
BDD Minimization for Approximate Computing

Mathias Soeken1,2 Daniel Große2 Arun Chandrasekharan2 Rolf Drechsler2,3

1Integrated Systems Laboratory (LSI), EPFL, Switzerland
2Faculty of Mathematics and Computer Science, University of Bremen, Germany

3Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{msoeken,grosse,arun,drechsle}@cs.uni-bremen.de

Abstract—We present Approximate BDD Mini-

mization (ABM) as a problem that has application
in approximate computing. Given a BDD repre-
sentation of a multi-output Boolean function, ABM
asks whether there exists another function that has
a smaller BDD representation but meets a threshold
w.r.t. an error metric. We present operators to derive
approximated functions and present algorithms to ex-
actly compute the error metrics directly on the BDD
representation. An experimental evaluation demon-
strates the applicability of the proposed approaches.

I. Introduction

Approximate computing refers to techniques that relax the
requirement of exact equivalence between the specification
and the implementation [19]. There exist several applications,
such as media processing (audio, video, graphics, and image),
recognition, and data mining, that tolerate acceptable though
not always correct results [9]. Due to inherent error resilience
a precise functional behavior is not required. Several factors
such as the limited perceptual capability of humans allow
imprecision in the numerical exactness of the computation
in these applications. This freedom can be exploited in the
implementation of the applications by achieving significant
improvements in terms of performance and energy efficiency
in comparison to the exact implementation [2, 4, 15]. Several
approaches for mathematical analyses related to imperfect
computation have been proposed which are heavily used in the
implementation of approximate computing [2].

Research in approximate computing spans the whole range
of research activities ranging from programming languages [6]
to transistors [8]. There exist two main strategies to intro-
duce imperfection to the circuit with the aim to improve its
performance [19]: (i) timing-induced errors, e.g., by voltage
over-scaling or over-clocking, and (ii) functional approximation,
e.g., by implementing a slightly different function. Our research
targets the latter strategy. Given a specification f : Bn → B

m

that describes the correct functionality, an approximated func-

tion f̂ : Bn → B
m is sought that minimizes a given circuit cost

metric but respects a quality threshold.
In this paper, we introduce the Approximate BDD Minimiza-

tion (ABM) problem. It asks whether for a given multi-output
function represented as a Binary Decision Diagram (BDD), a
given threshold based on some error metric, and a size bound,
a new function can be obtained that (i) is an approximation to
the original function with respect to the threshold, and (ii) has
a BDD representation whose size does not exceed the bound.
For function representation and manipulation BDDs have be-
come state-of-the-art [3]. They have been studied in logic
synthesis, since they allow to combine aspects of circuit synthe-
sis and technology mapping. There has been a renewed interest
in multiplexor-based design styles (e.g., [20, 21]), since multi-
plexor nodes can often be realized at very low cost (e.g., pass

transistor logic (PTL)). In addition, these techniques allow
us to consider layout aspects during the synthesis step and
therefore guarantee high design quality (see, e.g., [11, 12]). In
this context, circuits derived from BDDs often result in smaller
netlists.

For solving the ABM problem this paper makes the following
three key contributions:

1. presentation of a generic algorithm for ABM,

2. presentation of five symbolic BDD approximation opera-
tors, and

3. development of symbolic algorithms for the exact compu-
tation of frequently used error metrics.

In the experiments we evaluate the effectivity of the approxima-
tion operators and the performance of the symbolic algorithms
for the exact error metric computation.

II. Related Work

A. Approximate Computing

In [18] a systematic logic synthesis methodology has been
proposed that maps the problem of approximate synthesis
into a classical logic synthesis problem. Consequently, the
capabilities of existing synthesis tools can be fully utilized
for approximate logic synthesis. A simple two-level synthesis
approach is described in [16] that aims at minimizing circuit
area for a given error rate threshold. The approach is rather
simple and is not optimized for multiple-output functions. It
has been extended for multi-level synthesis in [17]. Again, the
approach aims at minimizing circuit area by respecting a given
rate significance threshold, which is a composite metric based
on worst-case error and error rate. The algorithm is based
on automatic test pattern generation methods and relaxes the
definition of a redundant fault to minimize circuit area.

