and (T, As, Bs) = (T, A, B). Thus
(T, As, Bs) is an extended burst-mode transition forfs.
2. s is a don’t carein (T, A, B).
Thens is a don’t care inB. ThusBs ⊂ B, sof(Bs) = f(B).
[As, Bs) = [As, Bs] − Bs = [As, Bs] − B ⊂ [A, B), so
f([As, Bs)) = f([A, B)). Thus (T, As, Bs) is an extended
burst-mode transition forfs.
3. s is a rising terminating signalin (T, A, B).
Then s = 1 in B, which impliesBs = B and f(Bs) =
f(B). [As, Bs) = [As, Bs] − B ⊂ [A, B), sof([As, Bs)) =
f([A, B)). Thus(T, As, Bs) is an extended burst-mode transi-
tion for fs.
4. s is a falling terminating signalin (T, A, B).
Then s = 0 in B. Thus [As, Bs] ∩ B = ∅, which implies
[As, Bs] ⊂ [A, B). Therefore,f([As, Bs]) = f([A, B)), which
means that(T, As, Bs) is an extended burst-mode transition for
fs.
Similarly, (T, As, Bs) is an extended burst-mode transition for
fs, if s is not a constant1.

Corollary 1 If (T, A, B) is an extended burst-mode dynamic
transition for f and s is a don’t care in (T, A, B), then
(T, As, Bs) is an extended burst-mode dynamic transition for
fs and(T, As, Bs) for fs.

Corollary 2 Static transitions of cofactors:
1. (T, As, Bs) is a static transition forfs if (T, A, B) is an ex-
tended burst-mode transition forf ands is a falling terminating
signal.
2. (T, As, Bs) is a static transition forfs if (T, A, B) is an ex-
tended burst-mode transition forf ands is a rising terminating
signal.

Theorem 1 The combinational networkC derived from a re-
duced BDD (ordered or free) description off is hazard-free dur-
ing an extended burst-mode transition if it satisfies the variable
ordering requirement for the transition:no don’t care signal
appears before a terminating signal.

Proof: We prove by induction on the number of variables.
Base case: The sole input of the network is connected to

the select input of the multiplexor. The other input terminals are
connected to a constant 1 or 0. Since the multiplexor is atomic
and only the select input can change,f is hazard-free.

Inductive hypothesis: Now assume that a combinational net-
work derived from a reduced BDD representation of ann-input
function (n ≥ 1), which satisfies the variable ordering require-
ments for an extended burst-mode transition, is hazard-free dur-
ing the extended burst-mode transition.

Now consider the networkC derived from a reduced BDD
representation of functionf with n + 1 input variables and an
extended burst-mode transition(T, A, B) for f . Assume that
the select input of the multiplexor driving the output ofC is
s and the data inputs arefs and fs. Then (T, As, Bs) is an
extended burst-mode transition forfs if s is not a constant0,
and(T, As, Bs) is for fs if s is not a constant1, by Lemma 2.
Sincef satisfies the variable ordering requirements, so dofs and
fs. Therefore,fs is hazard-free ifs is not a constant 0, andfs is
hazard-free ifs is not a constant 1, by the inductive hypothesis.
We will consider 3 cases:s is a constant,s is a don’t care, ands
is a terminating signal.
1. s is a constant:
The multiplexor is a wire as long ass remains constant. Thus,
if s = 0, f = fs is hazard-free sinces is not a constant1.
Likewise,f is hazard-free, ifs = 1.
2. s is a don’t care:
First we prove by contradiction that(T, A, B) must be a static
transition forf if s is a don’t care. Assume that(T, A, B) is
a dynamic transition forf . By Corollary 1,(T, As, Bs) is an
extended burst-mode dynamic transition forfs. Supposes re-
mains at 1 whilefs changes. Then the change infs propagates
to f , which means that there is a terminating signal that enables
f to change, regardless ofs, violating the variable ordering re-
quirement.
By Lemma 1,f(X) = fs(X) = fs(X) for everyX in [A, B].
Therefore,(T, As, Bs) and(T, As, Bs) are static transitions of
same type, that is, both0 → 0 or both1 → 1, for fs andfs

respectively. By the inductive hypothesis,fs andfs are hazard-
free, therefore constant. Since the multiplexor is atomic,f is
hazard-free.
3. s is a terminating signal:
Without loss of generality, consider only the case in whichs
rises. By Corollary 2,fs undergoes a static transition, i.e., does
not change. By the inductive hypothesis, bothfs andfs are
hazard-free. Consider the case in whichfs = 0. We prove by
contradiction thatfs must rise or remain a constant. Assume that
fs is initially 1 and falls to 0, buts rises first. Sincefs = 0 and
fs = 1 initially, f is enabled to rise ass rises. This is a static
function hazard, sincef is assumed to be 0 at the end of the
transition. Thusfs must rise or remain a constant; in both cases,
f is hazard-free. Similarly, we can prove thatf is hazard-free

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

whenfs = 1, by proving thatfs must fall or remain a constant.

