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for the existential fragment of linear temporal logic extended with the epistemic compo-
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for ELTLK to SAT and to operations on BDDs are presented. The translations have been

implemented, tested, and compared with each other as well as with another tool on several

benchmarks for MAS. Our experimental results reveal advantages and disadvantages of SAT-

versus BDD-based BMC for ELTLK.
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1 Introduction

Verification of multi-agent systems (MAS) is an actively developing field of research [7,8,14,

24,25,30,47]. Several approaches based on model checking [12,48] have been put forward

for the verification of MAS. Typically, they employ combinations of the epistemic logic

with either branching [8,30,43] or linear time temporal logic [17,22,38]. Some approaches

reduce the verification problem to the one for plain temporal logic [6,22], while others treat

typical MAS modalities such as (distributed, common) knowledge as first-class citizens and

introduce novel algorithms for them [38,43].

In an attempt to alleviate the state-space explosion problem (i.e., an exponential growth

of the system state space with the number of the agents) two main approaches have been

proposed based on combining bounded model checking (BMC) with symbolic verification

using translations to either ordered binary decision diagrams (BDDs) [26] or propositional

logic (SAT) [41]. However, the above approaches deal with the properties expressed in the

existential fragment of CTLK (i.e., CTL extended with the existential epistemic components,

called ECTLK) only. In the paper [46] a method for model checking LTLK formulae using

BDDs is described, but it is not explained how it can be used for BMC.

In this paper we aim at completing the picture of applying the BMC-based symbolic

verification to MAS by looking at the existential fragment of LTLK (i.e., LTL extended with

the existential epistemic components, called ELTLK), interpreted over both the subclass

of interpreted systems (IS) called interleaved interpreted systems (IIS) [31] and interpreted

systems themselves. IIS are an asynchronous subclass of interpreted systems [16] in which

only one action at a time is performed in a global transition. Our original contribution consists

in defining the following four novel bounded model checking methods for ELTLK: the SAT-

based BMC for IS and for IIS, and the BDD-based BMC for IS and for IIS. Moreover, we

would like to point out that the proposed SAT-based BMC for ELTLK and for IS has never

been defined and experimentally evaluated before. Next, both the presented BDD-based

methods have been published earlier, but only in the informal proceedings of the LAM’2012

workshop.

All the proposed BMC methods have been implemented as prototype modules of

Verics [28], tested, and compared with each other as well as with MCK [17] on three well-

known benchmarks for MAS: a (faulty) train controller system [21], a (faulty) generic pipeline

paradigm [40], and the dining cryptographers [10]. Our experimental results reveal not only

advantages and disadvantages of ELTLK SAT- versus BDD-based BMC for MAS that are

consistent with comparisons for temporal logics [9,13], but also show two novel findings.

Namely, IIS semantics can improve the practical applicability of BMC, and the BDD-based

approach appears to be superior for IIS semantics, while the SAT-based approach appears to

be superior for IS semantics.

The rest of the paper is organised as follows. In Sect. 2 we recall interpreted systems (IS),

interleaved interpreted systems (IIS), the logic LTLK, and its two subsets: LTL and ELTLK

(i.e., the existential fragment of LTLK). Section 3 deals with Bounded Model Checking

(BMC), where Sect. 3.1 describes BDD-based BMC for ELTLK and Sect. 3.2 presents SAT-

based BMC for ELTLK. In the last section we discuss our experimental results and conclude

the paper.

1.1 Related work

Model checking of knowledge properties was first considered by Vardi and Halpern [20].

The complexity of the model checking problem for LTL combined with epistemic modalities
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in the perfect recall semantics was studied by van der Meyden and Shilov [38]. Raimondi et

al. showed a BDD-based method for model checking CTLK[43]. Su et al [46]. described a

method for model checking LTLK formulae using BDDs. Hoek et al. [22] proposed a method

for model checking LTLK formulae using the logic of local propositions.

The origins of bounded model checking (BMC) go back to the seminal papers [4] and [3],

where the method has been defined for the LTL properties and Boolean circuits. The main

motivation of defining BMC was to take advantage of the immense success of SAT-solvers

(i.e., tools implementing algorithms solving the satisfiability problem for propositional for-

mulas). The first SAT-based BMC method for MAS was proposed in [41]. It deals with the

existential fragment of the branching time logic extended with the epistemic components

(ECTLK) and the interpreted systems. An implementation and experimental evaluation of

this BMC method for the interleaved interpreted systems have been presented in [29]. For

the same logic and for the standard interpreted systems, Jones et al. proposed a BMC method

based on BDDs [26]. In [53] the SAT-based BMC method for the existential fragment of

RTCTL augmented to include epistemic modalities (RTECTLK) and for the interleaved

interpreted systems was introduced and experimentally evaluated. This BMC encoding takes

into account the substantial improvement of the BMC encoding for ECTL that has been

defined in [54]. Further, since RTECTLK is an extension of ECTLK such that a range of

every temporal operator can be bounded, the BMC encoding of [53] substantially improves

the BMC encoding presented in [29,41]. In [37] a BDD-based BMC method for RTECTLK

over interleaved interpreted systems was defined and compared to the corresponding SAT-

based BMC method. Further, in [49] the SAT-based BMC method for the deontic interpreted

systems and for ECTLK extended to include the existential deontic modalities was defined.

A more efficient translation to SAT together with an implementation and an experimental

evaluation of this BMC method are shown in [51], where the SAT-based BMC method for

RTECTLK augmented to include the existential deontic modalities was defined. In [23] a

new SAT-based BMC encoding for fair ECTLK was presented. Next, in [32] the SAT-based

BMC method for the real-time interpreted systems and for the existential fragment of TCTL

extend to include epistemic modalities was shown. All the above BMC approaches deal

with the properties expressed in the existential fragments of branching time temporal logics

only.

For the linear time temporal-epistemic properties, until now, the following BMC meth-

ods have been developed. In [42] a SAT-based BMC method for ELTLK over interleaved

interpreted systems has been defined. The main difficulty in the extension of the SAT-based

BMC method for ELTL to the properties expressible in ELTLK was in the encoding of

the looping conditions. This difficulty arises from the fact that in SAT-based BMC for

ELTLK we need to consider more than one path. The BMC encoding presented in [42]

is not based on the state-of-the-art BMC method for ECTL∗ [55], which uses a reduced

number of paths and a more efficient encoding of loops, what results in significantly smaller

and less complicated propositional formulae that encode the ELTLK properties. For the

same logic over the same systems, in [33] a BDD-based BMC method was introduced. Next,

in [52] a SAT-based BMC method for the existential fragment of Metric LTL with epis-

temic and deontic modalities (EMTLKD) over deontic interleaved interpreted systems was

defined.

The usefulness of SAT-based BMC for error tracking and complementarity to the BDD-

based symbolic model checking have already been proven in several works, e.g., [9,13,35,36].

Further, in [34] the semantics of interpreted systems and interleaved interpreted systems were

experimentally evaluated by means of the BDD-based BMC method for LTLK. Partial-order

reductions for model checking of interleaved interpreted systems were presented in [31].
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Table 1 Summary of the tools and model checking techniques for temporal-epistemic-deontic logics

SAT-BMC BDD-BMC NOT BMC

CTLK VerICS/IIS, MCK/IS MCMAS/IS MCMAS/IS, MCK/IS

CTLKD VerICS/IIS MCMAS/IS

LTLK VerICS/IS+IIS VerICS/IS+IIS MCK/IS

CTL∗K MCK/IS MCK/IS

RTCTLK VerICS/IIS VerICS/IIS

RTCTLKD VerICS/IIS

The BMC methods are defined for the existential fragments of the mentioned logics

Table 2 Summary of the BMC

techniques for

temporal-epistemic-deontic

logics

a we denote the BMC methods

that have not been implemented

SAT-BMC BDD-BMC

IIS IS IIS IS

ELTLK [42] [33] [34]

ECTLK [29] [41]a , [23] [26]

ECTLKD [49]a

RTECTLK [53] [37]

RTECTLKD [51]

TECTLK [32]

EMTLKD [52]

Table 1 provides a summary of the existing implementations of model checking techniques

for MAS in the BMC context. Table 2 summarises the existing BMC techniques for MAS.

This paper combines and refines our preliminary results published in informal proceed-

ings of two workshops: the CS&P’2011 [33] and the LAM’2012 [34], in the conference

paper [36], and in the journal [42]. More precisely, for the interleaved interpreted systems

and for the ELTLK properties we present a BDD-based BMC technique and an improved

SAT-based BMC method that previously appeared in, respectively, [33,36] and [36,42]. For

the interpreted systems and for the ELTLK properties we present a BDD-based BMC tech-

nique that previously appeared in [34]. Both the SAT-based BMC method are based on the

SAT-based BMC technique for ECTL∗ that was introduced in [55].

2 Preliminaries

In this section we introduce the basic definitions used in the paper. In particular, we define

interpreted and interleaved interpreted systems, and syntax and semantics of linear temporal

logic extended with the epistemic component (LTLK) and its two subsets ELTLK and LTL.

2.1 Interpreted systems

The semantics of interpreted systems (IS) provides a setting to reason about multi-agent

systems (MASs) by means of specifications based on knowledge and linear or branching

time. We report here the basic setting as popularised in [16].
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We begin by assuming that a MAS is composed of n agents (by A = {1, . . . , n} we denote

the non-empty set of agents) and a special agent e which is used to model the environment

in which the agents operate. We associate a set of possible local states Lc and actions

Actc to each agent c ∈ A ∪ {e}. For any agent c ∈ A ∪ {e} we assume that the special

action ǫc, called the “null” action of agent c, belongs to Actc. For convenience, the symbol

Act denotes the Cartesian product of the agents’ actions, i.e. Act = Act1 × · · · × Actn ×

Acte.

An element a ∈ Act is a tuple of actions (one for each agent) and is referred to as a

joint action. Following closely the interpreted system model, we consider a local protocol

modelling the program the agent is executing. Formally, for any agent c ∈ A ∪ {e}, the

actions of the agents are selected according to a local protocol function Pc : Lc → 2Actc ,

which maps local states to sets of possible actions for agent c. Further, for each agent c

we define a (partial) evolution function tc : Lc × Act → Lc. We assume that if ǫc ∈

Pc(ℓ), then tc(ℓ, (a1, . . . , an, ae)) = ℓ for ac = ǫc and ai ∈ Acti for 1 � i � n, and ae ∈

Acte.

A global state g = (ℓ1, . . . , ℓn, ℓe) is a tuple of local states for all the agents in the MAS

corresponding to an instantaneous snapshot of the system at a given time. Given a global

state g = (ℓ1, . . . , ℓn, ℓe), we denote by lc(g) = ℓc the local component of agent c ∈ A∪{e}

in g.

Let G be a set of global states. For a given set of agents A, the environment e, and a set of

propositional variables PV , which can be either true or false, an interpreted system is a tuple

IS = (ι, {Lc, Actc, Pc, tc}c∈A∪{e}, V)

where ι ∈ G is the initial global state, and V : G → 2PV is a valuation function.

Given the notions above we can now define formally the global (partial) evolution function.

Namely, the global (partial) evolution function t : G × Act → G is defined as follows:

t (g, a) = g′ iff for all c ∈ A, tc(lc(g), a) = lc(g
′) and te(le(g), a) = le(g

′). In brief we

write the above as g
a

−→ g′.

With each IS we associate a Kripke model, which is a tuple

M = (G, ι, T, {∼c}c∈A, V)

where G =
∏n

c=1 Lc × Le is a set of the global states, ι ∈ G is the initial (global) state,

T ⊆ G × G is a global transition relation on G defined by: (g, g′) ∈ T iff there exists an

action a ∈ Act such that g
a

−→ g′. We assume that the relation is total, i.e., for any g ∈ G

there exists an a ∈ Act such that g
a

−→ g′ for some g′ ∈ G, ∼c⊆ G × G is an epistemic

indistinguishability relation for each agent c ∈ A, defined by g ∼c r if lc(g) = lc(r), and

V : G → 2PV is the valuation function of IS.

2.2 Interleaved interpreted systems

Interleaved interpreted systems (IIS) [31] are a restriction of interpreted systems, where all

the joint actions are of special form. To be more precise, we assume that if more than one

agent is active at a given state, i.e., executes a non null-action, then all the active agents

perform the same (shared) action in the round. Formally, for any agent c ∈ A ∪ {e} we

assume that the special action ǫc, called “null” action of agent c, belongs to Actc; as it will

become clear below the local state of agent c remains the same if the null action is per-

formed. Next, Act =
⋃

c∈A
Actc ∪ Acte, and for each action a, by Agent (a) ⊆ A ∪ {e}
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we mean all the agents c such that a ∈ Actc, i.e., the set of agents potentially able to per-

form a. Further, for each agent c ∈ A ∪ {e}, the actions are selected according to a local

protocol function Pc : Lc → 2Actc such that ǫc ∈ Pc(ℓ), for any ℓ ∈ Lc, i.e., we insist

on the null action to be enabled at every local state. Next, for each agent c ∈ A ∪ {e},

we define a (partial) evolution function tc : Lc × Actc → Lc, where tc(ℓ, ǫc) = ℓ for

each ℓ ∈ Lc. The local evolution function considered here differs from the standard treat-

ment in interpreted systems by having the local action as the parameter instead of the joint

action.

Let G be a set of global states. For a given set of agents A, the environment e, and a set

of propositional variables PV , which can be either true or false, an interleaved interpreted

system is a tuple

IIS = (ι, {Lc, Actc, Pc, tc}c∈A∪{e}, V)

where ι ∈ G is the initial global state, and V : G → 2PV is a valuation function.