B. BDD Minimization

Most related to the proposed research is the minimization of
incompletely specified functions, i.e., for some values x we don’t
care whether f(x) = 1 or f(x) = 0. Incompletely specified
functions can be represented by a Boolean function f and a
Boolean function g, called don’t care set, such that f(x) is a
don’t care value if g(x) = 0. The minimization problem is to

find a function f̂ , called cover, whose BDD representation has

a small number of nodes, referred to as B(f̂), such that

f(x) ∧ g(x) ≤ f̂(x) ≤ f(x) ∨ ḡ(x) for all x. (1)

In other words, f̂(x) must agree with f(x) whenever x sat-

isfies g(x) = 1, but we don’t care what value f̂(x) assumes
when g(x) = 0.

The associated decision problem is called Exact BDD Mini-
mization (EBM) and asks for a given function f , a don’t care

set g, and a size bound b, whether there exists a function f̂ as

in Eq. (1) such that B(f̂) ≤ b. The authors in [14] have proven
that deciding EBM is NP-complete. Further, they have also
shown that efficient approximation algorithms for EBM exist
only if NP = P.

III. Preliminaries

A. Error Metrics

The quality of an approximated circuit is evaluated using
multiple error metrics. The worst-case error

wc(f, f̂) = max{| int(f(x))− int(f̂(x))| ∀x ∈ B
n}, (2)

where ‘int’ returns the integer representation of a bit vector, is
the maximum difference between the approximate output value
and a correct version for all possible inputs. This metric is
sometimes also referred to as error significance in the literature.
The average-case error

ac(f, f̂) =

∑

x∈Bn

| int(f(x))− int(f̂(x))|

2n
(3)

is the average difference and the error rate

er(f, f̂) =

∑

x∈Bn

[f(x) 6= f̂(x)]

2n
(4)

is the ratio of the errors observed in the output value as a result
of approximation to the total number of input combinations.
The product of error rate and the total number of input com-
binations corresponds to the Hamming distance when applied
to single-output functions. The first two metrics consider the
integer representation of the function values instead of the
binary representation. This is useful since in most applications
a change in more significant bits has a much higher effect than
changes in less significant bits.

Throughout the paper, the multiple-output functions f and f̂

are represented as m-tuples (fm−1, . . . , f0) and (f̂m−1, . . . , f̂0).

B. Binary Decision Diagrams

A BDD (e.g., [5]) is a graph-based representation of a
function that is based on the Shannon decomposition f =
xifxi

⊕ x̄ifx̄i
. Applying this decomposition recursively allows

dividing the function into many smaller sub-functions. Solid
and dashed lines refer to high and low successors, respectively.
BDDs make use of the fact that for many functions of practical
interest, smaller sub-functions occur repeatedly and need to
be represented only once. Combined with an efficient recursive
algorithm that makes use of caching techniques and hash tables
to implement elementary operations, BDDs are a powerful data
structure for many practical applications. BDDs are ordered
in the sense that the Shannon decomposition is applied with
respect to some given variable ordering which also has an effect
on the BDD’s number of nodes. Improving the variable order-
ing for BDDs is NP-complete [1] and many heuristics have been
presented that aim at finding a good ordering. Throughout this
paper, we only consider BDDs with a fixed variable ordering
and we assume that this is the natural one x1 < x2 < · · · < xn.

Given a Boolean function f(x) = f(x1, . . . , xn), |f | refers to
the number of binary vectors x = x1 . . . xn such that f(x) = 1
(ON-set). We define B(f) to be the size of the BDD represen-
tation for f and a given variable ordering, which is the total
number of nodes, including the sinks.

C. Characteristic Functions

Let f : B
n → B

m be a multi-output Boolean function
with f(x1, . . . , xn) = (fm−1, . . . , f0). Its characteristic function
χf : Bm+n → B is a single-output Boolean function and is
defined as follows:

χf (x1, . . . , xn, ym−1, . . . , y0) =
∧

0≤j<m

(fj(x1, . . . , xn)⊕ ȳj) ,

(5)
by forcing yj to equal the evaluation of fj(x1, . . . , xn). The char-
acteristic function evaluates to true, if and only if x1, . . . , xn

and ym−1, . . . , y0 are a valid input/output pattern for f .