Corollary 3 The combinational networkC derived from a re-
duced BDD (ordered or free) description off is hazard-free
during an extended-burst-mode static transition.

B. Sequential Synthesis Procedure

The sequential synthesis procedure consists of the follow-
ing three steps: (1) hazard-free state assignment (2) hazard-free
layer minimization (3) layer encoding.

B.1 Hazard-free State Assignment

We use an algorithm for assigning states which always re-
sults in a hazard-free single-transition-time (STT) state assign-
ment. In contrast, the previous algorithm for extended burst-
mode [19] use a multiple-transition-time assignment: a state
variable change was required before an output change, increas-
ing latency significantly. Indeed, it can be shown that multiple
transitions are necessary for extended burst-mode when imple-
mented with 2-level AND-OR logic, so the use of BDDs has an
inherent performance benefit.

This algorithm builds aprimitive next-state table— a 3-
dimensional table withX-axis representing the input bit vector,
Y -axis the output bit vector, andZ-axis the specification states.
The algorithm assigns, according to the extended burst-mode
semantics, a next state, which consists of two components (next
outputs and next specification state), to entries in the table. We
use the state assignment for Type I machine cycle described in
[10]. An XY -plane of the primitive next-state table is called a
layer. Initially, each specification state is assigned to a unique
layer. The algorithm then collapses the primitive next-state table
into areduced next-state tableby merging compatible specifica-
tion states without violating TSO requirements.

We show that Type I next state assignment is free of logic
hazards for a BDD-based implementation, if each specification
state is assigned to a unique layer and if the layers can be en-
coded so that every transition crossing the layer boundary is
critical-race-free. The BDD-based implementation is hazard-
free during an extended-burst-mode static transition and, if the
variable ordering requirement is satisfied, hazard-free during an
extended-burst-mode dynamic transition as well. This ordering
requirement can be satisfied trivially for each transition individ-
ually; however, we need to check whether it is possible to satisfy
the requirements for every transition simultaneously.

Our strategy is to build an ROBDD using aglobal variable
ordering, if such an ordering can be found, or to build a free
BDD. If no global order exists, we must find a variable that can
appear first. This variable partitions the function into a left and
right BDD. The left and right BDDs need not have the same
variable order, so they can be constructed recursively using the
same method.

Assume that each specification state is assigned to a unique
layer. In a Type I machine cycle, only the input bursts can be dy-
namic transitions. Therefore, it suffices to check whether there
are conflicting ordering requirements among the input bursts
from the same specification state.

Lemma 3 There always exists a BDD that satisfies the variable
ordering requirements for any two dynamic input burst transi-
tions from a specification state.

Proof: If there are no conflicting ordering requirements
among the input bursts, then the variable ordering requirements
are trivially satisfied in an ordered BDD.

Assume that the input bursts from state transitions(u, v) and
(u, w) have conflicting ordering requirements. By the distin-
guishability constraint [10], either the conditions are mutually
exclusive, or the set of compulsory edges in the input burst of
(u, v) is not a subset of the set of all possible edges in the input
burst of(u, w).

If the conditions of two input bursts are mutually exclusive,
then there exists a conditional signal such that it is a constant in
both input bursts but its value in one input burst is different from
that in the other input burst. If this conditional variable appears
before any variable involved in the ordering, the variable order-
ing for each input burst is satisfied in the left or right partition
created by this conditional variable.

If the conditions of two input bursts are not mutually exclu-
sive, then there exist compulsory signalsi and j in the input
bursts of(u, v) and(u, w) respectively such thati is a constant
in the input burst of(u, w) andj is a constant in the input burst
of (u, v). Suppose that we select a variable ordering such that
i appears beforej and also before all other variables involved
in the orderings. Let the output of the multiplexor withi as its
select signal beg. Without loss of generality, assume thati rises
during the input burst of(u, v). For the input burst of(u, w), gi

is irrelevant, becausei is a constant 0 in the input burst of(u, w).
Therefore, the variable ordering requirement for the input burst
of (u, w) is satisfied by selecting an appropriate variable order-
ing in the sub-BDDgı.