Given the notions above we can now define formally the global (partial) interleaved

evolution function. Namely, the global (partial) interleaved evolution function t : G ×∏n
c=1 Actc × Acte → G is defined as follows: t (g, a1, . . . , an, ae) = g′ iff there exists an

action a ∈ Act \ {ǫ1, . . . , ǫn, ǫe} such that for all c ∈ Agent (a), ac = a and tc(lc(g), a) =

lc(g
′), and for all c ∈ (A ∪ {e}) \ Agent (a), ac = ǫc and tc(lc(g), ǫc) = lc(g). In brief we

write the above as g
a

−→ g′.

Similar to blocking synchronisation in automata, the above insists on all agents performing

the same non-epsilon action in a global transition; additionally, note that if an agent has the

action being performed in its repertoire, it must be performed, for the global transition to be

allowed. This assumes that the local protocols are defined to permit this; if a local protocol

does not allow it, then the local action cannot be performed and therefore the global transition

does not comply with the global interleaved evolution function as defined above.

With each IIS we associate a Kripke model, which is a tuple

M = (G, ι, T, {∼c}c∈A, V)

where G =
∏n

c=1 Lc × Le is a set of the global states, ι ∈ G is the initial (global) state,

T ⊆ G × G is a global (interleaved) transition relation on G defined by: (g, g′) ∈ T iff there

exists an action a ∈ Act \ {ǫ1, . . . , ǫn, ǫe} such that g
a

−→ g′. We assume that the relation

is total, i.e., for any g ∈ G there exists an a ∈ Act \ {ǫ1, . . . , ǫn, ǫe} such that g
a

−→ g′ for

some g′ ∈ G, ∼c ⊆ G ×G is an epistemic indistinguishability relation for each agent c ∈ A,

defined by g ∼c r if lc(g) = lc(r), and V : G → 2PV is the valuation function of IIS.

2.3 Runs and paths

Let M be a model generated by either IS or IIS. Then, an infinite sequence of global states

ρ = g0g1g2 . . . is called a run originating at g0 if there is a sequence of transitions from g0

onwards, such that, (gi , gi+1) ∈ T for every i � 0. The m-th prefix of ρ, denoted by ρ[..m],

is defined as ρ[..m] = (g0, g1, . . . , gm). Any finite prefix of a run is called a path.

By length(ρ) we mean the number of the states of ρ if ρ is a path, and ω if ρ is a run.

In order to limit the indices range of ρ, which can be either a path or a run, we define the

relation �ρ . Let �ρ
de f
= < if ρ is a run, and �ρ

de f
= � if ρ is a path.

The set of all the paths and runs originating from g is denoted by Π(g). The set of all the

paths and runs originating from all states in G is defined as Π =
⋃

g∈G Π(g). The set of all
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Fig. 1 The FTC system

the runs originating from g is denoted by Πω(g). The set of all the runs originating from all

states in G is defined as Πω =
⋃

g∈G Πω(g). A state g is reachable from g0 if there is a

path ρ = g0g1g2 . . . gn for n � 0 such that g = gn .

2.4 Examples of MASs and their models

In the section we present MASs modelled by means of interpreted systems and interleaved

interpreted systems. We use the systems to appraise the bounded model checking methods

considered in the paper. In what follows we denote by ǫ the joint null action, i.e., the action

composed of the null actions only.

2.4.1 A faulty train controller system (FTC)

The FTC (adapted from [21]) consists of a controller, and n trains (for n � 2), one of which

is dysfunctional. It is assumed that each train uses its own circular track for travelling in one

direction. At one point, all trains have to pass through a tunnel, but because there is only one

track in the tunnel, trains arriving from each direction cannot use it simultaneously. There

are signals on both sides of the tunnel, which can be either red or green. All trains except one

with a faulty signalling system notify the controller when they request entry to the tunnel

or when they leave the tunnel. The controller controls the colour of the displayed signal.

Figure 1 shows the local states, the possible actions, and the protocol for each agent. Null

actions are omitted in the figure. Further, we assume that the local state Awayi is initial for

Train i , and the local state Green is initial for Controller.

In the model we assume the following set of proposition variables: PV ={I nT unnel1, . . . ,

I nT unneln} with the following interpretation: (M, g) |	 I nT unneli if lT raini
(g) =

T unneli i for all i ∈ {1, . . . , n}.

Let state denote a local state of an agent, Act = ActT rain1×· · ·×ActT rainn ×ActController

with ActT raini
= {approachi , ini , outi , ǫi } where 1 � i � n, and ActController =⋃n−1

i=1 {ini , outi } ∪ {ǫ}. Moreover, let a ∈ Act, acti (a) denote an action of Train i , and

actC (a) denote an action of Controller. In the IS model of the system we assume the follow-

ing local evolution functions:

– Let 1 � i � n. The local evolution function for Train i is defined as follows:

– tT raini
(state, a) = state if a 
= ǫ and acti (a) = ǫi

– tT raini
(Awayi , a) = Waiti if acti (a) = approachi
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– tT raini
(Waiti , a) = T unneli if acti (a) = ini and actC (a) = ini and i 
= n

– tT raini
(T unneli , a) = Awayi if acti (a) = outi and actC (a) = outi and i 
= n

– tT rainn (Waitn, a) = T unneln if actn(a) = inn

– tT rainn (T unneln, a) = Awayn if actn(a) = outn

– the local evolution function for Controller is defined as follows:

– tController (state, a) = state if actC (a) = ǫ

– tController (Green, a) = Red if acti (a) = ini and actC (a) = ini and i 
= n

– tController (Red, a) = Green acti (a) = outi and actC (a) = outi and i 
= n

In the IIS model of the system we assume the following local evolution functions:

– for Train i, tT raini
is defined as follows:

– tT raini
(state, ǫi ) = state, for 1 � i � n

– tT raini
(Awayi , approachi ) = Waiti , for 1 � i � n

– tT raini
(Waitn, inn) = T unneln

– tT raini
(Waiti , ini ) = T unneli if actC (a) = ini and act j (a) = ǫ j for all 1 � j < n

such that j 
= i

– tT rainn (T unneln, outn) = Awayn

– tT raini
(T unneli , outi ) = Awayi if actC (a) = outi and act j (a) = ǫ j for all 1 � j <

n such that j 
= i

– for Controller, tController is defined as follows:

– tController (state, ǫ) = state

– tController (Green, ini ) = Red if acti (a) = ini , for 1 � i < n

– tController (Red, outi ) = Green if acti (a) = outi , for 1 � i < n

2.4.2 Faulty generic pipeline paradigm (FGPP)

The FGPP (adapted from [40]) consists of the following agents: the Producer that is able to

produce data, the Consumer that is able to receive data, a chain of n intermediate Nodes that

are able to receive, process, and send data, and a chain of n Alarms that are enabled when some

error occurs, i.e. the Hung-upi (1 � i � n) operation is performed three times. If the Hung-

upi action is performed only once or only twice, than the system recovers from the error. Fig-

ure 2 shows the local states, the possible actions, and the protocol for each agent. From Fig. 2

we can also deduce the local evolution function of IIS. Null actions are omitted in the figure.

Further, we assume that the following local states Prod Ready, Nodei Ready, Cons Ready

and Alarmi Ready are initial, respectively, for Producer, Node i , Consumer, and Alarm i .

In the model we assume the following set of proposition variables: PV = {Prod Send,

Cons Ready, Problem1, . . ., Problemn, Repair1, . . . , Repairn, Alarm1Send, . . . ,

Alarmn Send} with the following interpretation:

– (M, g) |	 Prod Send if lProducer (g) = Prod Send

– (M, g) |	 Cons Ready if lConsumer (g) = Cons Ready

– (M, g) |	 Problemi if lAlarmi (g) = Problemi , for all 1 � i � n

– (M, g) |	 Repairi if lAlarmi (g) = Repairi , for all 1 � i � n

– (M, g) |	 Alarmi Send if lAlarmi (g) = Alarmi Send , for all 1 � i � n

Let state denote a local state of an agent, P, C, Ni , and Ai denote, respectively,

Producer, Consumer, the i-th Node, and the i-th Alarm. Further, let Act = ActP ×
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Fig. 2 The FGPP system. Dashed lines correspond to the system behaviour after an error has occured

∏n
i=1 ActNi ×

∏n
i=1 ActAi × ActC with ActP = {Producing, Send1, ǫP }, ActC =

{Sendn+1, Consuming, ǫC }, ActNi = {Sendi , Sendi+1, Processingi , Hang_upi , ǫNi },

and ActAi = {Processingi , Hang_upi , Reseti , ǫAi }. Moreover, let a ∈ Act , and

actP (a), actNi (a), actAi (a), and actC (a), respectively, denote an action of Producer, Node

i , Alarm i , and Consumer. In the IS model of the system we assume the following local

evaluation functions:

– tP (state, a) = state if a 
= ǫ and actP (a) = ǫP

– tP (Prod Ready, a) = Prod Send if actP (a) = Producing

– tP (Prod Send, a) = Prod Ready if actP (a) = Send1 and actN1(a) = Send1

– tC (state, a) = state if actC (a) = ǫC

– tC (Cons Ready, a) = Received if actC (a) = Sendn+1 and actNn(a) = Sendn+1

– tC (Received, a) = Cons Ready if actC (a) = Consuming

– if n = 1

– tN1(state, a) = state if a 
= ǫ and actN1(a) = ǫN1

– tN1(Node1Ready, a) = Node1Proc if actN1(a) = actP (a) = Send1

– tN1(Node1Proc, a) = Node1Send if actN1(a) = actA1(a) = Processing1

– tN1(Node1Proc, a) = Node1Proc if actN1(a) = actA1(a) = Hang_up1

– tN1(Node1Send, a) = Node1Ready if actN1(a) = actC (a) = Send2

– if n = 2

– tN1(state, a) = state if a 
= ǫ and actN1(a) = ǫN1

– tN1(Node1Ready, a) = Node1Proc if actN1(a) = actP (a) = Send1

– tN1(Node1Proc, a) = Node1Send if actN1(a) = actA1(a) = Processing1
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– tN1(Node1Proc, a) = Node1Proc if actN1(a) = actA1(a) = Hang_up1

– tN1(Node1Send, a) = Node1Ready if actN1(a) = actN2(a) = Send2

– tN2(state, a) = state if a 
= ǫ and actN2(a) = ǫN2

– tN2(Node2Ready, a) = Node2Proc if actN2(a) = actN1(a) = Send2

– tN2(Node2Proc, a) = Node2Send if actN2(a) = actA2(a) = Processing2

– tN2(Node2Proc, a) = Node2Proc if actN2(a) = actA2(a) = Hang_up2

– tN2(Node2Send, a) = Node2Ready if actN2(a) = actC (a) = Send3

– if n � 3 and 2 � i < n

– tN1(state, a) = state if a 
= ǫ and actN1(a) = ǫN1

– tN1(Node1Ready, a) = Node1Proc if actN1(a) = actP (a) = Send1

– tN1(Node1Proc, a) = Node1Send if actN1(a) = actA1(a) = Processing1

– tN1(Node1Proc, a) = Node1Proc if actN1(a) = actA1(a) = Hang_up1

– tN1(Node1Send, a) = Node1Ready if actN1(a) = actN2(a) = Send2

– tNn(state, a) = state if a 
= ǫ and actNn(a) = ǫNn

– tNn(NodeN Ready, a) = NodeN Proc if actNn(a) = actNn−1(a) = Sendn

– tNn(NodeN Proc, a) = NodeN Send if actNn(a) = actAn(a) = Processingn

– tNn(NodeN Proc, a) = NodeN Proc if actNn(a) = actAn(a) = Hang_upn

– tNn(NodeN Send, a) = NodeN Ready if actNn(a) = actC (a) = Sendn+1

– tNi (state, a) = state if a 
= ǫ and actNi (a) = ǫNi

– tNi (NodeN Ready, a) = NodeN Proc if actNi (a) = actNn−1(a) = Sendi

– tNi (NodeN Proc, a) = NodeN Send if actNi (a) = actAi (a) = Processingi

– tNi (NodeN Proc, a) = NodeN Proc if actNi (a) = actAi (a) = Hang_upi

– tNi (NodeN Send, a) = NodeN Ready if actNi (a) = actNi+1(a) = Sendi+1

– Let 1 � i � n:

– tAi (state, a) = state if a 
= ǫ and actAi (a) = ǫAi

– tAi (Alarmi Ready, a) = Problemi if actAi (a) = actNi (a) = Hang_upi

– tAi (Alarmi Ready, a) = Repairi if actAi (a) = actNi (a) = Processingi

– tAi (Problemi, a) = Problemi ′ if actAi (a) = actNi (a) = Hang_upi

– tAi (Problemi, a) = Repairi if actAi (a) = actNi (a) = Processingi

– tAi (Problemi ′, a) = Alarmi Send if actAi (a) = actNi (a) = Hang_upi

– tAi (Problemi ′, a) = Repairi if actAi (a) = actNi (a) = Processingi

– tAi (Alarmi Send, a) = Alarmi Send if actAi (a) = actNi (a) = Hang_upi

– tAi (Repairi, a) = Alarmi Ready if actAi (a) = Reseti .

2.4.3 Dining cryptographers (DC)

The DC [10] is a scalable anonymity protocol, which has been formalised and analysed in

many works, e.g., [27,39]. Our formalisation of DC is shown in Fig. 3 and extends our earlier

definition [27]. Null actions are omitted in the figure.

We model n cryptographers sitting at a round table, with coins between them, every coin

seen by a pair of respective neighbours. Let state denote a local state of an agent. Let Ci and

Coini denote the i-th cryptographer and i-th coin, respectively. Counter denotes the agent

counting utterances and Oraclei determines if the agent i pays, or no agent pays at all. Thus,

our DC system consists of 3n + 1 components formed by n agents and the environment.

More precisely, the i-th agent consists of the following three components: Ci , Coini , and

Oraclei . The component Counter defines the environment. We introduce a helper function
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Fig. 3 Dining cryptographers (DC)

to identify the right-side neighbour of the cryptographer i : i+ = (i + 1) for 1 � i < n, and

i+ = 1 for i = n.