IV. Approximate BDD Minimization

Central to our research is the Approximate BDD Minimiza-
tion (ABM) problem which is presented for the first time in this
paper. ABM aims at minimizing a BDD representing a given
Boolean function f by approximating it with a Boolean func-

tion f̂ and respecting a given threshold based on an error metric.
The associated decision problem asks for a given function f ,
an error metric e, a threshold t, and a size bound b, whether

there exists a function f̂ such that e(f, f̂) ≤ t and B(f̂) ≤ b.
In this paper, we consider the frequently used worst-case

error, average-case error, and error rate as error metrics e. In
the following we give a non-deterministic generic algorithm to
solve ABM.

Algorithm A (Approximate BDD Minimization). The algo-
rithm gets as input a Boolean function f , an error metric e, a
threshold t, and a size bound b.

A1. [Initialize.] Set f̂ ← f .

A2. [Is f̂ small enough?] If B(f̂) ≤ b, return f̂ and terminate.

A3. [Approximate f̂ .] Set h← APPROX(f̂).

A4. [Evaluate error metric.] If e(f, h) ≤ t and B(h) < B(f̂),

set f̂ ← h, and return to step 2; otherwise return to step 3.

The function APPROX in step 3 of Algorithm A refers to some

BDD operator that approximates f̂ further (potentially con-
trolled by user preferences). This result is stored in the tem-

porary variable h. Before f̂ can be replaced by h, it needs to
be checked whether (i) h has a smaller BDD representation

than f̂ and (ii) the error metric respects the given threshold.
The algorithm can be made deterministic by (i) providing a
strategy that selects approximation operators in step 3 and (ii)
by relaxing the condition in step 2 to reach the size bound b but
terminate already beforehand. The latter condition guarantees
that the algorithm completes, however, a heuristic solution
may be returned.

Although Algorithm A is simple and generic, its non–trivial
parts are the approximation operator APPROX and the computa-
tion of the error metric e directly on the BDD representation.
Solutions to both of these are presented in the following two
sections. Section V presents five operators that can be used
to approximate a function in its BDD representation, and Sec-
tion VI shows algorithms to compute each of the three error
metrics symbolically on the BDD representation.

V. Approximation Operators

This section describes five approximation operators which
are summarized in Table I. Applying the operator to a multi-
output function denotes applying it to each sub-function.

⊥⊤

x1

x4

x2 x2

x1

x2

x3 x3

x1

x2

x3x3

x4

v = i

v < i

v > i

f0 f1 f2

(a) Rounding example f

⊥⊤

x1 x1

x2

x3x3 x3

x2x2 x2

x4 x4

x1

f0 f1 f2

(b) Rounding down ⌊f⌋x3

⊥ ⊤

f2f1f0

x1

x2x2

(c) Rounding up ⌈f⌉x3

⊥⊤

f2f1f0

x1x1

x2x2

(d) Rounding [f]x3

Fig. 1. Example for approximation operators

TABLE I
Approximation operators

Op. Description Op. Description

fxi
Positive co-factor ⌊f⌋xi

Rounding down
fx̄i

Negative co-factor ⌈f⌉xi
Rounding up

[f]xi
Rounding

Co-factor approximation. One of the simplest approxi-
mation operators is taking the co-factor with respect to some
variable xi, i.e.,

f̂ ← fxi
or f̂ ← fx̄i

. (6)

Approximation by rounding. We define two operators
⌊f⌋xi

and ⌈f⌉xi
for rounding up and rounding down a function

based on the BDD. The idea is inspired by [13]: for each node
that appears at level xi or lower (in other words for each node
labeled xj with j ≥ i), the lighter child, i.e., the child with the
smaller ON-set, is replaced by a terminal node. The terminal
node is ⊥ when rounding down, and ⊤ when rounding up. The
technique is called heavy branch subsetting in [13].