Let (T, A, B) be the input burst transition of(u, v). Since
(T, A, B) is an extended burst-mode transition forg, (T, Aı, Bı)
is an extended burst-mode transition forgı, by Lemma 2. By
Corollary 2,(T, Aı, Bı) is a static transition forgı. Thus, there
is no ordering requirement in the sub-BDDgı for (T, Aı, Bı).
We can select an appropriate variable ordering in the sub-BDD
gi to satisfy the requirement for the input burst of(u, v). By
symmetry, a free BDD withj appearing beforei can also satisfy
the variable ordering requirement.

Example. Consider two input bursts,a+ b∗ c+ anda∗ b+ d+,
which correspond to(T1, A, B) and (T2, A, C) respectively
with A = 0000, B = 1x10, and C = x101, as shown in
Fig. 6a. (T1, A, B) requires thata < b andc < b, becauseb
is a directed don’t care anda andc are terminating signals in
(T1, A, B). (T2, A, C) requires thatb < a andd < a, because
a is a directed don’t care andb andd are terminating signals
in (T2, A, C). Obviously, we cannot satisfya < b andb < a
globally. Sincec andd are compulsory edges in(T1, A, B) and
(T2, A, C) respectively andc = 0 in (T2, A, C) andd = 0 in
(T1, A, B), free BDD implementations that satisfya < b and
b < a “locally”, such as the ones in Fig. 6bc, exist.

We can use an inductive argument to show that the result of
Lemma 3 applies to the general case with multiple dynamic tran-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

(b) (c)

01

01

b
1

a
0

0

1

0 1

f

c

d
01

01

b

1

a

0

0

1

0 1

f

c

d

(a)

0 0 0 0

1 1

1 10 0

00

00 01 11 10

00

01

11

10

ab
cd

A

B

C

f

Fig. 6. Satisfying variable ordering locally.

sitions from a specification state. In short, either the conditions
are mutually exclusive, or, in each input burst, there exists a
uniquecompulsory input that does not change its value in the
other input bursts from the same specification state. Therefore, a
combination of conditionals and unique compulsory inputs can
be used to partition the BDD so that the variable ordering re-
quirement for each dynamic transition is satisfied locally in each
partition.

In the 3D implementation of extended burst-mode machines,
only input bursts can be dynamic transitions. If a unique code
is assigned to each specification state, we can always use fed-
back state variables as partitioning variables, so that the variable
ordering requirements of each specification state are satisfied
locally in each partition. Therefore,there exists a hazard-free
free BDD implementation for every legal extended burst-mode
specification. Layer minimization must also be constrained to
avoid creating variable ordering conflicts, as shown below.

B.2 Hazard-free Layer Minimization

In the next step, the algorithm transforms the primitive next-
state table into a reduced next-state table by merging layers.
Specification states can be merged into a common layer, iff they
are compatible.

In order to definecompatibility of specification states pre-
cisely, we formally defineprimitive next-state tableas be-
low. A primitive next-state table, T = (V, W, X, Y, δ, λ), is
a 6-tuple, whereV is the set of specification states;W is
the set of conditional input bit vectors,{(c1, . . . , cl) | ci ∈
{0, 1}, i ∈ 1, . . . , l}; X is the set of edge-input bit vectors,
{(x1, . . . , xm) | xj ∈ {0, 1}, j ∈ 1, . . . , m}; Y is the set of
output bit vectors,{(y1, . . . , yn) | yk ∈ {0, 1}, k ∈ 1, . . . , n};
δ : V ×W ×X × Y → V ∪ {∗} andλ : V ×W ×X × Y →
{0, 1, ∗}n define thenext specification state functionand the
next output functionrespectively. Note that don’t care values (∗)
are assigned to unreachable entries in the primitive next-state
table for further state minimization.

For two specification states,u andv, to be compatible, we
must ensure that the TSO order be preserved whenu and v
are merged, in order to guarantee that the corresponding BDD-
based implementation is free of dynamic hazards.

Definition 4 u and v in V are BDD-dhf-compatible (BDD

dynamic-hazard-free compatible) iff for every pair of state tran-
sitions(u, wu) and(v, wv),
1. there existsk ∈ 1, . . . , n such thatoutk(u) 6= outk(v) or
2. i is a terminating signal in(u, wu) and j is a don’t care in
(u, wu) ⇒ i is a terminating signal in(v, wv) or j is a
don’t care in(v, wv), that is, ini(wu) 6= ini(u) ∧ ini(wu) 6=
∗ ∧ inj(wu) = ∗ impliesini(wv) 6= ini(v) ∧ ini(wv) 6= ∗ or
inj(wv) = ∗.
This criterion states that no input burst fromu has conflicting
ordering requirements with an input burst inv that has identical
values of fed-back outputs, which is only a sufficient condition
for dynamic hazard freedom. Note that the dhf-compatibility
is implementation-dependent; hence the BDD-dhf-compatibility
criterion applies to BDD-based implementations only.