The protocol works as follows: first the oracles determine who is the payer (either precisely

one cryptographer or none of them). Then, every cryptographer looks at the two coins he

can see (his and his right neighbour), and records the result (the states seeD and seeE

correspond to seeing either different or equal coin sides, respectively). The final utterance

of each cryptographer (say D and sayE locations correspond to saying different and equal

outcomes, respectively) depends of what result is seen and whether the cryptographer has

paid or not. Finally, the counter counts the utterances, determining the final result of the

protocol. Let Act = ActCounter ×
∏n

i=1 ActCi
×

∏n
i=1 ActCoini

×
∏n

i=1 ActOraclei
with

– ActCounter = {se1, sd1, · · · , sen, sdn, ǫCounter },

– ActCoini
= {t ti , hhi , hti , thi , t ti+ , hhi+ , hti+ , thi+ , ǫCoini

},

– ActOraclei
= {pay0, . . . , payn, ti , hi paidi , not_paidi , ǫOraclei

}, and

– ActCi
= {pay0, . . . , payn, t ti , hhi , hti , thi , not_paidi , paidi , sei , sdi , ǫCi

},

for all 1 � i � n. Moreover, let a ∈ Act , and actCounter (a), actCi
(a), actCoini

(a), and

actOracle(a), respectively, denote an action of Oracle, Cryptographer i , Coin i , and Counter.

In the IS model of the system we assume the following local evolution functions (we

provide definitions for Ci and Oraclei components, the remaining ones are straightforward):

– the local evolution for Oraclei is defined as follows:

– tOraclei
(state, a) = state iff a 
= ǫ and actOraclei

(a) = ǫOraclei

– tOraclei
(start, a) = tossed iff actOraclei

(a) = actCoini
(a) = ti or actOraclei

(a) =

actCoini
(a) = hi

– tOraclei
(tossed, a) = paid iff actOracle1(a) = . . . = actOraclen (a) = payi and

actC1(a) = . . . = actCn (a) = payi

– tOraclei
(tossed, a) = not_paid iff either actOracle1(a) = . . . = actOraclen (a) =

pay0 and actC1(a) = . . . = actCn (a) = pay0, or actOracle1(a) = . . . =

actOraclen (a) = pay j and actC1(a) = . . . = actCn (a) = pay j for some j such

that 1 � j � n and j 
= i
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– the local evolution for Ci is defined as follows:

– tCi
(state, a) = state iff a 
= ǫ and actCi

(a) = ǫCi

– tCi
(start, a) = decided iff actOracle1(a) = . . . = actOraclen (a) = pay j and

actC1(a) = . . . = actCn (a) = pay j for some j such that 0 � j � n

– tCi
(decided, a) = seeD iff actCi

(a) = actCoini
(a) = actCoini+

(a) = thi

– tCi
(decided, a) = seeD iff actCi

(a) = actCoini
(a) = actCoini+

(a) = hti
– tCi

(decided, a) = seeE iff actCi
(a) = actCoini

(a) = actCoini+
(a) = hhi

– tCi
(decided, a) = seeE iff actCi

(a) = actCoini
(a) = actCoini+

(a) = t ti
– tCi

(seeE, a) = say D iff actCi
(a) = actOraclei

(a) = paidi

– tCi
(seeD, a) = sayE iff actCi

(a) = actOraclei
(a) = paidi

– tCi
(seeD, a) = say D iff actCi

(a) = actOraclei
(a) = not_paidi

– tCi
(seeE, a) = sayE iff actCi

(a) = actOraclei
(a) = not_paidi

Because of the way in which the local evolution functions are defined obtaining the global

evolution function for IIS requires only that the components not mentioned in every of

the above definitions, execute their respective ǫ actions. For example, because we provide

separate actions for every payment configuration, there is no need to enforce any additional

conditions at the global level.

In the model we assume the following set of propositional variables: PV = {odd, paid1,

. . . paidn} with the following interpretation:

– (M, g) |	 odd if lCounter (g) = odd ,

– (M, g) |	 paidi if lOraclei
(g) = paid , for all 1 � i � n.

2.5 LTLKand its two subsets: ELTLKand LTL

Combinations of linear time with knowledge have long been used in the analysis of temporal

epistemic properties of multi-agent systems [16]. We now recall the basic definitions and

adapt them to our purposes when needed.

2.5.1 Syntax

Let PV be a set of propositional variables to be interpreted over the global states of a system,

p ∈ PV , and Γ ⊆ A. The LTLK formulae in the negation normal form are given by the

following grammar:

ϕ : :=true | f alse | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ |

Kcϕ | Kcϕ | EΓ ϕ | EΓ ϕ | DΓ ϕ | DΓ ϕ | CΓ ϕ | CΓ ϕ.

The temporal modalities U and R are named as usual until and release, respectively, X

is the next step modality. The derived basic temporal modalities are defined as follows:

Fϕ
de f
= trueUϕ and Gϕ

de f
= f alseRϕ.

The epistemic operator Kcϕ represents “agent c knows ϕ” while the operator Kcϕ is the

corresponding dual one representing “agent c considers ϕ possible”. The epistemic operators

DΓ , EΓ , and CΓ represent distributed knowledge in the group Γ , “everyone in Γ knows”,

and common knowledge among agents in Γ , respectively. The epistemic operator DΓ , EΓ ,

and CΓ are the corresponding dual ones.
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Note that LTL is the sublogic of LTLK which consists only of the formulae built without

the epistemic operators, i.e., LTL formulae are defined by the following grammar:

ϕ : :=true | f alse | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ.

ELTLKis the existential fragment of LTLK, defined by the following grammar:

ϕ : :=true | f alse | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | Kcϕ | EΓ ϕ | DΓ ϕ | CΓ ϕ.

Observe that we assume that the LTLK (and so LTL and ELTLK) formulae are given in

the negation normal form (NNF), in which the negation can be only applied to propositional

variables.

2.5.2 Semantics

Let M = (G, ι, T, {∼c}c∈A, V) be a model, and ρ be a path or run. By ρ(i) we denote

the i-th state of ρ, and by ρ[m] we denote the path or run ρ with a designated formula

evaluation position m, where m �ρ length(ρ). Further, let Γ ⊆ A. We use the following

standard relations to give semantics to the “everyone knows”, “common knowledge”, and

“distributed knowledge” modalities: ∼E
Γ =

⋃
c∈Γ ∼c, ∼C

Γ is the transitive closure of ∼E
Γ ,

whereas ∼D
Γ =

⋂
c∈Γ ∼c.

We say that an LTLK formula ϕ is true along ρ (in symbols M, ρ |	 ϕ) iff M, ρ[0] |	 ϕ,

where

M, ρ[m] |	 true

M, ρ[m] 
|	 f alse

M, ρ[m] |	 p iff p ∈ V(ρ(m))

M, ρ[m] |	 ¬p iff p 
∈ V(ρ(m))

M, ρ[m] |	 ϕ ∧ ψ iff M, ρ[m] |	 ϕ and M, ρ[m] |	 ψ

M, ρ[m] |	 ϕ ∨ ψ iff M, ρ[m] |	 ϕ or M, ρ[m] |	 ψ

M, ρ[m] |	 Xϕ iff length(ρ) > m and M, ρ[m + 1] |	 ϕ

M, ρ[m] |	 ϕUψ iff (∃k ≥ m)(M, ρ[k] |	 ψ and (∀m ≤ j < k)M, ρ[ j] |	 ϕ)

M, ρ[m] |	 ϕRψ iff (ρ ∈ Πω(ι) and (∀k ≥ m)M, ρ[k] |	 ψ) or

(∃k ≥ m)(M, ρ[k] |	 ϕ and (∀m ≤ j ≤ k)M, ρ[ j] |	 ψ)

M, ρ[m] |	 Kcϕ iff (∀ρ′ ∈ Πω(ι))(∀k � 0)(ρ′(k) ∼c ρ(m) implies M, ρ′[k] |	 ϕ)

M, ρ[m] |	 Kcϕ iff (∃ρ′ ∈ Π(ι))(∃k � 0)(ρ′(k) ∼c ρ(m) and M, ρ′[k] |	 ϕ)

M, ρ[m] |	 YΓ ϕ iff (∀ρ′ ∈ Πω(ι))(∀k � 0)(ρ′(k) ∼Y
Γ ρ(m) implies M, ρ′[k] |	 ϕ)

M, ρ[m] |	 YΓ ϕ iff (∃ρ′ ∈ Π(ι))(∃k � 0)(ρ′(k) ∼Y
Γ ρ(m) and M, ρ′[k] |	 ϕ),

where Y ∈ {D, E, C}.

Let g be a global state of M and ϕ an LTLK formula. We assume the following notations:

– M, g |	 ϕ iff M, ρ |	 ϕ for all the runs ρ ∈ Πω(g).

– M |	 ϕ iff M, ι |	 ϕ.

– M, g |	∃ ϕ iff M, ρ |	 ϕ for some path or run ρ ∈ Π(g).

– Props(ϕ) is the set of the propositional variables appearing in ϕ.

Let m be a formula evaluation position, and p, q ∈ PV . An illustration of the semantics is

shown in Figs. 4, 5, 6.

Given the above, we say that:

– the LTLK formula ϕ holds in the model M (written M |	 ϕ) iff M, ρ |	 ϕ for all runs

ρ ∈ Πω(ι).
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Fig. 4 Evaluation of formulae of types: Next state and Until

Fig. 5 Evaluation of formulae of the Relase type

Fig. 6 Evaluation of existential epistemic formulae. The highlighted states are epistemically equivalent

– the ELTLK formula ϕ holds in the model M (written M |	∃ ϕ) iff M, ρ |	 ϕ for some

path or run ρ ∈ Π(ι).

Determining whether an LTLK formula ϕ is existentially (resp. universally) valid in a model

M is called an existential (resp. universal) model checking problem. In other words, the

universal model checking problem asks whether M |	 ϕ and the existential model checking

problem asks whether M |	∃ ϕ.

In order to solve the universal model checking problem, one can negate the formula and

show that the existential model checking problem for the negated formula has no solution.

Intuitively, we are trying to find a counterexample, and if we do not succeed, then the formula

is universally valid. Now, since bounded model checking is designed for finding a solution

to an existential model checking problem, in the paper we only consider the properties

expressible in ELTLK. This is because finding a counterexample, for example, to M |	 GKc p

corresponds to the question whether there exists a witness to M |	∃ FKc¬p.

Our semantics meets two important properties. Firstly, for LTLK the definition of validity

in a model M uses runs only. Secondly, if we replace each Π with Πω, the semantics does

not change as our models have total transition relations (each path is a prefix of some run).

The semantics applied to submodels of M does not have the above property, but it preserves

ELTLK over M , which is shown in Lemma 1. Moreover, note that in the above semantics

while we define the until operator, ρ could be an arbitrary path or run (i.e., ρ ∈ Π). However,

while we define the release operator, we insist on ρ to be a run that starts in the initial state

on the part of the definition that corresponds to the globally operator.

2.6 Comments on IS and IIS

There are variety of models of multi-agent systems. A fundamental dimension along which

this models differ is the degree to which the activity of agents is synchronised. At one
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end of the spectrum is the synchronous model in which acting of agents proceeds in a

sequence of rounds. In each round, an agent performs an action that affects the other

agents, is affected by actions executed by the other agents in that round, and changes

his/her state. All agents perform actions at exactly the same time. At the other end is

the asynchronous model in which there is no bound on the amount of time that can

elapse between agents’ actions, and there is no bound on the time it can take for an

agent to act. Between these extremes there are the semi-synchronous models in which

times of agents’ actions can vary, but are bounded between constant upper and lower

bounds.

Now, observe that the agents over the interpreted systems semantics perform a joint action

at a given time in a global state, which means that we assume the synchronous semantics

of interpreted systems. Next, in the interleaved interpreted systems only one local or shared

action may be performed by agents at a given time in a global state. This means that the

interleaved interpreted systems define the asynchronous semantics.

Systems can be modelled using both IIS and IS. The idea is not to convert an IS into

IIS, but rather using both the representations, which are independently defined starting from

a description of a system. However, for many systems an IIS model is a submodel of the

corresponding IS model, (i.e., the set of states of the IIS model is a subset of the set of states

of the corresponding IS model and the transition relation of an IIS model is a subset of the

transition relation of the corresponding IS model), and then we can discuss the complexity

of converting an IS encoding into an IIS one. In such a case, from the definitions of IS and

IIS it follows that each computation of the Kripke model generated by IIS is also a valid

computation of the Kripke model generated by IS. Thus, if an ELTLK formula is valid in

the model generated by IIS, then this formula is also valid in the model generated by IS.

However, the converse of the implication does not hold. Further, if we have a propositional

formula ϕ that encodes the transition relation of the Kripke model generated by an IS such

that the null action is enabled at each local state, then we can convert it to the formula ϕ ∧ϕ′

that encodes the transition relation of the Kripke model generated by IIS and the length of

ϕ′ is O(n · log(n)), where n is the number of the agents. The formula ϕ′ forces the agents to

work in an asynchronous way.

3 Bounded model checking

The main idea of SAT-based BMC methods consists in translating the existential model

checking problem [12,48] for a modal (e.g., temporal, epistemic, deontic) logic to the propo-

sitional satisfiability problem, i.e., it consists in representing a counterexample-trace of

bounded length by a propositional formula and checking the resulting propositional for-

mula with a specialised SAT-solver. If the formula in question is satisfiable, then a satisfying

assignment returned by the SAT-solver can be converted into a concrete counterexample

that shows that the property is violated. Otherwise, the bound is increased and the process

repeated.