Example 1 Fig. 1(a) shows a BDD for a function with four
inputs and three outputs which serves as a running example
throughout this section. Each example applies rounding at level
3 and for rounding up and rounding down, crosses emphasize
lighter children. Figs. 1(b) and (c) show the resulting BDDs
after applying rounding down and rounding up, respectively.

The algorithms for rounding down and rounding up do not
necessarily reduce the number of variables since only one child is
replaced by a terminal node. The last approximation operator
rounding does guarantee a reduction of the number of variables
since it replaces all nodes of a given level by a terminal node.
Which terminal node is chosen depends on the size of the ON-
set of the function represented by that node. If the size of the
ON-set (|f |) exceeds the size of the OFF-set (|f̄ |), the node is
replaced by ⊤, otherwise by ⊥.

Example 2 Figs. 1(d) shows the effect of rounding at level 3.

VI. Computing Error Metrics with BDDs

This section shows how to compute the error metric symbol-

ically on the BDD represenation of f and f̂ .

Error rate counts for the percentage for how many input
assignments the function value differs. Since a function value
differs if at least one sub-function is different, error rate can
be computed using the formula

er(f, f̂) =
1

2n

∣

∣

∣

∣

∣

∣

∨

0≤i<m

fi(x)⊕ f̂i(x)

∣

∣

∣

∣

∣

∣

. (7)

For the other two error metrics the outputs of a multi-output
Boolean function are assumed to represent a natural number
or integer k = f(x). In case of a natural number, function fi
represents the ith bit in the binary expansion of k, i.e.,

f(x) =
∑

0≤i<m

fi(x) · 2
i
. (8)

For integers, we use two’s complement

f(x) = −fm−1(x) · 2
m−1 +

∑

0≤i<m−1

fi(x) · 2
i
. (9)

Worst-case error and average-case error have the expression

d(x) = | int(f(x)) − int(f̂(x))| in common. It returns the
absolute value difference at input x. Subtraction is calculated
using m full-adders with 1 as first carry-in and inverting each
bit of the subtrahend. The bit fiddling trick from [7] is used to
compute the absolute value.

For the worst-case error the maximum value must be com-
puted, for which we present two algorithms.

Algorithm M (Maximum value). Given m BDDs
(dm−1, . . . , d0) that represent a mapping d(x1, . . . , xn) as in (8),
this algorithm computes v = max d(x1, . . . , xn). It also com-
putes a Boolean function µ with µ(x1, . . . , xn) = 1 if and only
if d(x1, . . . , xn) = v.

M1. [Initialize.] Set v ← 0, i← m, and µ← ⊤.

M2. [Terminate?] If i = 0, terminate, otherwise set i← i− 1.

M3. [Compute mask.] Set µ′ ← µ ∧ fi.

M4. [Update v and µ?] If µ′ 6= ⊥, set v ← v + 2i and µ = µ′.
Return to step 2.

Example 3 We illustrate Algorithm M using the following
example:

x2 x1 d4 d3 d2 d1 d0 k
0 0 0 1 0 1 0 10
0 1 0 0 1 1 0 6
1 0 0 1 1 0 1 13
1 1 0 1 1 0 0 12

(10)

x1

y0

y1

y2

y0

x1x1

y1

⊥⊤

y0

y4

y1

y2

y3

x1

x2x2

v ←
8 +

4

v ←
0 +

8

v ← 12 + 1 µ

χd

Fig. 2. Characteristic function of (10) to compute the maximum
value

The values in the algorithm then change as follows (for brevity
only the steps are listed in which at least one of the values for
i, v, or µ changes):

Step i v µ
M1 5 0 1111
M2 4 0 1111
M2 3 0 1111
M4 3 8 1011
M2 2 0 1011

Step i v µ
M4 2 12 0011
M2 1 12 0011
M2 0 12 0011
M4 0 13 0010

The maximum value is v = 13 and we have µ = x̄1x2. Note
that µ is given as a bit-string that represents its truth table with
the leading bit referring to the most-significant bit.