Example. Fig. 7 shows an example of merging two specification
states resulting in conflicting variable ordering requirements.
Mergingi andj would requirea < b, c < d, b < a, andd < c,
which are impossible to satisfy simultaneously. Therefore,i and
j are not BDD-dhf-compatible.

0 0

0

00 01 11 10

1

1

1 100
01

11

10

cd
ab

%

&

$

x

0

0

0

00 01 11 10

11

1

1

00
01

11

10

ab

x

)) '

(

(

ia+ b∗ /
x+

c+ d∗ /
x+

ja∗ b− /
x+

c∗ d− /
x+

abcdX = 00000 abcdX = 11100

cd

a < b
c < d

b < a
d < c

i, j�QRW�%''�GKI�FRPSDWLEOH

&RQIOLFWLQJ�YDULDEOH�RUGHULQJ

Fig. 7. Output-compatible but not BDD-dhf-compatible.

Definition 5 u andv in V are compatible(u ∼ v) iff u andv
are BDD-dhf-compatible and, for everys in W ×X × Y ,
1. λ(u, s) = ∗ ∨ λ(v, s) = ∗ ∨ λ(u, s) = λ(v, s) and
2. δ(u, s) = ∗ ∨ δ(v, s) = ∗ ∨ δ(u, s) ∼ δ(v, s).

The layer minimization and encoding steps to complete the
sequential synthesis are identical to the two-level 3D synthesis
described in [10]. The only difference in sequential synthesis is
the state compatibility criterion: in particular, dhf-compatibility.

C. Example: Comparison to Two-Level AND-OR

Fig. 8 shows the specification, the next-state table, and a
BDD-based implementation of themode followercircuit [19].
If the mode bitd sampled at the rising edge of the clockφ is
1, the outputx follows the clock for that cycle and the outputy
remains 0. Otherwise,y follows the clock andx remains 0.

All three states are compatible and thus merged in a single
layer. The resulting next-state table is shown in Fig. 8b. During
transitions from states 1 and 2 back to state 0,d is a don’t care.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

Thus the BDDs for outputsx andy must satisfy the variable or-
dering,d < φ. A BDD for outputx that satisfies the variable
ordering is shown in Fig. 8c. In the resulting circuit after con-
stant propagation shown in Fig. 8c, the latency fromφ+ to x+
is the delay through two gates: an inverter plus a NOR gate.

2 0 1

dφ
XY 00 01 11 10

00

01

11

10

00 01

10

10

01

00

00 00

00 0010

01

xy

φ

X

Y

d

0

1

0

0 1

0 1

0 1

0 1

0 1

++− yd /φ +++ xd /φ

−− y/φ −− x/φ)(YdXx += φ

(a)

(b) (c)

φ

d
x

Y

X

Fig. 8. Mode follower in BDD-based implementation. (a) Specification; (b)
Next-state table; (c) A BDD for outputx and the corresponding implemen-
tation ofx after constant propagation.

Fig. 9 shows the specification of the mode follower with state
variable transitions “backannotated” and a two-level SOP im-
plementation. This implementation executes a 3-phase opera-
tion for the state transition enabled by conditional input bursts:
input burst followed by a state burst followed by an output burst.
For example, the transition from state 0 to 1 is done in 3 phases:
φ+ → p+ → x+ after d stabilizes to 1. Hence the latency
from φ+ to x+ is t1 + t2 — four gate delays: 3 NAND gates
plus an inverter. Clearly, the two-level AND-OR solutions incur
additional delays for state variable transitions inserted between
input and output bursts.

2 0 1
+++− yqd //φ ++++ xpd //φ

−−− qy/φ −−− px/φ

φ

d

x

y

p

q

t1 t2

t1

t2

(a) (b)

Fig. 9. Mode followerin two-level SOP implementation. (a) Specification with
state variable transitions “backannotated”; (b) Implementation.

IV. EFFECTS OFVARIABLE ORDERING ONPATH DELAYS

In synchronous designs, one of the important design objec-
tives is to carefully balance the computation blocks so that no

part of the circuits is idle while other parts are busy because the
clock period is determined by the worst-case delay of all the
computation blocks. However, asynchronous designs can pro-
ceed immediately upon receipt of a completion signal, so it is
often desirable to createhighly unbalancedasynchronous cir-
cuits, where one path has been optimized, possibly at the ex-
pense of others, to optimize overall system performance.