Let M be a model for a system S, ϕ an existential formula describing a property P

to be tested, and k ∈ IN a bound. Moreover, let trk(ϕ) be a propositional formula that is

satisfiable if and only if the formula ϕ holds in the model M . Algorithm 1 shows the general

SAT-based BMC approach. In Algorithm 1 we use the procedure checkSat (γ ) that for

any given propositional formula γ returns one of the three possible values: SAT, UNSAT,

or UNKNOWN. The meanings of the values SAT and UNSAT are self-evident. The value

UNKNOWN is returned either if the procedure checkSat is not able to decide the satisfiability
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of its argument within some preset timeout period or has to terminate itself due to exhaustion

of the memory available.

Algorithm 1 The standard SAT-based BMC algorithm

1: k : =0

2: loop
3: result : =checkSat (trk (ϕ))

4: if result = SAT then
5: return TRUE
6: else if result = UNKNOWN then
7: return UNKNOWN
8: end if

{trk (ϕ) is not satisfiable}

9: k : =k + 1

10: end loop

The crux of BDD-based BMC is to interleave the verification with the construction of the

reachable states. Algorithm 2 illustrates a general idea of the BDD-based bounded model

checking method. With M0 we denote the submodel that consists of the initial state of M only,

and M� denotes the model that extends the model M with all the immediate successors of

the states of M. At each step of the state space construction we obtain a submodel (denoted

with M) of the analysed model M , which is used to verify (line 4) the existential formula.

These steps are applied repetitively until the fixed point for the state space construction

is reached, i.e., M = M′, or a witness for the verified formula is found. The number of

iterations needed for the algorithm to complete is counted using the variable k, which is later

used in the evaluation of the approach.

Algorithm 2 General BDD-based BMC algorithm

1: M : =M0
2: k : =0

3: loop
4: if veri f y(M, ϕ) = TRUE then
5: return TRUE
6: end if
7: M′ : =M

8: M : =M�

9: if M = M′ then
10: return FALSE
11: end if
12: k : =k + 1

13: end loop

3.1 BDD-based Approach

In this section we show how to perform bounded model checking for ELTLK using BDDs

[12] by combining the standard approach for ELTL [11] with the method for the epistemic

operators [43] similarly to the solution for CTL∗ of [12].

Definition 1 Let PV be a set of propositions. For an ELTLK formula ϕ we define inductively

the number γ (ϕ) of nested epistemic operators in the formula:

123



574 Auton Agent Multi-Agent Syst (2014) 28:558–604

– if ϕ = p, where p ∈ PV , then γ (ϕ) = 0,

– if ϕ = ⊙ϕ′ and ⊙ ∈ {¬, X}, then γ (ϕ) = γ (ϕ′),

– if ϕ = ϕ′ ⊙ ϕ′′ and ⊙ ∈ {∧,∨, U, R}, then γ (ϕ) = γ (ϕ′) + γ (ϕ′′),

– if ϕ = Yϕ′ and Y ∈ {Kc, EΓ , DΓ , CΓ }, then γ (ϕ) = γ (ϕ′) + 1.

Definition 2 Let Y ∈ {Kc, EΓ , DΓ , CΓ }. If ϕ = Yψ is an ELTLK formula, by sub(ϕ) we

denote the immediate subformula ψ of the epistemic operator Y. Moreover, for an arbitrary

ELTLK formula ϕ we define inductively the set Y(ϕ) of its subformulae in the form Yψ :

– if ϕ = p, where p ∈ PV , then Y(ϕ) = ∅,

– if ϕ = ⊙ϕ′ and ⊙ ∈ {¬, X}, then Y(ϕ) = Y(ϕ′),

– if ϕ = ϕ′ ⊙ ϕ′′ and ⊙ ∈ {∧,∨, U, R}, then Y(ϕ) = Y(ϕ′) ∪ Y(ϕ′′),

– if ϕ = Yϕ′ and Y ∈ {Kc, EΓ , DΓ , CΓ }, then Y(ϕ) = Y(ϕ′) ∪ {ϕ}.

Definition 3 Let M = (G, ι, T, {∼c}c∈A, V) and U ⊆ G with ι ∈ U . The submodel gener-

ated by U is a tuple M |U = (U, ι, T ′, {∼′
c}c∈A, V ′), where: T ′ = T ∩ U 2, ∼′

c= ∼c ∩ U 2

for each c ∈ A, and V ′ = V ∩ U 2.

For ELTLKformulae ϕ,ψ , and ψ ′, by ϕ[ψ ← ψ ′] we denote the formula ϕ in which

every occurrence of ψ is replaced with ψ ′. Let M = (G, ι, T, {∼c}c∈A, V) be a model, then

by VM we understand the valuation function V of the model M , and by G R ⊆ G the set of

its reachable states. Moreover, we define [[[M, ϕ]]] = {g ∈ G R | M, g |	∃ ϕ}.

3.1.1 Reduction of ELTLK to ELTL

Let M = (G, ι, T, {∼c}c∈A, V) be a model, and ϕ an ELTLK formula. Here, we describe

an algorithm for computing the set [[[M, ϕ]]]. The algorithm allows for combining any two

methods for computing [[[M, ϕ]]] for each ϕ being an ELTL formula, or in the form Yp, where

p ∈ PV , and Y ∈ {Kc, EΓ , DΓ , CΓ } (we use the algorithms from [11] and [43], respectively).

Algorithm 3 is used to compute the set [[[M, ϕ]]]. In order to obtain this set, we construct a

new model M ′ together with an ELTL formula ϕ′, as described in Algorithm 3, and compute

the set [[[M ′, ϕ′]]], which is equal to [[[M, ϕ]]]. Initiallyϕ′ equalsϕ, which is an ELTLK formula,

and we process the formula in stages to reduce it to an ELTL formula by replacing with atomic

propositions all its subformulae containing epistemic operators. We begin by choosing some

epistemic subformula ψ of ϕ′, which consists of exactly one epistemic operator, and process it

in two stages. First, we modify the valuation function of M ′ such that every state initialising

some path or run along which sub(ψ) holds is labelled with the new atomic proposition

psub(ψ), and we replace with the variable psub(ψ) every occurrence of sub(ψ) in ψ . In the

second stage, we deal with the epistemic operators having in their scopes atomic propositions

only. By modifying the valuation function of M ′ we label every state initialising some path

or run along which the modified simple epistemic formula ψ holds with a new variable

pψ . Similarly to the previous stage, we replace every occurrence of ψ in ϕ′ with pψ . In

the subsequent iterations, we process every remaining epistemic subformulae of ϕ′ in the

same way until there are no more nested epistemic operators in ϕ′, i.e., we obtain an ELTL

formula ϕ′, and the model M ′ with the appropriately modified valuation function. Finally,

we compute the set of all reachable states of M ′ that initialise at least one path or run along

which ϕ′ holds (line 13).

The correctness of the substitution used in Algorithm 3 is stated in the following lemma:

Lemma 1 Let M = (G, ι, T, {∼c}c∈A, V) be a model over PV, ϕ an ELTLK formula, and

g ∈ G some state of M. We define M ′ = (G, ι, T, {∼c}c∈A, V ′) over PV ′ = PV ∪ {q},

where q is an atomic proposition such that q 
∈ PV , and V ′ is defined as follows:
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– p ∈ V(g′) iff p ∈ V ′(g′) for all p ∈ PV and g′ ∈ G,

– M, g′ |	∃ ϕ iff q ∈ V ′(g′) for all g′ ∈ G.

Then, M ′, g |	∃ q iff M, g |	∃ ϕ.

Proof (Sketch) The “⇒” case follows directly from the definition of V ′. The “⇐” case can be

demonstrated by the induction on the length of a formula ϕ. The base case follows directly for

the atomic propositions and their negations. In the inductive step we assume that the lemma

holds for all the proper subformulae of ϕ, and use the definition of V ′, and the fact that M ′

contains exactly the same paths as M .

Algorithm 3 Computation of [[M, ϕ]]

1: M ′ : =M, ϕ′ : =ϕ

2: while γ (ϕ′) 
= 0 do
3: pick ψ ∈ Y(ϕ′) such that γ (ψ) = 1

4: for all g ∈ [[[M ′, sub(ψ)]]] do
5: VM ′ (g) : =VM ′ (g) ∪ {psub(ψ)}

6: end for
7: ψ : =ψ[sub(ψ) ← psub(ψ)]

8: for all g ∈ [[[M ′, ψ]]] do
9: VM ′ (g) : =VM ′ (g) ∪ {pψ }

10: end for
11: ϕ′ : =ϕ′[ψ ← pψ ]

12: end while
13: return [[[M ′, ϕ′]]]

3.1.2 BMC Algorithm

To perform bounded model checking of an ELTLK formula, we use Algorithm 4. Given

a model M and an ELTLK formula ϕ, the algorithm checks if there exists a path or run

initialised in ι on which ϕ holds, i.e., if M, ι |	∃ ϕ. For any X ⊆ G by X�
de f
= {g′ ∈ G |

(∃g ∈ X)(∃ρ ∈ Π(g)) g′ = ρ(1)} we mean the set of the immediate successors of all the

states in X . The algorithm starts with the set Reach of reachable states that initially contains

only the state ι. With each iteration the verified formula is checked (line 4), and the set Reach

is extended with new states (line 8). The algorithm operates on submodels M |Reach generated

by the set Reach to check if the initial state ι is in the set of states from which there is a path

or run on which ϕ holds. The loop terminates if there is such a path or run in the obtained

submodel, and the algorithm returns TRUE (line 4). The search continues until no new states

can be reached from the states in Reach. When we obtain the set of reachable states, and a

path or run from the initial state on which ϕ holds could not be found in any of the obtained

submodels, the algorithm terminates with FALSE.

The correctness of the results obtained by the bounded model checking algorithm is

formulated by the following theorem:

Theorem 1 Let M = (G, ι, T, {∼c}c∈A, V) be a model, Π a set of paths and runs of M, ϕ

an ELTLK formula, and ρ ∈ Π a path or run with an evaluation position m such that

m �ρ length(ρ). Then, M, ρ[m] |	 ϕ iff there exists G ′ ⊆ G such that ι ∈ G ′, and

M |G ′ , ρ[m] |	 ϕ.
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Algorithm 4 Bounded model checking algorithm of ϕ in M

1: Reach : ={ι}, New : ={ι}

2: while New 
= ∅ do
3: Next : =New�

4: if ι ∈ [[[M |Reach , ϕ]]] then
5: return TRUE
6: end if
7: New : =Next \ Reach

8: Reach : =Reach ∪ New

9: end while
10: return FALSE

Proof “⇒” This way the proof is obvious as we simply take G ′ = G.

“⇐” This way the proof is more involved. It is by induction on the length of a formula ϕ.

The base case is straightforward as the lemma follows directly for the propositional variables

and their negations. Assume, the statement holds for all the proper subformulae of ϕ. Let

G ′ ⊆ G be a set of states such that M |G ′ contains ρ, and (*) let m ∈ IN be an evaluation

position such that M |G ′ , ρ[m] |	 ϕ.

1. Let ϕ = ψ1 ∨ ψ2. By the semantics and the assumption (*), M |G ′ , ρ[m] |	 ψ1 or

M |G ′ , ρ[m] |	 ψ2. Using the induction hypothesis and the definition of submodel (Def-

inition 3), ρ exists also in the model M , and M, ρ[m] |	 ψ1 or M, ρ[m] |	 ψ2, thus

M, ρ[m] |	 ψ1 ∨ ψ2.

2. Let ϕ = ψ1 ∧ ψ2. By the semantics and the assumption (*), M |G ′ , ρ[m] |	 ψ1 and

M |G ′ , ρ[m] |	 ψ2. Using the induction hypothesis and the definition of submodel, ρ exists

also in the model M . Therefore, M, ρ[m] |	 ψ1 and M, ρ[m] |	 ψ2, thus M, ρ[m] |	

ψ1 ∧ ψ2.

3. Let ϕ = Xψ1. By the semantics and the assumption (*), length(ρ) > m, and M |G ′ , ρ[m+

1] |	 ψ1. Using the induction hypothesis and the definition of submodel, we get that ρ

exists also in M , and M, ρ[m + 1] |	 ψ1, therefore M, ρ[m] |	 Xψ1.

4. Let ϕ = ψ1Uψ2. By the semantics and the assumption (*), there exists k � m, such

that M |G ′ , ρ[k] |	 ψ2, and M |G ′ , ρ[ j] |	 ψ1, for all m � j < k. Using the induction

hypothesis and the definition of submodel, we get that ρ exists also in M . Therefore, from

M, ρ[k] |	 ψ2, and M, ρ[ j] |	 ψ1 for all m � j < k, it follows that M, ρ[m] |	 ψ1Uψ2.

5. Let ϕ = ψ1Rψ2. By the semantics and the assumption (*) we have one or both of the

following cases:

(a) ρ is a path of M |G ′ , and M |G ′ , ρ[k] |	 ψ2 for all k � m, then from the definition of

submodel, ρ exists also in M , and ρ ∈ Πω. Using the induction hypothesis, we have

that M, ρ[k] |	 ψ2 for all k � m. Therefore, it follows that M, ρ[m] |	 ψ1Rψ2.

(b) There exists k � m such that M |G ′ , ρ[k] |	 ψ1, and M |G ′ , ρ[ j] |	 ψ2 for all

m � j � k. From the definition of submodel, ρ also exists in M , and using the induc-

tion hypothesis we get that M, ρ[k] |	 ψ1, and M, ρ[ j] |	 ψ2 for all m � j � k.

Thus, M, ρ[m] |	 ψ1Rψ2.

6. Let c ∈ A and ϕ = Kcψ1. By the semantics and the assumption (*), there exists such a

path or run ρ′ in M |G ′ that ρ′(k) ∼c ρ(m) for some k � 0, and M |G ′ , ρ′[k] |	 ψ1. From

the definition of submodel, ρ and ρ′ also exist in M . Using the induction hypothesis, we

get that M, ρ′[k] |	 ψ1 and ρ′(k) ∼c ρ(m). Thus, M, ρ[m] |	 Kcψ1.