Algorithm M iterates over the columns of the truth table;
it needs to perform m BDD operations. Input assignments
that do not evaluate to the maximum value are ruled out
early using the mask µ. The algorithm cannot be modified to
compute the average-case error since all function values need
to be considered and not only the maximum one. That would
require to traverse all 2n rows of the truth table instead. To
overcome this limitation, we are following an alternative idea
that uses the characteristic function of d(x). But before we
describe the algorithm, we first give an alternative algorithm
to find the maximum value based on the same idea we use for
the approximate-case error. This facilitates the understanding.

Algorithm N (Maximum value). Given m BDDs
(dm−1, . . . , d0) that represent a mapping d(x1, . . . , xn) as in (8),
this algorithm computes v = max d(x1, . . . , xn). It also com-
putes a Boolean function µ with µ(x1, . . . , xn) = 1 if and only
if d(x1, . . . , xn) = v.

N1. [Initialize.] Set v ← 0 and compute the BDD for χd with
order

ym−1 < ym−2 < · · · < y0 < x1 < · · · < xn

and let µ be the root node of that BDD.

N2. [Terminate?] If µv ≥ m + 1, i.e., the variable is labeled
xµv−m, terminate.

N3. [Next child.] If µh 6= ⊥, set µ← µh and v ← v + 2m−µv ;
otherwise, set µ← µl. Return to step 2.

Example 4 Fig. 2 shows the characteristic function of (10)
(see Example 3.) Starting from the root node, the algorithm
follows high edges as long as they do not lead to the zero

x1

10

y0
10

y1
8

y2
8

y0
12

x1

6

x1

13

y1
12

⊥⊤

y0
6

y4
0

y1
4

y2
0

y3
0

x1

12

x2x2

χd

Fig. 3. Characteristic function of (10) to compute the weighted sum

terminal. Whenever a high edge can be followed the current
value of v is incremented by a power of 2 that corresponds to
the current level; starting from 2m−1 and then decreasing by 1
with every level. Fig. 2 emphasizes this path with thicker lines.
The algorithm stops when the first node is encountered that is
labeled by an input variable. This node represents µ, i.e., the
function of all input assignments that evaluate to the maximum
value v.

Algorithm N can easily be modified to an algorithm that is
key to compute the average-case error. For this purpose, we
first note that numerator can be written

∑

x∈Bn d(x) and then
rewrite it to

∑

x∈Bn

d(x) =
∑

0≤v<2m

v · |{x ∈ B
n | d(x) = v}|, (11)

i.e., instead of summing up all function values by iterating over
all assignments, we iterate over all function values and multiply
them with the occurrence of assignments that evaluate to them.
We call (11) a weighted sum and give an algorithm to compute
it using the BDD of χd.

Algorithm W (Weighted sum). Given m BDDs (dm−1, . . . , d0)
that represent a mapping d(x1, . . . , xn) as in (8), this algo-
rithm computes w =

∑

x∈Bn nat(d(x)). The auxiliary variables
LINK(g) are used to represent a stack of nodes g and a pointer
s that points to the top of the stack. Also, the variable VAL(g)
represents an integer value whose binary expansion corresponds
to the path from the root node of χd to node g.

W1. [Initialize.] Set w ← 0 and compute the BDD for χd with
order

ym−1 < ym−2 < · · · < y0 < x1 < · · · < xn

and let g be the root node of that BDD. Set LINK(g)← Λ
and s← g.

W2. [Terminate or pop s?] If S is empty, terminate. Otherwise
set g ← s, s← LINK(s), and v ← VAL(g).

W3. [Is g an input node?] If gv ≥ m+1 (i.e., g corresponds to
a variable labeled xgv−m), set w ← w + |g| · VAL(g) and
return to step 2.

W4. [g is an output node.] Set LINK(gh)← s, LINK(gl)← gh,
and s ← gl. Also, set VAL(gl) ← v and VAL(gh) ←
v + 2m−gv .