6HOHFW

0HUJH

³&´

sel

r
s2 r2

s1 a

&RPSXWDWLRQ�EORFN

3

0

2

1

++
+
ar

sel
/

7

4

6

5

−−
+
ar

sel
/

++
+
ar

sel
/

++
−

2/ sr
sel

++ ar /2

−−
−

2/ sr
sel

−−
+
ar

sel
/

+−
−

2/ sr
sel

−+ ar /2

+− ar /2

−− ar /2

−+
−

2/ sr
sel

Fig. 10. Select/merge example.

To illustrate this point and also provide a nice circuit exam-
ple, we consider a hypothetical problem posed by Ivan Suther-
land [27]. When the circuit in Fig. 10 detects a transition on
r (request), ifsel is high, it signals ons2 to start an expensive
operation “C”, then signals completion ona when it receives
r2 from the operation; otherwise, it does nothing except signal-
ing completion ona as quickly as possible. It is quite likely in
this situation that the designer would want the minimum possi-
ble latency fromr to a in this case to maximize overall system
performance. The implementation shown inside the shaded box
in Fig. 10 (select andmerge elements in cascade) does not do a
very good job of minimizing this latency, because there would
be a significant delay fromr to s1 for mostselect implementa-
tions along with an additional delay through themerge element,
which is an XOR gate.

This controller uses the2-phasesignaling, i.e., every transi-
tion of a signal is considered as a request or acknowledge. We
have included the extended burst-mode specification in Fig. 10.
If sel is sampled high whenr (request) toggles, the controller
toggless2, signaling the block C to begin a computation. When
C finishes the computation, it togglesr2; the controller then tog-
glesa (acknowledge). However, ifsel is sampled low whenr
toggles, then the controller togglesa directly.

The result of applying our synthesis method from [19] turned
out to be remarkably similar to the naive design at the top of
Fig. 10, which we found disappointing. Our hand designs were
better, but also unsatisfactory. However, using this new BDD-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

based approach, we were able to produce an extremely good
result: the latency fromr to a was just the delay from the se-
lect input to the output of a single multiplexor. The solution
was generated by building a BDD so that the decision variable
r is placed as close to the outputa as possible, while satisfy-
ing other requirements to keep the circuit hazard-free. The final
implementation is shown in Fig. 11.

It would be possible to generalize this idea by allowing the
user to specify a set of particular paths to optimize, in order of
priority [28], [29]. The variable ordering in the BDD could be
chosen to put the high-priority inputs as close as possible to the
output, subject to the correctness constraints imposed by TSO,
etc.

sel

r

a

10 10

10

0

1

0

1

1010

r2

s2

y

y
2s

2s

yy

Fig. 11. Select/merge implementation.

V. EXPERIMENTS

We modified the 3D synthesis tool described in [19], in par-
ticular, the hazard-free state assignment and combinational syn-
thesis steps. We also extended the combinational synthesis tool
described in [1] to handle extended burst-mode transitions, in
particular, the generation of variable ordering constraints. We
used these two modified tools in conjunction to perform exper-
iments (see Table I) on an extensive set of benchmarks previ-
ously synthesized by the method described in [19]. The bench-
marks are divided into four sets, corresponding to the four sec-
tions in Table I. The first set of benchmarks was taken from
an academic SCSI controller design developed at Stanford [22].
The second set of benchmarks was taken from an asynchronous
communications chip design developed at Hewlett Packard [13].
The third set of benchmarks came from an industrial SCSI con-
troller design undertaken at AMD [30]. Finally, the last set of
benchmarks corresponds to various other academic examples.
We purposely included a large set of benchmarks to fully test
the efficiency of the new method.

For the two-level circuits, we used the exact hazard-free logic
minimizer described in [7]. The literal counts reported are prior
to decomposition.3 For the BDD-based circuits, a hazard-free
inverting MUX requiring four literals was assumed (as shown in
Fig. 4). We report the results after constant propagation has been
applied. To satisfy the requirements imposed by Theorem 1,

3In a number of cases, the two-level circuit contains some very large fanin
gates. After decomposition, their literal counts should increase.

Specification State vars Total
States / Prim. added literals
Trans. In Out 2L BDD 2L BDD