7. Let Γ ⊆ A and ϕ = YΓ ψ1, where Y ∈ {D, E, C}. By the semantics and the assumption

(*), there exists such a path or run ρ′ in M |G ′ that ρ′(k) ∼Y
Γ ρ(m) for some k � 0,
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and M |G ′ , ρ′[k] |	 ψ1. From the definition of submodel, ρ and ρ′ also exist in M .

Using the induction hypothesis, we get that M, ρ′[k] |	 ψ1 and ρ′(k) ∼Y
Γ ρ(i). Thus,

M, ρ[m] |	 YΓ ψ1.

3.1.3 Model Checking ELTL

In Algorithm 3, to compute the sets of states in which ELTL formulae hold, it is possible to

use any method that computes the set [[[M, ϕ]]] for ϕ being an ELTL formula. The method

described in [11] uses a tableau construction for which many improvements have been pro-

posed, e.g., [15,18,19,45], but for the purpose of implementing a complete solution for the

BDD-based bounded model checking of ELTLK, we use the basic symbolic model checking

method of [11]. This method is based on checking the non-emptiness of Büchi automata.

Given a model M and an ELTL formula ϕ, we begin with constructing the tableau for ϕ (as

described in [11]), that is then combined with M to obtain their product, which contains these

runs of M where ϕ potentially holds. Next, the product is verified in terms of the CTL model

checking of EGtrue formula under fairness constraints. Those constraints, corresponding to

sets of states, allow to choose only the runs of the model, along which at least one state in each

set representing fairness constraints appears in a cycle. In case of ELTL model checking,

fairness guarantees that ϕUψ really holds, i.e., eliminates the runs where ϕ holds continu-

ously, but ψ never holds. Finally, we choose only these reachable states of the product that

belong to some particular set of states computed for the formula. The corresponding states

of the verified system that are in this set, comprise the set [[[M, ϕ]]], i.e., the reachable states

where the verified formula holds. For more details, we refer the reader to [11].

The method described above has some limitations when used for bounded model check-

ing, where it is preferable to detect counterexamples using not only the runs but also the

paths of the submodel. As totality of the transition relation of the verified model is assumed,

counterexamples are found only along the runs of the model. However, the method remains

correct even if the final submodel only has the total transition relation: in the worst case

the detection of the counterexample is delayed to the last iteration, i.e., when all the reach-

able states are computed. Nonetheless, this should not keep us from assessing the potential

efficiency of our approach.

3.1.4 Model checking epistemic modalities

In the case of the formulae of the form Y p, where p ∈ PV , and Y ∈ {Kc, EΓ , DΓ , CΓ },

for the implementation purposes we use the algorithms described in [43]. The procedures

simply follow from the semantics of ELTLK. The algorithm for CΓ involves a fixpoint

computation, whereas for the remaining operators the algorithms are based on simple non-

iterative computations.

3.2 SAT-based Approach

In this section we present two SAT-based BMC methods for ELTLK. The first one is defined

for interleaved interpreted systems while the second one is defined for interpreted systems.

The main difference between the two methods is in the propositional encoding of the transition

relation of the model under consideration.

In SAT-based BMC we construct a propositional formula that is satisfiable if and only if

there exists a finite set of paths of the underlying model that is a solution to the existential

model checking problem. In order to construct the propositional formula, first we need to
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Fig. 7 A model. We assume that we have one agent that has three states: g0, g1 and g2. The state g0 is initial,

and the epistemic relation is {(g0 ∼ g0), (g1 ∼ g1), (g2 ∼ g2)}

define the bounded semantics for the underlying logic (i.e., in our case for ELTLK), then to

encode the semantics by means of a propositional formula, and finally to represent a part of

the model by a propositional formula.

The bounded semantics and the encoding for ELTLK, which is presented in this section, is

based on the semantics and encoding of [55] for the temporal fragment and on the semantics

and encoding of [52] for the epistemic fragment of ELTLK. This bounded semantics differs

from the bounded semantics for ELTLK defined in [42] in the definition of the k-path that

allows to replace two separate bounded semantics for k-paths that are loops and for k-paths

that do not need to be loops, with one bounded semantics that is simpler, more elegant, and

results in a more efficient translation of the bounded model checking problem to the SAT

problem.

The propositional formula that encodes the bounded semantics for ELTLK is independent

of the type of the considered model, i.e., the encoding is the same for both the interpreted

systems and the interleaved interpreted systems. This encoding differs from the one defined

in [42] in the definiion of the looping condition, and in using an appropriately chosen subsets

of symbolic paths that are needed to encode subformulae of a formula in question.

We start with presenting the definition of the bounded semantics for ELTLK and showing

that the bounded and unbounded semantics are equivalent. Then, we show a translation of the

existential model checking problem for ELTLK to the propositional satisfiability problem.

Finally, we prove correctness and completeness of the translation to SAT.

3.2.1 Bounded semantics for ELTLK

Let M = (G, ι, T, {∼c}c∈A, V) be a model defined for either IIS or IS, and k ∈ IN a bound.

A k-path is a pair (ρ, l), also denoted by ρl , where 0 � l � k, and ρ is a finite sequence

ρ = (g0, . . . , gk) of states such that (g j , g j+1) ∈ T for each 0 � j < k. A k-path ρl is a loop

if l < k and ρ(k) = ρ(l). By Πk(g) we denote the set of all the k-paths ρl with ρ(0) = g. If

a k-path ρl is a loop, then it represents the run of the form uvω, where u = (ρ(0), . . . , ρ(l))

and v = (ρ(l + 1), . . . , ρ(k)). We denote this unique run by ̺(ρl).

To illustrate the notion of k-paths and loops, let us consider the following model shown in

Fig. 7. Observe that the pairs: ρ0 = ((g0, g1, g0, g2, g0), 0), ρ1 = ((g0, g1, g0, g2, g0), 1),

ρ2 = ((g0, g1, g0, g2, g0), 2), ρ3 = ((g0, g1, g0, g2, g0), 3), ρ4 = ((g0, g1, g0, g2, g0), 4)

are k-paths for k = 4. Moreover, only ρ0 and ρ2 are loops. Observe also that the k-path ρ2

represents the following path: (g0, g1)(g0, g2)
ω = (g0, g1, g0, g2, g0, g2, g0, g2, . . .).

As in the definition of the semantics one needs to define the satisfiability relation on

suffixes of k-paths, we denote by ρl [m] the k-path ρl together with the designated starting

point m, where 0 � m � k.

Definition 4 (Bounded semantics) Let M = (G, ι, T, {∼c}c∈A, V) be a model defined for

either IIS or IS, k � 0 a bound, and ϕ an ELTLK formula. The formula ϕ is k—true along

the k-path ρl (in symbols M, ρl |	k ϕ) iff M, ρl [0] |	k ϕ, where
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M, ρl [m] |	 true,

M, ρl [m] 
|	 f alse,

M, ρl [m] |	k p iff p ∈ V(ρ(m)),

M, ρl [m] |	k ¬p iff p 
∈ V(ρ(m)),

M, ρl [m] |	k ϕ ∨ ψ iff M, ρl [m] |	k ϕ or M, ρl [m] |	k ψ,

M, ρl [m] |	k ϕ ∧ ψ iff M, ρl [m] |	k ϕ and M, ρl [m] |	k ψ,

M, ρl [m] |	k Xϕ iff m < k and M, ρl [m + 1] |	k ϕ or

m = k and l < k and ρ(k) = ρ(l) and M, ρl [l + 1] |	k ϕ,

M, ρl [m] |	k ϕUψ iff (∃m � i � k)(M, ρl [i] |	k ψ and (∀m � j < i)M, ρl [ j] |	k ϕ)

or (ρ(k) = ρ(l) and l < m and (∃l < i < m)(M, ρl [i] |	k ψ

and (∀m� j � k)M, ρl [ j] |	k ϕ and (∀l� j < i)M, ρl [ j] |	k ϕ)),

M, ρl [m] |	k ϕRψ iff (∀min(l, m)� i � k)(ρ(k) = ρ(l) and l < k and M, ρl [i] |	k ψ) or

(∃m � i � k)(M, ρl [i] |	k ϕ and (∀m � j � i)M, ρl [ j] |	k ψ) or

(ρ(k) = ρ(l) and l < m and (∃l < i < m)(M, ρl [i] |	k ϕ and

(∀m � j � k)M, ρl [ j] |	k ψ and (∀l � j � i)M, ρl [ j] |	k ψ)),

M, ρl [m] |	k Kcϕ iff (∃ρ′
l ′

∈ Πk(ι))(∃0 � j � k)M, ρ′
l ′
[ j] |	k ϕ) and ρ(m) ∼c ρ′( j)),

M, ρl [m] |	k Y Γ ϕ iff (∃ρ′
l ′

∈ Πk(ι))(∃0 � j � k)(M, ρ′
l ′
[ j] |	k ϕ) and ρ(m) ∼Y

Γ ρ′( j)),

where Y ∈ {D, E, C}.

We use the following notation M |	∃
k ϕ iff M, ρl |	k ϕ for some ρl ∈ Πk(ι). The SAT-based

bounded model checking problem consists in finding out whether there exists k ∈ IN such

that M |	∃
k ϕ.

Let m be a formula evaluation position, k a bound, and p, q ∈ PV . An illustration of the

bounded semantics is shown in Figs. 8, 9, 10, 11, 12.

Fig. 8 Evaluation of formulae of the Next state type. The highlighted states are the same, i.e. ρl (l) = ρl (k)

Fig. 9 Evaluation of formulae of the Until type. The highlighted states are the same, i.e. ρl (l) = ρl (k)

Fig. 10 Evaluation of formulae of the Release type. The highlighted states are the same, i.e. ρl (l) = ρl (k)
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Fig. 11 Evaluation of formulae of the Release type. The highlighted states are the same, i.e. ρl (l) = ρl (k)

Fig. 12 Evaluation of existential epistemic formulae. The highlighted states are epistemically equivalent

3.2.2 Equivalence of the bounded and unbounded semantics

Now, we show that for some particular bound the bounded semantics is equivalent to the

unbounded semantics.

Lemma 2 Let M be a model, ϕ an ELTLK formula, k > 0 a bound, ρl a k-path in M, and

0 � m � k. The following implication holds: M, ρl [m] |	k ϕ implies

1. if ρl is not a loop, then M, π [m] |	 ϕ for each run π in M such that π[..k] = ρ.

2. if ρl is a loop, then M, ̺(ρl)[m] |	 ϕ.

Proof (Induction on the length of ϕ) The lemma follows directly for the propositional vari-

ables and their negations. Consider ϕ to be of the following form:

1. Let ϕ = ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ | ψ1Uψ2 | ψ1Rψ2. By induction hypothesis—see

Lemma 2.1. of [55].

2. ϕ = Kcψ . From M, ρl [m] |	k ϕ it follows that (∃ρ′
l ′

∈ Πk(ι))(∃0 � j � k) (M, ρ′
l ′
[ j] |	k

ψ and ρ(m) ∼c ρ′( j)). Assume that both ρl and ρ′
l ′

are not loops. By inductive hypothesis,

for every run π ′ in M such that π ′[..k] = ρ′, (∃0 � j � k)(M, π ′[ j] |	 ψ and ρ(m) ∼c

π ′( j)). Further, for every run π in M such that π [..k] = ρ, we have that π(m) ∼c ρ′( j).

Thus, for every run π in M such that π [..k] = ρ, M, π [m] |	 ϕ.

Now assume that ρ′
l ′

is not a loop and ρl is a loop. By inductive hypothesis, for every

run π ′ in M such that π ′[..k] = ρ′, (∃0 � j � k)(M, π ′[ j] |	 ψ and ρ(m) ∼c π ′( j)).

Further, observe that ̺(ρl)(m) = ρ(m), thus M, ̺(ρl)[m] |	 ϕ.

Now assume that both ρl and ρ′
l ′

are loops. By inductive hypothesis, (∃0 � j � k)

(M, ̺(ρ′
l ′
)[ j] |	 ψ and ρ(m) ∼c ̺(ρ′

l ′
)( j)). Further, observe that ̺(ρl)(m) = ρ(m),

thus M, ̺(ρl)[m] |	 ϕ.

Now assume that ρ′
l ′

is a loop, and ρl is not a loop. By inductive hypothesis,

(∃0 � j � k)(M, ̺(ρ′
l ′
)[ j] |	 ψ and ρ(m) ∼c ̺(ρ′

l ′
)( j)). Further, for every run π in

M such that π [..k] = ρ, we have that π(m) ∼c ̺(ρ′
l ′
)( j). Thus, for every run π in M

such that π [..k] = ρ, M, π [m] |	 ϕ.

3. Let ϕ = Y Γ ψ , where Y ∈ {D, E, C}. These cases can be proven analogously to the

case 2.
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Lemma 3 (Theorem 3.1 of [5]) Let M be a model, α an LTL formula, and ρ a run. Then, the

following implication holds: M, ρ |	 α implies that for some k � 0 and 0 � l � k, M, πl |	k

α with ρ[..k] = π .

Lemma 4 Let M be a model, α an LTL formula, Y ∈ {Kc, DΓ , EΓ , CΓ }, and ρ a run.

Then, the following implication holds: M, ρ |	 Yα implies that for some k � 0 and

0 � l � k, M, πl |	k Yα with ρ[..k] = π .

Proof Let X j denote the next-time operator applied j times, i.e., X j = X . . . X︸ ︷︷ ︸
j

.

1. Let Y = Kc. Then M, ρ |	 Kcα iff M, ρ[0] |	 Kcα iff (∃ρ′ ∈ Π(ι)) (∃ j � 0)[ρ′( j) ∼c

ρ(0) and M, ρ′[ j] |	 α]. Since ρ′( j) is reachable from the initial state of M , the checking

of M, ρ′[ j] |	 α is equivalent to the checking of M, ρ′[0] |	 X jα. Now since X jα is a

pure LTL formula, by Lemma 3 we have that for some k � 0 and 0 � l � k, M, π ′
l [0] |	k

X jα with ρ′[..k] = π ′. This implies that M, π ′
l [ j] |	k α with ρ′[..k] = π ′, for some

k � 0 and 0 � l � k. Now, since ρ′( j) ∼c ρ(0), we have π ′( j) ∼c π(0). Thus, by the

bounded semantics we have that for some k � 0 and 0 � l � k, M, πl |	k Kcα with ρ[..k]

= π .