TABLE II
Summary of the ISCAS-85 benchmark circuits (from [10])

Circuit Function #PI #PO #Gates #Blocks

c17 Example circuit 5 2 6 1
c432 27-channel interrupt controller 36 7 160 5
c499 32-bit SEC circuit 41 32 202 2
c1355 32-bit SEC circuit 41 32 546 2
c1908 16-bit SEC/DED circuit 33 25 880 6
c3540 8-bit ALU 50 22 1,669 11

Example 5 Fig. 3 illustrates Algorithm W applied to the func-
tion in (10). Each node is annotated with VAL(g) starting from
the root note down to the first level of nodes that are labeled
by an input variable. Since the function in (10) is injective,
the weight is always 1, and hence the result is the sum of all
computed values 12+13+10+6 = 41 leading to an average-case
error of 10.25.

VII. Experimental Evaluation

We implemented all described approaches in C++ as a
command called ‘comb_approx’ in the CirKit framework.1 The
experiments were carried out on an Octa-Core Intel Xeon
CPU with 3.40 GHz and 32 GB memory running Linux 3.14.
The evaluation uses the ISCAS-85 benchmark set. The first
experiment evaluates the qualitative effect of the approximation
operators and the second experiment evaluates the performance
of computing the error metrics.

A. Evaluating approximation operators

We took the combinational benchmark circuits from ISCAS
which are listed in Table II. We compared how the relation
of the error metric compared to the BDD size evolves when
increasing the number of levels in the rounding down, rounding
up, and rounding operator (see Table I and Section V). Since
the co-factor operators consider one level and do not directly
effect the successive ones, they are not part of the evaluation.

The plots in Fig. 4 show the results of this evaluation. The
x-axis marks the error rate and the y-axis marks the size
improvement of the BDD representation for a particular con-
figuration. The color refers to the approximation operator and
a small number above the mark reveals the value for i, i.e., the
level at which the operator was applied.

A steep curve means that a high size improvement is obtained
by only a small increase in error rate. A flat curve means the
opposite: the error rate increases significantly by reducing the
BDD only slightly. The circuits ‘c17’, ‘c432’, and ‘c3540’ show
neither a steep nor a flat curve. In other words, by rounding
more parts of the BDD the size can be reduced by accepting
a reasonable increase in the error rate. In ‘c1908’ the curve is
first very steep and then becomes flat, at least for rounding
up and rounding. A good trade-off is obtained at an error
rate of about 28% and a size improvement of about 92%. The
benchmarks ‘c499’ and ‘c1355’ show similar (but not as strong)
effects. Also it can be noticed that the effects are not as high
for rounding down, which gives a more fine grained control
over the approximation.

B. Evaluating the computation of error metrics

We evaluated the algorithms to compute the error metric by
tracking their run-time. Table III lists the benchmark (column
Circuit), the applied approximation operator (column Operator;

1The code can be downloaded from github.org/msoeken/cirkit,
see also www.informatik.uni-bremen.de/agra/eng/maniac.php

TABLE III
Evaluating the computation times of error metrics (in

seconds)