tsend* 22 30 7 4 5 5 328 511
isend* 24 32 7 4 5 7 490 829
trcv* 16 22 7 4 3 2 175 111
ircv* 16 22 7 4 3 2 188 113
tsend-bm* 11 14 6 4 2 2 96 90
trcv-bm* 8 10 6 4 3 1 77 92
isend-bm* 12 15 6 4 3 3 177 88
ircv-bm* 8 10 6 4 3 1 80 61
tsend-csm* 11 14 6 4 4 3 92 66
trcv-csm* 8 10 6 4 3 2 70 70
isend-csm* 12 15 6 4 3 4 142 68
ircv-csm* 8 10 6 4 3 2 80 74
abcs 23 33 9 7 3 3 199 271
stetson-p1 31 38 13 14 3 3 376 455
stetson-p2 25 27 8 12 4 4 178 195
stetson-p3 8 11 4 2 1 0 16 9
biu-fifo2dma* 11 13 5 2 5 5 125 119
fifocellctrl 3 3 2 2 1 1 16 14
scsi-targ-send* 7 8 4 2 3 3 53 57
scsi-init-send* 7 8 4 2 2 2 31 43
scsi-init-rcv-sync 4 5 3 1 1 1 20 21
iccad93ex* 3 4 2 2 2 0 20 9
edac93ex* 4 5 3 2 2 1 32 17
condtest* 4 5 3 2 2 1 30 24
dff1* 4 6 2 2 2 0 28 17
dff2* 4 6 2 2 2 0 28 17
sr2* 8 12 2 3 3 2 82 37
sr2x2* 8 20 3 3 4 2 131 58
q42 4 4 2 2 1 1 27 15
select2ph* 4 8 2 2 2 0 42 32
selmerge2ph* 8 12 3 2 2 1 89 20
sin 13 17 3 4 3 4 71 77
ring-counter 8 8 1 2 1 1 45 68
binary-counter 32 32 1 4 3 3 94 70
binary-counter-co 32 32 1 5 3 3 104 80
pe-send-ifc 11 14 5 3 2 2 90 88
pe-rcv-ifc 12 15 4 4 3 2 84 68
dramc 12 14 7 6 1 0 71 54
cache-ctrl 38 49 16 19 1 1 704 1231

TABLE I

EXPERIMENTAL RESULTS.

we used a random search algorithm to generate the variable or-
derings. It is worth noting that, although our synthesis method
requires the usage of free BDDs4 in some cases, none of the
benchmark examples required a free BDD implementation. We
believe that the area results will be further improved with the
development of heuristic variable ordering algorithms tuned to
our application. The CPU times for the BDD results are in the
order of a few minutes.

Out of 39 examples synthesized, the new BDD-based solu-
tions required less area than the previous method in 26 cases,
primarily because of the reduction in the number of state vari-
ables due to simpler state assignment. In 12 cases, the area
increased. In one case, the results are the same. It is interest-
ing to note that on the benchmarks taken from practical designs,
benchmarks corresponding to the first three sets in Table I [22],
[13], [30], the BDD-based solutions were better in 11 cases and
worse in 9 cases.

4The usage of free BDDs often severely limits the opportunity for subgraph
sharing.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

Output latency is also an important issue. Out of 39 examples
evaluated, 24 of them (the names with *) previously required
state variable changes before output changes for some of the
specified transitions. In these cases, using BDD-based synthesis
instead of two-level synthesis eliminated the need for the state
burst to proceed sequentially before the output burst, which can
help to reduce the output latency significantly.

Overall, the results indicate that both the BDD method and
the two-level method are required to produce the best results.
Since both methods have been implemented in the 3D synthesis
tool, the user can evaluate both options.

VI. CONCLUSION

In this paper, we have presented a new synthesis method
based on Binary Decision Diagrams for synthesizing extended
burst-mode controllers. In contrast to earlier work on extended
burst-mode synthesis [19] that aimed at two-level implementa-
tions, this new method has two significant advantages: it reduces
the constraints on state minimization and assignment, which re-
duces the number of additional state variables required in many
cases. Second, it eliminates the need for the state burst to pre-
cede the output burst, which reduces overall input to output la-
tency. The method presented has been implemented and its ef-
fectiveness has been shown on a number of examples.

REFERENCES

[1] B. Lin and S. Devadas, “Synthesis of hazard-free multilevel logic under
multi-input changes from binary decision diagrams,”IEEE Transactions
on Computer-Aided Design, vol. 14, no. 8, pp. 974–985, Aug. 1995.

[2] P. A. Beerel,CAD Tools for the Synthesis, Verification, and Testability of
Robust Asynchronous Circuits, Ph.D. thesis, Stanford University, 1994.

[3] T.-A. Chu, Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications, Ph.D. thesis, MIT Laboratory for Computer Science, June
1987.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,”IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences, vol.
E80-D, no. 3, pp. 315–325, Mar. 1997.

[5] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Synthesis of
hazard-free asynchronous circuits with bounded wire delays,”IEEE Trans-
actions on Computer-Aided Design, vol. 14, no. 1, pp. 61–86, Jan. 1995.

[6] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous cir-
cuits,” IEEE Transactions on VLSI Systems, vol. 1, no. 2, pp. 106–119,
June 1993.

[7] S. M. Nowick, Automatic Synthesis of Burst-Mode Asynchronous Con-
trollers, Ph.D. thesis, Stanford University, Department of Computer Sci-
ence, 1993.