2. Let Y = DΓ . Then M, ρ |	 DΓ α iff M, ρ[0] |	 DΓ α iff (∃ρ′ ∈ Π(ι))(∃ j � 0) [ρ′( j) ∼D
Γ

ρ(0) and M, ρ′[ j] |	 α]. Since ρ′( j) is reachable from the initial state of M , the checking

of M, ρ′[ j] |	 α is equivalent to the checking of M, ρ′[0] |	 X jα. Now since X jα is a

pure LTL formula, by Lemma 3 we have that for some k � 0 and 0 � l � k, M, π ′
l [0] |	k

X jα with ρ′[..k] = π ′. This implies that M, π ′
l [ j] |	k α with ρ′[..k] = π ′, for some

k � 0 and 0 � l � k. Now, since ρ′( j) ∼D
Γ ρ(0), we have π ′( j) ∼D

Γ π(0). Thus, by the

bounded semantics we have for some k � 0 and 0 � l � k, M, ρl |	k DΓ α with ρ[..k]

= π .

3. Let Y = EΓ . Since EΓ α =
∨

c∈Γ Kcα, the lemma follows from the case 1.

4. Let Y = CΓ . Since CΓ α =
∨n

i=1(EΓ )iα, where n is the size of the model M , the lemma

follows from the case 3.

Lemma 5 Let M be a model, ϕ an ELTLK formula, and ρ a run. Then, the following

implication holds: M, ρ |	 ϕ implies that for some k � 0 and 0 � l � k, M, πl |	k ϕ with

ρ[..k] = π .

Proof (Induction on the length of ϕ) The lemma follows directly for the propositional vari-

ables and their negations. Assume that the hypothesis holds for all the proper subformulas

of ϕ and consider ϕ to be of the following form:

1. ϕ = ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ | ψ1Uψ2 | ψ1Rψ2. Straightforward by the induction

hypothesis and Lemma 3.

2. Let ϕ = Yα, and Y, Y1, . . . , Yn, Z ∈ {Kc, DΓ , EΓ , CΓ }. Moreover, let Y1α1, . . . , Ynαn

be the list of all “top level” proper Y -subformulas of α (i.e., each Yiαi is a subformula of

Yα, but it is not a subformula of any subformula Zβ of Yα, where Zβ is different from

Yα and from Yαi for i = 1, . . . , n).

If this list is empty, then α is a “pure” LTL formula with no nested epistemic modal-

ities. Hence, by Lemma 4 we have M, ρ |	 ϕ implies that for some k � 0 and

0 � l � k, M, πl |	k ϕ with ρ[..k] = π .

Otherwise, introduce for each Yiαi a new proposition qi , where i = 1, . . . , n. By Lemma 1,

we can augment with qi the labelling of each state s of M initialising some run along

which the epistemic formula Yiαi holds, and then translate the formula α to the formula
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α′, which instead of each subformula Yiαi contains adequate propositions qi . Therefore,

we obtain “pure” LTL formula. Hence, by Lemma 4 we have M, ρ |	 ϕ implies that for

some k � 0 and 0 � l � k, M, πl |	k ϕ with ρ[..k] = π .

The following lemma states that if we take all possible bounds into account, then the

bounded and unbounded semantics are equivalent.

Lemma 6 Let M be a model, ϕ an ELTLK formula. Then the following equivalence holds:

M |	∃ ϕ iff there exists k � 0 such that M |	∃
k ϕ.

Proof (“⇐”) Follows directly from Lemma 2. (“⇒”) Follows directly from Lemma 5.

3.2.3 Translation to the propositional satisfiability problem

Let M = (G, ι, T, {∼c}c∈A, V) be a model generated by IS or IIS—the encoding of global

states of M is independent of the kind of considered interpreted system—and k ∈ IN be a

bound. Since the set of global states of M is finite, every element g = (ℓ1, . . . , ℓn, ℓe) of G

can be encoded as a bit vector of some length r . Then, each state of M can be represented by

a valuation of a vector w = (w1, . . . ,wr ) (called a symbolic state) of different propositional

variables called state variables; further we assume that SV denotes the set of all the state

variables, SV (w) denotes the set of all the state variables occurring in the symbolic state w,

and Ic denote the set of indexes of state variables that represent local states of agent c.

Example 1 Let SV = {w1,w2, . . .} be an infinite set of state variables. Consider the FTC

system shown on Fig. 1 for two trains. A propositional encoding of all the local states of the

two agents representing trains and an agent representing Controller is the following:

T rain 1 T rain 2

State Bit2 Bit1 Formula State Bit4 Bit3 Formula

Away1 0 0 ¬w1 ∧ ¬w2 Away2 0 0 ¬w3 ∧ ¬w4
Wait1 1 0 ¬w1 ∧ w2 Wait2 1 0 ¬w3 ∧ w4
T unnel1 0 1 w1 ∧ ¬w2 T unnel2 0 1 w3 ∧ ¬w4

Controller

Location Bit5 Formula

Green 0 ¬w5
Red 1 w5

Thus, given the above, it is easy to see that each state of the model of the FTC system can

be represented by a valuation of a symbolic state w = (w1, . . . ,w5).

Let N V denote the set of propositional variables, called the natural variables, such that

SV ∩ N V = ∅. Moreover, let u = (u1, . . . ,ut ) be a vector of natural variables of some

length t , which we call a symbolic number, and N V (u) denote the set of all the natural

variables occurring in u. Further, let PV = SV ∪ N V and V : PV → {0, 1} be a valuation

of propositional variables (a valuation for short). Each valuation induces the functions S :
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SV r → {0, 1}r and J : N V t → IN defined in the following way:

S((w1, . . . ,wr )) = (V (w1), . . . , V (wr )) (1)

J((u1, . . . ,ut )) =

t∑

i=1

V (ui ) · 2i−1 (2)

Now let w and w′ be two symbolic states such that SV (w) ∩ SV (w′) = ∅, and u

be a symbolic number. We recall the definitions of the following auxiliary propositional

formulae:

– Ig(w) : =
∧r

i=1 li t (g[i],wi ), where li t : {0, 1} × PV → PV ∪ {¬q | q ∈ PV } is

a function defined as: li t (1, q) = q and li t (0, q) = ¬q . This formula, defined over

SV (w), encodes the state g of the model M .

Example 2 Consider the FTC system shown on Fig. 1 for two trains. Then, the propositional

formula Iι(w), which encodes the initial global state of the system, is defined as follows:

Iι(w) = ¬w1 ∧ ¬w2 ∧ ¬w3 ∧ ¬w4 ∧ ¬w5.

– H(w,w′) : =
∧r

i=1 wi ⇔ w
′
i . This formula, defined over SV (w) ∪ SV (w′), encodes

equivalence between two symbolic states. It represent the fact that the symbolic states w

and w′ represent the same states.

– Hc(w,w′) : =
∧

i∈Ic
wi ⇔ w

′
i . This formula, defined over SV (w) ∪ SV (w′), represent

the fact that the local states of agent c are the same in the symbolic states w and w′.

– p(w) is a formula over SV (w) that is true for a valuation V iff p ∈ V(S(w)). This

formula encodes a set of the states of M in which proposition variable p ∈ PV holds.

– R(w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation V iff

(S(w), S(w′)) ∈ T . This formula encodes the transition relation of M . The formal

definition of this formula is different for M which is generated for IS and for M which

is generated for IIS.

– B∼

j (u) is a formula over N V (u) that is true for a valuation V iff j ∼ J(u), where

∼∈ {<,>, �,=, �}.

Let M = (G, ι, T, {∼c}c∈A, V) be a model, ϕ an ELTLK formula, and k � 0 a bound. We

translate the problem of checking whether M is a model for ϕ to the problem of checking

the satisfiability of the following propositional formula:

[M, ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k (3)

In order to define the formula [Mϕ,ι]k we need to specify the number of k-paths of the

model M that are sufficient to validate ϕ. To calculate the number, we need the following

auxiliary function fk : ELTLK → IN:

– fk(true) = fk( f alse) = fk(p) = fk(¬p) = 0, if p ∈ PV ,

– fk(ϕ ∨ ψ) = max{ fk(ϕ), fk(ψ)},

– fk(ϕ ∧ ψ) = fk(ϕ) + fk(ψ),

– fk(Xϕ) = fk(ϕ),

– fk(ϕUψ) = k · fk(ϕ) + fk(ψ),

– fk(ϕRψ) = (k + 1) · fk(ψ) + fk(ϕ),

– fk(Yϕ) = fk(ϕ) + 1, for Y ∈ {Kc, DΓ , EΓ },

– fk(CΓ ϕ) = fk(ϕ) + k.
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(a) (b) (c)

Fig. 13 Illustration of the function fk for k = 1 and the formula ϕ = GFKc p. In Figure b we assume that

α = Kc p. a A model M . b Three different 1-paths of M . c Two different 1-paths of M

Note that CΓ ϕ =
∨k

i=1(EΓ )iϕ and fk((EΓ )1ϕ) = fk(EΓ ϕ) = fk(ϕ)+1. It is easy to show,

by induction on i , that fk((EΓ )iϕ) = fk(ϕ) + i , for i ∈ {1, . . . , k}. Therefore, fk(CΓ ϕ) =

fk(
∨k

i=1(EΓ )iϕ) = max{ fk((EΓ )1ϕ), . . . , fk((EΓ )kϕ)} = fk((EΓ )kϕ) = fk(ϕ) + k.

Now since in the BMC method we deal with the existential validity (|	∃), the number of

k-paths sufficient to validate ϕ is given by the function f̂k : ELTLK → IN that is defined as

f̂k(ϕ) = fk(ϕ) + 1.

Example 3 Let p ∈ PV, k be a bound. Now we calculate the number of k-paths that are

sufficient to validate different ELTLK formulae.

– Let ϕ = F p. Then, f̂k(F p) = fk(F p) + 1 = fk(p) + 1 = 1; note that Fα = trueUα.

– Letϕ = GF p. Then, f̂k(GF p) = fk(GF p)+1 = (k+1)· fk(F p)+1 = (k+1)· fk(p)+1 =

1; note that Gα = f alseRα.

– Let ϕ = GFKcp. Then, f̂k(GFKcp) = fk(GFKcp) + 1 = (k + 1) · fk(FKcp) + 1

= (k + 1) · fk(Kcp) + 1 = (k + 1) · ( fk(p) + 1) + 1 = (k + 1) · 1 + 1 = k + 2.

An example of a model and a witness for the formula is shown on Fig. 13. Observe that

while the value f̂1(ϕ) is 3, and the witness for ϕ can be of the form shown on Fig. 13b,

there is a witness for ϕ which consists of two 1-paths only—see Fig. 13c. Thus, one can

observe that the function f̂k only gives an upper bound on the number of k-paths that

form a witness for an ELTLK formula.

Let W = {SV (wi, j ) | 0 � i � k and 1 � j � f̂k(ϕ)} ∪ {N V (u j ) | 1 � j � f̂k(ϕ)} be a set

of propositional variables. The propositional formula [Mϕ,ι]k is defined over the set W in

the following way:

[Mϕ,ι]k := Iι(w0,0) ∧

f̂k (ϕ)∨

j=1

H(w0,0, w0, j ) ∧

f̂k (ϕ)∧

j=1

k−1∧

i=0

R(wi, j , wi+1, j ) ∧

f̂k (ϕ)∧

j=1

k∨

l=0

B=
l (u j ) (4)

where wi, j and u j are, respectively, symbolic states and a symbolic number for 0 � i � k and

1 � j � f̂k(ϕ).
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Note that Formula 4 encodes f̂k(ϕ) valid k-paths of the model M that start at the initial state

ι. In particular, the formula defines f̂k(ϕ) symbolic k-paths such that the j-th symbolic k-path

π j is of the form ((w0, j , . . . , wk, j ), u j ), where wi, j is a symbolic state for 1 � j � f̂k(ϕ)

and 0 � i � k, and u j is a symbolic number for 1 � j � f̂k(ϕ).

The next step is a translation of an ELTLK formula ϕ to a propositional formula

[ϕ]M,k := [ϕ]
[0,1,Fk (ϕ)]
k (5)

where Fk(ϕ) = { j ∈ IN | 1 � j � f̂k(ϕ)}, and [ϕ]
[m,n,A]
k denotes the translation of ϕ along

the n-th symbolic path π
m
n with the starting point m by using the set A ⊆ Fk(ϕ).

For every ELTLK formula ϕ the function f̂k determines how many symbolic k-paths are

needed for translating the formula ϕ. Given a formula ϕ and a set A of k-paths such that

|A| = f̂k(ϕ), we divide the set A into subsets needed for translating the subformulae of

ϕ. To accomplish this goal we need some auxiliary functions that were defined in [55]. We

recall the definitions of these functions. First, the relation ≺ is defined on the power set

of IN as follows: A ≺ B iff for all natural numbers x and y, if x ∈ A and y ∈ B, then

x < y.

Now, let A ⊂ IN be a finite nonempty set, and n, d ∈ IN, where d � |A|. Then,

– gl(A, d) denotes the subset B of A such that |B| = d and B ≺ A \ B, e.g.,

gl({4, 5, 6, 7, 8}, 3) = {4, 5, 6}.

– gr (A, d) denotes the subset C of A such that |C | = d and A \ C ≺ C , e.g.,

gr ({4, 5, 6, 7, 8}, 3) = {6, 7, 8}.