Circuit Operator Apply ER WC WC AC

Alg. M Alg. N

c432 ⌊f⌋x35
0.09 0.00 0.01 2.58 2.58

c432 ⌈f⌉x35
0.11 0.02 0.05 2.65 2.70

c432 [f]x35
0.01 0.03 0.03 2.66 2.69

c499 ⌊f⌋x40
0.45 0.00 0.02 2.58 2.58

c499 ⌊f⌋x36
0.45 1.40 0.04 4.00 7.38

c499 ⌈f⌉x40
0.45 248.74 9.56 3.51 252.00

c499 ⌈f⌉x36
0.45 1.20 1.50 4.06 6.78

c499 [f]x40
0.00 248.75 0.05 3.51 252.01

c499 [f]x36
0.00 0.03 8.77 2.69 2.78

c1355 ⌊f⌋x40
0.46 0.00 0.02 2.59 2.58

c1355 ⌈f⌉x40
0.44 248.71 12.32 3.49 251.99

c1908 ⌊f⌋x32
0.10 0.00 0.01 2.58 2.59

c1908 ⌊f⌋x27
0.11 0.33 0.04 24.36 67.32

c1908 ⌊f⌋x23
0.09 0.46 0.06 47.98 137.19

c1908 ⌈f⌉x32
0.10 0.09 0.23 3.14 5.57

c1908 ⌈f⌉x27
0.09 0.17 0.59 31.70 100.39

c1908 ⌈f⌉x23
0.10 0.16 0.57 59.79 203.85

c1908 [f]x32
0.01 0.08 0.02 3.14 5.58

c1908 [f]x27
0.00 0.32 0.41 24.03 50.14

c1908 [f]x23
0.00 0.16 0.74 48.25 109.71

cf. Table I), and run-times to apply the operator (column Apply)
as well as to compute the three error metrics (columns Error
Rate, Worst-Case (both algorithms) and Average-Case). For
worst-case it is differentiated between the two algorithms to
compute the maximum value. Except in two cases the run-
times to compute error rate and worst-case using Algorithm M
are comparable to the run-times that are required in order
to apply the approximation operator. The two exceptions in
case of error rate are significant. When using Algorithm N to
compute the worst-case, the run-time increases, in some cases
by a factor of 100. The run-times to compute the average-
case are (often significantly) larger. However, note that the
computation exactly determines the average value over, e.g., 241

values in case of ‘c499’ and ‘c1355’.
Using the characteristic function to compute the worst-case

error is not a good idea, and Algorithm M is a better choice.
However, in order to compute the average-case, so far no better
algorithm is known and it remains an open question, whether
a technique that does not depend on the characteristic func-
tion representation exists, which can symbolically (and exact)
compute this error metric.

Since the presented approaches depend on BDDs, they are
not applicable to much larger circuits in their current imple-
mentation. However, the following modifications are possible
in order to improve the scalability:

1. Partition the circuit into subcircuits and perform approx-
imation on the individual subcircuits: Additional algo-
rithms and strategies are then required to estimate and
control the overall approximation after merging the ap-
proximated subcircuits.

2. Change the underlying data structure, e.g., to AND-
inverter graphs (AIGs): All algorithms cannot be trans-
ferred to AIGs in straight-forward manner, and it is not
clear whether exact error metrics can be computed effi-
ciently.

0% 20% 40% 60%
0%

20%

40%

60%

80%

100%

43

2

1 0

4

3

210

4

3
2

1
0

error rate

si
ze

im
p
ro

v
em

en
t

c17

rounding down

rounding up

rounding

0% 20% 40% 60%
0%

20%

40%

60%

35
34
33

3231
30

29
28 27 26

35

34
33

32
31

30
29

28
27

26

35 34
33

32
31

30
29

2827
26

error rate

si
ze

im
p
ro

v
em

en
t

c432

rounding down

rounding up

rounding

0% 20% 40% 60% 80%
0%

20%

40%

60%

80%

100%

403938 37363534
33

32
31

40

39
3837

36

35

34
3332

31

40

39383736

35

34 333231

error rate

si
ze

im
p
ro

v
em

en
t

c499

rounding down

rounding up

rounding

0% 20% 40% 60% 80%
0%

20%

40%

60%

80%

100%

403938 37363534
33

32
31

40

39
3837

36

35

34
3332

31

40

39383736

35

34 333231

error rate

si
ze

im
p
ro

v
em

en
t

c1355

rounding down

rounding up

rounding

0% 20% 40% 60% 80%
0%

20%

40%

60%

80%

32 31
3029

2827
26

25

24 23

32

31

30
29

2827 26252423

32

31

30
29

2827 26252423

error rate

si
ze

im
p
ro

v
em

en
t

c1908

rounding down

rounding up

rounding

0% 20% 40% 60% 80%
0%

10%

20%

30%

40%

494847464544434241
40

49
48474645

44

434241

40

49

48
4746
45

44

434241

40

error rate

si
ze

im
p
ro

v
em

en
t

c3540

rounding down

rounding up

rounding

Fig. 4. Evaluating approximation operators

VIII. Conclusions

We introduced the Approximate BDD Minimization (ABM)
problem in this paper and provided a generic algorithm in
order to solve it. The two key parts in this algorithm are
the approximation of the function using BDD operations and
the computation of the error metric. We proposed five BDD
operations and several algorithms in order to compute the
error metric directly on the BDD representation. Experiments
evaluate both, the effect of the approximation operators and
the performance of computing the error metrics.