[8] M. H. Sawasaki, C. Ykman-Couvreur, and B. Lin, “Externally hazard-free
implementations of asynchronous control circuits,”IEEE Transactions on
Computer-Aided Design, vol. 16, pp. 835–848, Aug. 1997.

[9] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man, “A generalized
state assignment theory for transformations on signal transition graphs,”
Journal of VLSI Signal Processing, vol. 7, no. 1/2, pp. 101–115, Feb. 1994.

[10] K. Y. Yun, Synthesis of Asynchronous Controllers for Heterogeneous Sys-
tems, Ph.D. thesis, Stanford University, Aug. 1994.

[11] B. Coates, A. Davis, and K. Stevens, “The Post Office experience: De-
signing a large asynchronous chip,”Integration, the VLSI journal, vol. 15,
no. 3, pp. 341–366, Oct. 1993.

[12] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N.C. Paver,
“AMULET2e: An asynchronous embedded controller,” in Proc. Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and
Systems, Apr. 1997, pp. 290–299.

[13] A. Marshall, B. Coates, and P. Siegel, “Designing an asynchronous com-
munications chip,”IEEE Design & Test of Computers, vol. 11, no. 2, pp.
8–21, 1994.

[14] R. F. Sproull, I. E. Sutherland, and C. E. Molnar, “The counterflow
pipeline processor architecture,”IEEE Design & Test of Computers, vol.
11, no. 3, pp. 48–59, Fall 1994.

[15] J. A. Tierno, A. J. Martin, D. Borkovic, and T. K. Lee, “A 100-MIPS
GaAs asynchronous microprocessor,”IEEE Design & Test of Computers,
vol. 11, no. 2, pp. 43–49, 1994.

[16] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and
F. Schalij, “A fully-asynchronous low-power error corrector for the DCC
player,” IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1429–
1439, Dec. 1994.

[17] T. E. Williams and M. A. Horowitz, “A zero-overhead self-timed 160ns
54b CMOS divider,”IEEE Journal of Solid-State Circuits, vol. 26, no. 11,
pp. 1651–1661, Nov. 1991.

[18] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and J. Arceo, “The
design and verification of a high-performance low-control-overhead asyn-
chronous differential equation solver,” inProc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, Apr. 1997,
pp. 140–153.

[19] K. Y. Yun and D. L. Dill, “Unifying synchronous/asynchronous state ma-
chine synthesis,” inProc. International Conf. Computer-Aided Design
(ICCAD), Nov. 1993, pp. 255–260.

[20] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691, Aug.
1986.

[21] S. M. Nowick and B. Coates, “UCLOCK: Automated design of high-
performance asychronous state machines,” inProc. International Conf.
Computer Design (ICCD), Oct. 1994, pp. 434–441.

[22] K. Y. Yun and D. L. Dill, “Automatic synthesis of 3D asynchronous
state machines,” inProc. International Conf. Computer-Aided Design (IC-
CAD), Nov. 1992, pp. 576–580.

[23] S. H. Unger, Asynchronous Sequential Switching Circuits, Wiley-
Interscience, John Wiley & Sons, Inc., New York, 1969.

[24] R. M. Fuhrer, B. Lin, and S. M. Nowick, “Symbolic hazard-free min-
imization and encoding of asynchronous finite state machines,” inProc.
International Conf. Computer-Aided Design (ICCAD), 1995, pp. 604–611.

[25] P. Ashar, S. Devadas, and K. Keutzer, “Gate-delay-fault testability prop-
erties of multiplexor-based networks,”Formal Methods in System Design,
vol. 2, no. 1, pp. 93–112, Feb. 1993.

[26] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli,Logic Synthe-
sis for Field-Programmable Gate Arrays, Kluwer Academic Publishers,
1996.

[27] I. E. Sutherland, “Select/merge circuit,” 1994, Private Communication.
[28] P. A. Beerel, K. Y. Yun, and W.-C. Chou, “Optimizing average-case delay

in technology mapping of burst-mode circuits,” inProc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
Mar. 1996, pp. 244–260.

[29] K. W. James and K. Y. Yun, “Average-case optimized transistor-level tech-
nology mapping of extended burst-mode circuits,” inProc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
Mar. 1998, pp. 70–79.

[30] K. Y. Yun and D. L. Dill, “A high-performance asynchronous SCSI con-
troller,” in Proc. International Conf. Computer Design (ICCD), Oct. 1995,
pp. 44–49.