– gs(A) denotes the set A \ {min(A)}, e.g., gs({4, 5, 6, 7, 8}) = {5, 6, 7, 8}.

– if n divides |A| − d , then hp(A, d, n) denotes the sequence (B0, . . . , Bn) of subsets of

A such that
⋃n

j=0 B j = A, |B0| = . . . = |Bn−1|, |Bn | = d , and Bi ≺ B j for every

0 � i < j � n.

Now let hU
k (A, d) := hp(A, d, k) and hR

k (A, d) := hp(A, d, k+1). Note that if hU
k (A, d) =

(B0, . . . , Bk), then hU
k (A, d)( j) denotes the set B j , for every 0 � j � k. Similarly, if

hR
k (A, d) = (B0, . . . , Bk+1), then hR

k (A, d)( j) denotes the set B j , for every 0 � j �

k + 1.

For example, if A={1, 2, 3, 4, 5, 6}, then hU
3 (A, 0)=({1, 2}, {3, 4}, {5, 6},∅), hU

3 (A, 3)

= ({1}, {2}, {3}, {4, 5, 6}), hU
3 (A, 6) = (∅,∅,∅, {1, 2, 3, 4, 5, 6}), hU

3 (A, d) is unde-

fined for d ∈ {0, . . . , 7} \ {0, 3, 6}.

Next, hR
4 (A, 2) = ({1}, {2}, {3}, {4}, {5, 6}), hR

4 (A, 6) = (∅,∅,∅,∅, {1, 2, 3, 4, 5, 6}),

and hR
4 (A, d) is undefined for d ∈ {0, . . . , 7} \ {2, 6}.

The functions gl and gr are used in the translation of the formulae with the main connec-

tive being either conjunction or disjunction: for a given ELTLK formula ϕ ∧ ψ , if the set

A is used to translate this formula, then the set gl(A, fk(ϕ)) is used to translate the subfor-

mula ϕ and the set gr (A, fk(ψ)) is used to translate the subformula ψ ; for a given ELTLK

formula ϕ ∨ ψ , if the set A is used to translate this formula, then the set gl(A, fk(ϕ))

is used to translate the subformula ϕ and the set gl(A, fk(ψ)) is used to translate the

subformula ψ .

The function gs is used in the translation of the formulae with the main connective Q ∈

{Kc, DΓ , EΓ }: for a given ELTLK formula Qϕ, if the set A is to be used to translate this

formula, then the path of the number min(A) is used to translate the operator Q and the set

gs(A) is used to translate the subformula ϕ.

The function hU
k is used in the translation of subformulae of the form ϕUψ : if the set A is

to be used to translate the subformula ϕUψ at the symbolic k-path πn (with the starting point

m), then for every j such that m � j � k, the set hU
k (A, fk(ψ))(k) is used to translate the
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formula ψ along the symbolic path πn with starting point j ; moreover, for every i such that

m � i < j , the set hU
k (A, fk(ψ))(i) is used to translate the formula ϕ along the symbolic path

πn with starting point i . Notice that if k does not divide |A|− d , then hU
k (A, d) is undefined.

However, for every set A such that |A| = fk(ϕUψ), it is clear from the definition of fk that

k divides |A| − fk(ψ).

The function hR
k is used in the translation of subformulae of the form ϕRψ : if the set A

is used to translate the subformula ϕRψ along a symbolic k-path πn (with the starting point

m), then for every j such that m � j � k, the set hR
k (A, fk(ϕ))(k + 1) is used to translate

the formula ϕ along the symbolic paths πn with starting point j ; moreover, for every i such

that m � i � j , the set hR
k (A, fk(ϕ))(i) is used to translate the formula ψ along the symbolic

path πn with starting point i . Notice that if k + 1 does not divide |A| − 1, then hR
k (A, p) is

undefined. However, for every set A such that |A| = fk(ϕRψ), it is clear from the definition

of fk that k + 1 divides |A| − fk(ϕ).

Definition 5 (Translation of the ELTLK formulae) Let M be a model, ϕ an ELTLK

formula, and k � 0 a bound. We define inductively the translation of ϕ over a path

number n ∈ Fk(ϕ) starting at the symbolic state wm,n as shown below, where n′ =

min(A), hU
k = hU

k (A, fk(ψ2)), and hR
k = hR

k (A, fk(ψ1)). We assume that Ll
k(πn) :

=B=
l (un) ∧ H(wk,n, wl,n).

[true]
[m,n,A]
k : = true,

[ f alse]
[m,n,A]
k : = f alse,

[p]
[m,n,A]
k : = p(wm,n),

[¬p]
[m,n,A]
k : = ¬p(wm,n),

[ψ1 ∧ ψ2]
[m,n,A]
k : = [ψ1]

[m,n,gl (A, fk (ψ1))]
k ∧ [ψ2]

[m,n,gr (A, fk (ψ2))]
k ,

[ψ1 ∨ ψ2]
[m,n,A]
k : = [ψ1]

[m,n,gl (A, fk (ψ1))]
k ∨ [ψ2]

[m,n,gl (A, fk (ψ2))]
k ,

[Xψ]
[m,n,A]
k : =

{
[ψ]

[m+1,n,A]
k , if m < k∨k−1

l=0 (Ll
k(πn) ∧ [ψ]

[l+1,n,A]
k ), if m = k

[ψ1Uψ2]
[m,n,A]
k : =

∨k
j=m([ψ2]

[ j,n,hU
k (k)]

k ∧
∧ j−1

i=m[ψ1]
[i,n,hU

k (i)]

k )

∨(
∨m−1

l=0 (Ll
k(πn)) ∧

∨m−1
j=0 (B>

j (un) ∧ [ψ2]
[ j,n,hU

k (k)]

k

∧
∧ j−1

i=0 (B>
i (un) → [ψ1]

[i,n,hU
k (i)]

k ) ∧
∧k

i=m[ψ1]
[i,n,hU

k (i)]

k )),

[ψ1Rψ2)]
[m,n,A]
k : =

∨k
j=m([ψ1]

[ j,n,hR
k (k+1)]

k ∧
∧ j

i=m[ψ2]
[i,n,hR

k (i)]

k )

∨(
∨m−1

l=0 (Ll
k(πn)) ∧

∨m
j=0(B

>
j (un) ∧ [ψ1]

[ j,n,hR
k (k+1)]

k

∧
∧ j−1

i=0 (B>
i (un) → [ψ2]

[i,n,hR
k (i)]

k ) ∧
∧k

i=m[ψ2]
[i,n,hR

k (i)]

k ))

∨(
∨k−1

l=0 (Ll
k(πn)) ∧

∧m−1
j=0 (B

�

j (un) → [ψ2]
[ j,n,hR

k ( j)]

k )

∧
∧k

j=m[ψ2]
[ j,n,hR

k ( j)]

k ),

[Kcψ]
[m,n,A]

k : = Iι(w0,n′) ∧
∨k

j=0([ψ]
[ j,n′,gs (A)]
k ∧ Hc(wm,n, w j,n′)),

[DΓ ψ]
[m,n,A]

k : = Iι(w0,n′) ∧
∨k

j=0([ψ]
[ j,n′,gs (A)]
k ∧

∧
c∈Γ Hc(wm,n, w j,n′)),

[EΓ ψ]
[m,n,A]

k : = Iι(w0,n′) ∧
∨k

j=0([ψ]
[ j,n′,gs (A)]
k ∧

∨
c∈Γ Hc(wm,n, w j,n′)),

[CΓ ψ]
[m,n,A]

k : = [
∨k

j=1(EΓ ) jψ]
[m,n,A]
k .

For representing the propositional formula [M, ϕ]k reduced Boolean circuits (RBC)

[1] are used. An RBC represents subformulae of [M, ϕ]k by fresh propositions such that
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each two identical subformulae correspond to the same proposition.1 Following van der

Meyden at al. [23], instead of using RBCs, we could directly encode [M, ϕ]k in such a

way that each subformula ψ of [M, ϕ]k occurring within the scope of a k-element dis-

junction or conjunction is replaced with a propositional variable pψ and the reduced for-

mula [M, ϕ]k is conjuncted with the implication pψ ⇒ ψ . However, in this case our

method, as the one proposed in [23], would not be complete. Nonetheless, the com-

pleteness can be achieved, by using pψ ⇔ ψ instead of pψ ⇒ ψ . This however

can give a formula of an exponential size during the transformation into clausal normal

form. 2

Our encoding of the ELTLK formulae is defined recursively over the structure of an

ELTLK formula ϕ, over the current position n of the m-th symbolic k-path, and over the set

A of symbolic k-paths, which is initially equal to Fk(ϕ). Next, our encoding does not translate

looping and non-looping witnesses separately, but it combines both of them. Further, it is

parameterised by the bound k, the set of symbolic k-paths, and closely follows the bounded

semantics of Def. 4. Therefore, for fixed n, m, k and A, each subformula ψ of ϕ requires

the constraints of size O(k · fk(ϕ)) using the encoding of ψ at various positions. Moreover,

since the encoding of a subformula ψ is only dependent on m, n, k, and A, and, multiple

occurrences of the encoding of ψ over the same set of parameters can be shared, the overall

size can be bounded by O(|ϕ| · k · fk(ϕ)). Further the size of the formula [M, ϕ]k is bounded

by O(|T | · k · fk(ϕ) + |ϕ| · k · fk(ϕ)).

3.2.4 Correctness and completeness of the translation

The lemmas below state the correctness and the completeness of the presented translation.

Now, let α be an ELTLK formula. For every ELTLK subformula ϕ of α, we denote by

[ϕ]
[α,m,n,A]
k the propositional formula

[M]
Fk (α)
k ∧ [ϕ]

[m,n,A]
k (6)

where [M]
Fk (α)
k : =

∧
j∈Fk (α)

∧k−1
i=0 R(wi, j , wi+1, j ) ∧

∧
j∈Fk (α)

∨k
l=0 B=

l (u j ).

In the next two lemmas we use the following auxiliary notation. By V � ξ we mean that

the valuation V satisfies the propositional formula ξ . Moreover, we write gi, j instead of

S(wi, j ), and l j instead of J(u j ).

Lemma 7 (Correctness of the translation) Let M be a model, α an ELTLK formula, and

k ∈ IN. For every subformula ϕ of the formula α, every (m, n) ∈ {0, . . . , k} × Fk(α), every

A ⊆ Fk(α) \ {n} such that |A| = fk(ϕ), and every valuation V , the following condition

holds: V � [ϕ]
[α,m,n,A]
k implies M, ((g0,n, . . . , gk,n), ln)[m] |	k ϕ.

Proof Let n ∈ Fk(α), A be a set such that A ⊆ Fk(α)\ {n} and |A| = fk(ϕ), m be a natural

number such that 0 � m � k, ρl denote the k-path ((g0,n, . . . , gk,n), ln), and V a valuation.

Suppose that V � [ϕ]
[α,m,n,A]
k and consider the following cases:

1 We would like to stress that we have used the RBC structure in our BMC implementations since 2003 [50],

although we have not stated this explicitly in our previous works.

2 Let α be a formula. Its clausal form is a set of clauses which is satisfiable if and only if α is satisfiable.
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1. ϕ ∈ {true, f alse}. The thesis of the lemma is obvious in this case.

2. ϕ = p, where p ∈ PV . Then, V � [p]
[α,m,n,A]
k ⇐⇒ V � p(wm,n) ⇐⇒ p ∈

V(gm,n) ⇐⇒ M, ρl [m] |	k p.

3. ϕ = ¬p, where p ∈ PV . Then, V � [¬p]
[α,m,n,A]
k ⇐⇒ V � ¬p(wm,n) ⇐⇒ p /∈

V(gm,n) ⇐⇒ M, ρl [m] |	k ¬p.

4. ϕ = ψ1 ∧ ψ2. Let B = gl(A, fk(ψ1)) and C = gr (A, fk(ψ2)). From V � [ψ1 ∧

ψ2]
[α,m,n,A]
k , we get V � [ψ1]

[α,m,n,B]
k and V � [ψ2]

[α,m,n,C]
k . By inductive hypotheses,

M, ρl [m] |	k ψ1 and M, ρl [m] |	k ψ2. Thus M, ρl [m] |	k ψ1 ∧ ψ2.

5. ϕ = ψ1 ∨ ψ2. Let B = gl(A, fk(ψ1)) and C = gl(A, fk(ψ2)). From V � [ψ1 ∨

ψ2]
[α,m,n,A]
k , we get V � [ψ1]

[α,m,n,B]
k or V � [ψ2]

[α,m,n,C]
k . By inductive hypotheses,

M, ρl [m] |	k ψ1 or M, ρl [m] |	k ψ2. Thus M, ρl [m] |	k ψ1 ∨ ψ2.

6. Let ϕ = Xψ | ψ1Uψ2 | ψ1Rψ2 with p ∈ PV . See Lemma 3.1. of [55].

7. Let ϕ = Kcψ . Let n′ = min(A), and ρ̃l ′ denote the k-path ((g0,n′ , . . . , gk,n′), ln′). By

the definition of the translation we have that V � [Kcψ]
[α,m,n,A]
k implies V � Iι(w0,n′) ∧

∨k
j=0([ψ]

[α, j,n′,gs (A)]
k ∧ Hc(wm,n, w j,n′)). Since V � Hc(wm,n, w j,n′) we have gm,n ∼c

g′
j,n′ , for some j ∈ {0, . . . , k}. Therefore, by inductive hypotheses we get (∃0 � j � k)

(M, ρ̃l ′ [ j] |	k ψ and gm,n ∼c g′
j,n′). Thus we have M, ((g0,n, . . . , gk,n), ln)[m] |	k

Kcψ .

8. Let ϕ = Y Γ ψ , where Y ∈ {D, E, C}. These cases can be proven analogously to the

case 7.