The paper suggests the applicability of BDDs as a data struc-
ture for algorithms in approximate computing. It is shown that
important tasks such as exactly computing the error metric can
be performed symbolically without the need of enumerating all
function values or approximating them. This computation can
be used independently of Algorithm A and the proposed approx-
imation operators in algorithms for approximate computing

that use alternative techniques to derive f̂ . In future work we
plan to consider the combination of the proposed approximation
operators. In addition we want to investigate the composition
of partially exact approximated functions w.r.t. given error
bounds.

Acknowledgments. This work was supported by the Ger-
man Research Foundation in the project MANIAC (DFG) (DR
287/29-1) and by the German Federal Ministry of Education
and Research (BMBF) in the project EffektiV (01IS13022E).

References

[1] B. Bollig and I. Wegener. Improving the variable ordering of
OBDDs is NP-complete. TC, 45(9):993–1002, 1996.

[2] M. A. Breuer. Hardware that produces bounded rather than
exact results. In DAC, pages 871–876, 2010.

[3] R. E. Bryant. Binary decision diagrams and beyond: enabling
technologies for formal verification. In ICCAD, pages 236–243.

[4] S. T. Chakradhar and A. Raghunathan. Best-effort computing:
re-thinking parallel software and hardware. In DAC, pages
865–870, 2010.

[5] R. Drechsler and D. Sieling. Binary decision diagrams in theory
and practice. STTT, 3(2):112–136, 2001.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Archi-
tecture support for disciplined approximate programming. In
ASPLOS, pages 301–312, 2012.

[7] A. Fog. How to optimize for the Pentium processor,
1996. archived version at http://web.archive.org/
web/19961201174141/www.x86.org/ftp/articles/pentopt/
PENTOPT.TXT.

[8] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy.
Low-power digital signal processing using approximate adders.
TCAD, 32(1):124–137, 2013.

[9] J. Han and M. Orshansky. Approximate computing: An emerg-
ing paradigm for energy-efficient design. In ETS, pages 1–6,
2013.

[10] M. C. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the ISCAS-
85 benchmarks: A case study in reverse engineering. D&T,
16(3):72–80, 1999.

[11] L. Macchiarulo, L. Benini, and E. Macii. On-the-fly layout
generation for ptl macrocells. In DATE, pages 546–551, 2001.

[12] A. Mukherjee and M. Marek-Sadowska. Wave steering to in-
tegrate logic and physical syntheses. TVLSI, 11(1):105–120,
2003.

[13] K. Ravi and F. Somenzi. High-density reachability analysis. In
ICCAD, pages 154–158, 1995.

[14] M. Sauerhoff and I. Wegener. On the complexity of minimizing
the OBDD size for incompletely specified functions. TCAD,
15(11):1435–1437, 1996.

[15] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones.
Stochastic computation. In DAC, pages 859–864, 2010.

[16] D. Shin and S. K. Gupta. Approximate logic synthesis for error
tolerant applications. In DAC, pages 957–960, 2010.

[17] D. Shin and S. K. Gupta. A new circuit simplification method
for error tolerant applications. In DATE, pages 1566–1571,
2011.

[18] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and
A. Raghunathan. SALSA: systematic logic synthesis of approx-
imate circuits. In DAC, pages 796–801, 2012.

[19] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.
MACACO: modeling and analysis of circuits for approximate
computing. In ICCAD, pages 667–673, 2011.

[20] R. Wille and R. Drechsler. BDD-based synthesis of reversible
logic for large functions. In DAC, pages 270–275, 2009.

[21] R. Wille, O. Keszocze, C. Hopfmuller, and R. Drechsler. Reverse
BDD-based synthesis for splitter-free optical circuits. In ASP
Design Automation Conf., pages 172–177, 2015.