Kenneth Y. Yun is currently an assistant professor in
the Dept. of Electrical and Computer Engineering at
University of California, San Diego. He has a Ph.D. in
Electrical Engineering from Stanford University and
an S.M. in Electrical Engineering and Computer Sci-
ence from MIT. He had held design engineering po-
sitions at TRW and Hitachi for 6 years. His current
research interests include the design, synthesis, analy-
sis, and verification of mixed-timed VLSI circuits and
systems: in particular, interface design methodolo-
gies and tools to facilitate ultra-high-speed commu-

nications between synchronous/asynchronous modules. He has been working
with Intel Corp. as a primary consultant on the Asynchronous Instruction De-
coder Project. He has organized ASYNC’98 as a program co-chair. Dr. Yun is
a recipient of 1996-99 National Science Foundation CAREER award and 1996
Hellman Faculty Fellowship, and a co-recipient of the Charles E. Molnar award
for a paper that best bridges theory and practice of asynchronous circuits and
systems at ASYNC’97.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

Bill Lin has a BS, a MS, and a Ph.D in Electrical Engi-
neering and Computer Sciences from the University of
California, Berkeley. He is currently with the Depart-
ment of Electrical and Computer Engineering at the
University of California, San Diego, where he is af-
filiated with the Center for Wireless Communications.
His current research interests are primarily in the ar-
eas of novel IC architectures for telecom applications
and electronic design automation for designing them.
Prior to joining the faculty at UCSD, he was heading
a research team at IMEC, Belgium, working on var-

ious aspects of design automation and implementation techniques for embed-
ded systems. His research has led to over 80 journal and conference publica-
tions. He has received a number of publication awards, including a best paper
award at the 1987 Design Automation Conference, distinguished paper citations
at the 1989 IFIP VLSI Conference and the 1990 International Conference on
Computer-Aided Design, a best paper nomination at the 1998 Conference on
Design Automation and Test in Europe , and the 1995 IEEE Transactions on
VLSI Systems best paper award. He has served on panels and given invited pre-
sentations at several major conferences, including the International Conference
on Computer-Aided Design. He has served on program committees of several
conferences and workshops, including the Design Automation Conference and
the European Design and Test Conference.

David L. Dill is Associate Professor of Computer Sci-
ence and, by courtesy, Electrical Engineering at Stan-
ford University. He has been on the faculty at Stanford
since 1987. He has an S.B. in Electrical Engineering
and Computer Science from the Massachusetts Insti-
tute of Technology (1979), and an M.S and Ph.D. from
Carnegie-Mellon University (1982 and 1987). His pri-
mary research interests relate to the theory and ap-
plication of formal verification techniques to system
designs, including hardware, protocols, and software.
Prof. Dill’s Ph.D. thesis, ”Trace Theory for Automatic

Hierarchical Verification of Speed Independent Circuits” was named as a Dis-
tinguished Dissertation by ACM and published as such by M.I.T. Press in 1988.
He was the recipient of an Presidential Young Investigator award from the Na-
tional Science Foundation in 1988, and a Young Investigator award from the
Office of Naval Research in 1991. He has received Best Paper awards at Inter-
national Conference on Computer Design in 1991 and the Design Automation
Conference in 1993 and 1998. From July 1996 to September 1997 he was Chief
Scientist of 0-In Design Automation.

Srinivas Devadas received a B. Tech in Electrical En-
gineering from the Indian Institute of Technology,
Madras in 1985 and a MS and Ph.D in Electrical En-
gineering from the University of California, Berkeley,
in 1986 and 1988 respectively. Since August 1988, he
has been at the Massachusetts Institute of Technology,
Cambridge, and is currently an Associate Professor
of Electrical Engineering and Computer Science. He
held the Analog Devices Career Development Chair
of Electrical Engineering from 1989 to 1991. In 1992,
he received a NSF Young Investigator Award. Prof.

Devadas’ research interests span all aspects of synthesis of VLSI circuits, with
emphasis on optimization techniques for synthesis at the logic, layout and ar-
chitectural levels, design for low power, testing of VLSI circuits, formal veri-
fication, hardware/software co-design, design-for-testability methods and inter-
actions between synthesis and testability of VLSI systems. Prof. Devadas has
authored or co-authored over 150 technical papers in journals and conferences,
and has co-authored four books. He has received six Best Paper awards at CAD
conferences and journals, including the 1990 IEEE Transactions on CAD and
the 1996 IEEE Transactions on VLSI Systems Best Paper awards. He has served
on the technical program committees of several conferences and workshops in-
cluding the Int’l Conference on Computer Design, and the Int’l Conference on
Computer-Aided Design. He serves on the Editorial Board of ACM TODAES,
Formal Methods in VLSI Design, and Design Automation of Embedded Sys-
tems journals. Prof. Devadas is a member of ACM.