Let B and C be two finite sets of indices. Then, by V ar(B) we denote the set of all the state

variables appearing in all the symbolic states of all the symbolic k-paths whose indices are

taken from the set B. Moreover, for every valuation V and every set of indices B, by V ↑ B

we denote the restriction of the valuation V to the set V ar(B). Notice that if B ∩ C = ∅,

then V ar(B) ∩ V ar(C) = ∅. This property is used in the proof of the following lemma.

Lemma 8 (Completeness of the translation) Let M be a model, k ∈ IN, and α an ELTLK

formula such that fk(Eα) > 0. For every subformula ϕ of the formula α, every (m, n) ∈

{(0, 0)} ∪ {0, . . . , k} × Fk(α), every A ⊆ Fk(α) \ {n} such that |A| = fk(ϕ), and every

k-path ρl , the following condition holds: M, ρl [m] |	k ϕ implies that there exists a valuation

V such that ρl = ((g0,n, . . . , gk,n), ln) and V � [ϕ]
[α,m,n,A]
k .

Proof First, note that given an ELTLK formula α, and natural numbers k, m, n with 0 �

m � k and n ∈ Fk(α), there exists a valuation V such V � [M]
Fk (α)
k . This is because M has

no terminal states. Now we proceed by induction on the complexity of ϕ.

Let n ∈ Fk(α), A be a set such that A ⊆ Fk(α) \ {n} and |A| = fk(ϕ), ρl be a k-path

in M , and m be a natural number such that 0 � m � k. Suppose that M, ρl [m] |	k ϕ and

consider the following cases:

1. Let ϕ = p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ | ψ1Uψ2 | ψ1Rψ2 with p ∈ PV . See the

proof of Lemma 3.3. of [55].

2. Let ϕ = Kcψ . Since M, ρl [m] |	k Kcψ , we have that (∃ρ′
l ′

∈ Πk(ι))(∃0 � j � k)

(M, ρ′
l ′
[ j] |	k ψ) and ρ(m) ∼c ρ′( j)). Let n′ = min(A) and B = gs(A). By

the inductive hypothesis and the definition of the formula Hc, there exists a valua-

tion V ′ such that V ′ � [M]
Fk (α)
k and V ′ � [ψ]

[ j,n′,B]
k ∧ Hc(wm,n, w j,n′) for some j ∈

{0, . . . , k}. Hence we have V ′ �
∨k

j=0([ψ]
[ j,n′,B]
k ∧ Hc(wm,n, w j,n′)). Further, since

ρ′
l ′

∈ Πk(ι), ρ′
l ′
(0) = ι. Thus, by the definition of the formula I , we get that V ′ � Iι(w0,n′).
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Therefore we have V ′ � Iι(w0,n′) ∧
∨k

j=0([ψ]
[ j,n′,B]
k ∧ Hc(wm,n, w j,n′)), which implies

that V ′ � [Kcψ]
[m,n,A]

k . Since n′ /∈ B and n /∈ A, there exists a valuation V such that

V ↑ B = V ′ ↑ B and moreover V � [M]
Fk (α)
k and V � [Kcψ]

[m,n,A]

k . Therefore we get

V � [Kcψ]
[α,m,n,A]
k .

3. Let ϕ = Y Γ ψ , where Y ∈ {D, E, C}. These cases can be proven analogously to the case

2.

The correctness of the SAT-based translation scheme for ELTLK is guaranteed by the

following theorem.

Theorem 2 Let M be a model, and ϕ an ELTLK formula. Then for every k ∈ IN, M |	∃
k ϕ

if, and only if, the propositional formula [M, ϕ]k is satisfiable.

Proof (	⇒) Let k ∈ IN and M, ρl |	k ϕ for some ρl ∈ Πk(ι). By Lemma 8 it follows that

there exists a valuation V such that ρl = ((g0,0, . . . , gk,0), l0) with S(w0,0) = g0,0 = ι and

V � [ϕ]
[ϕ,0,0,Fk (ϕ)]
k . Hence, V � I (w0,0) ∧ [M]

Fk (ϕ)
k ∧ [ϕ]

[0,0,Fk (ϕ)]
k . Thus V � [Mϕ,ι]k .

(⇐	) Let k ∈ IN and [Mϕ,ι]k be satisfiable. It means that there exists a valuation V such

that V � [Mϕ,ι]k . So, V � I (w0,0) and V � [M]
Fk (ϕ)
k ∧ [ϕ]

[0,0,Fk (ϕ)]
k . Hence, by Lemma 7 it

follows that M, ((g0,0, . . . , gk,0), l0) |	k ϕ and S(w0,0) = g0,0 = ι. Thus M |	∃
k ϕ.

4 Experimental results

In this section we experimentally evaluate the performance of our four different BMC encod-

ings: two SAT-based BMC (over the IIS and IS semantics) and two BDD-based BMC (over

the IIS and IS semantics), all implemented as extensions of our tool Verics [28], so the

inputs to the four algorithms are the same. We compare our experimental results with these

of the MCK tool (version 0.5.1),3 the only existing tool that is suitable with respect to the

input formalism (i.e., interpreted systems) and checked properties (i.e., ELTLK). We have

done our best to compare our BMC approaches and the SAT-based BMC module of MCK

on the same models. We would like to point out that the manual for MCK states that the

tool supports SAT-based BMC for ECTL∗K (i.e., ECTL∗ augmented to include epistemic

components). Unfortunately, no theory behind this implementation has ever been published.

We are aware of the paper [23], which describes SAT-based BMC for ECTLK, but it does not

discuss how this approach can be extended to ECTL∗K. Therefore, we are unable to com-

pare our SAT-based BMC algorithms for ELTLK with the one for ECTL∗K implemented in

MCK.

We have conducted the experiments using two classical multi-agent protocols: the (faulty)

train controller system and the dining cryptographers protocol, and one benchmark that is

not yet so popular in the multi-agent community, i.e., the (faulty) generic pipeline paradigm.

However, we would like to point out that (F)GPP is a very useful and scalable example, which

has a potential to become a standard benchmark in this community. Further, we specify each

property for the considered benchmarks in the universal form by an LTLK formula, for which

we verify the corresponding counterexample formula, i.e., the negated universal formula in

ELTLK which is interpreted existentially. Moreover, for every specification given, there exists

3 http://cgi.cse.unsw.edu.au/~mck/
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Table 3 The FTC system with n trains

Verics, SAT-BMC Verics, BDD-BMC MCK, SAT-BMC

Formula IS-k IIS-k f̂k IS-k IIS-k IS

ϕ1 2 4 2 2 4 3

ϕ2 2 4 2 2 4 3

a counterexample, i.e., the ELTLK formula specifying the counterexample holds in the model

of the benchmark.

We have computed our experimental results on a computer with Intel Xeon 2 GHz proces-

sor and 4 GB of RAM, running Linux 2.6, with the default limits of 2 GB of memory and 2000

seconds. Moreover, similarly to the MCK tool, we used PicoSAT [2] to test the satisfiability

of the propositional formulae generated by our SAT-based BMC encodings. Our SAT-based

implementation uses PicoSAT in version 957. The implementation of the BDD-based method

employs the CUDD 2.5.0 [44] library for operations on BDDs.

The first benchmark we have considered is the faulty train controller system (FTC) – see

Sect. 2.4 for the description of the model. This system is scaled according to the number

of trains (agents), i.e., the problem parameter n is the number of trains. The specifications

(universal formulae) we consider are as follows:

– ϕ1 = G(I nT unnel1 → KT rain1(
∧n

i=2 ¬I nT unneli )) – it expresses that whenever train

one is in the tunnel, it knows that no other train is in the tunnel,

– ϕ2 = G(KT rain1

∧n
i=1, j=2,i< j ¬(I nT unneli ∧ I nT unnel j )) – it represents that the trains

are aware of the mutually exclusive access to the tunnel.

The size of the reachable state space of the FTC system is 3·(n+1)·2n−2, for n � 2. The sizes

of the counterexamples for the above formulae, and for all our BMC methods, as well as for

MCK are shown in Table 3.

We would like to point out that in the case of the SAT-based BMC by size we mean the

length of the k-path in the counterexample (i.e., the value k) multiplied by the number of

k-paths (i.e., the value of the function f̂k). In the case of the BDD-based BMC by size we

mean the number of full iterations needed to find the counterexample. In Tables 3, 4, 5 we

denote by IS-k and IIS-k, respectively, the minimal value of the bound in BMC that yields a

counterexample for the IS and IIS semantics.

The second benchmark we have considered is the faulty generic pipeline paradigm

(FGPP)—see Sect. 2.4 for the description of the model. This system is scaled according

to the number of its Nodes (agents), i.e., the problem parameter n is the number of Nodes.

The specifications (universal formulae) we consider are as follows:

– ϕ1 = G(Prod Send → KC KP Cons Ready)—it states that if Producer produces a com-

modity, then Consumer knows that Producer knows that Consumer has not received the

commodity.

– ϕ2 = G(Problemn → (FRepairn ∨ GAlarmn Send))—it expresses that each time a

problem occurs at node n, then either it is repaired, or the alarm of node n is enabled.

– ϕ3 =
∧n

i=1 G(Problemi → (FRepairi ∨ GAlarmi Send))—it expresses that each time

a problem occurs at a node, then either it is repaired or the alarm is on.

– ϕ4 =
∧n

i=1 GKP (Problemi → (FRepairi ∨ GAlarmi Send))—it expresses that Pro-

ducer knows that each time a problem occurs at a node, then either it is repaired or the

alarm is on.
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Table 4 The FGPP system with n nodes

Verics, SAT-BMC Verics, BDD-BMC MCK, SAT-BMC

Formula IS-k IIS-k f̂k IS-k IIS-k IS

ϕ1 2n + 2 2n + 2 3 2n + 2 2n + 2 6n + 4

ϕ2 2n + 2 2n + 4 1 2n + 1 2n + 3 6n − 1

ϕ3 4 6 1 3 5 8

ϕ4 4 6 2 3 5 5

Table 5 The DC system with n cryptographers

Verics, SAT-BMC Verics, BDD-BMC MCK, SAT-BMC

Formula IS-k IIS-k f̂k IS-k IIS-k IS

ϕ1 n + 4 4n + 1 n n + 4 4n + 1 7

ϕ2 0 0 2 2 4n + 1 1

ϕ3 n + 4 4n + 1 n + 1 n + 4 4n + 1 7

The size of the reachable state space of the FGPP system is 4 · 32n , for n � 1. The sizes of the

counterexamples for the above formulae, and for all our BMC methods, as well as for MCK

are shown in Table 4.

The third benchmark we have considered is the dining cryptographers protocol (DC)—

see Sect. 2.4 for the description of the model. This system is scaled according to the number

of cryptographers, i.e., the problem parameter n is the number of cryptographers (together

with the coins and the oracles). The specifications (universal formulae) we consider are as

follows:

– ϕ1 = G(odd ∧¬paid1 →
∨n

i=2 K1(paid i ))—it expresses that always when the number

of uttered differences is odd, and the first cryptographer has not paid for dinner, then he

knows which cryptographer has.

– ϕ2 = G(¬paid1 → K1(
∨n

i=2 paid i ))—it states that it is always true that if the first

cryptographer has not paid for dinner, then he knows that some other cryptographer has.

– ϕ3 = G(odd → C{1,...,n}¬(
∨n

i=1 paid i ))—it states that always when the number of

uttered differences is odd, than it is common knowledge of all the cryptographers that

none of the cryptographers has paid for dinner.

The size of the reachable state space of the system is 3n +(n+1)·2n ·(n+1+
∑n

k=1 2·3n−k ·k)

for n � 3. The sizes of the counterexamples for the above formulae, and for all our BMC

methods, as well as for MCK are shown in Table 5.

4.1 Performance evaluation

The experimental results show that the SAT-based BMC with the IS semantics outperforms the

SAT-based BMC with the IIS semantics in both the memory consumption and the execution
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time (as shown below in the line charts), but for the BDD-based BMC this is the other

way around. The reason for this is that the SAT-based BMC with the IS semantics produces

a significantly smaller set of clauses (as shown in Table 6), and the SAT solver is given

this smaller set. Moreover, the produced set of clauses by the SAT-based BMC with the

IS semantics is not only smaller, but also ’easier’ for the SAT solver, which further boosts

the performance of the SAT-based BMC method with the IS semantics. The reason for the

inferiority of the BDD-based BMC with the IS semantics in all of our results most likely

follows from the fact that in the IS semantics, the BDD-based approach is faced with larger

sets of successors in each iteration, compared to the IIS case.

Table 6 Results for selected witnesses generated by the SAT-based BMC translations

Formula Semantics (Max▽) nr of

components

Length of the

witness

Nr of paths Nr of variables Nr of clauses

Faulty train controller

ϕ1 IIS 650▽ 4 2 619982 1677373

ϕ1 IS 650 2 2 250690 618440

ϕ1 IS 5500▽ 2 2 2564618 6262036

ϕ2 IIS 450▽ 4 2 937878 2687061

ϕ2 IS 450 2 2 473350 1331220

ϕ2 IS 1800▽ 2 2 5623947 16452621

Faulty generic pipeline paradigm

ϕ1 IIS 30▽ 62 3 1024009 2869312

ϕ1 IS 30 62 3 844630 2257822

ϕ1 IS 40▽ 82 3 1476472 3919425

ϕ2 IIS 35▽ 74 1 517280 1449202

ϕ2 IS 35 72 1 390327 1044692

ϕ2 IS 55▽ 112 1 979275 2608936

ϕ3 IIS 1200▽ 6 1 1647007 4261015

ϕ3 IS 1200 6 1 2100292 5772169

ϕ3 IS 1300▽ 6 1 1838281 4771037

ϕ4 IIS 1100▽ 6 2 3886556 10690351

ϕ4 IS 1100 6 2 3033586 7868443

ϕ4 IS 1200▽ 6 2 3253362 8400171

Dining cryptographers

ϕ1 IIS 6▽ 25 6 551041 1639542

ϕ1 IS 6 9 6 122437 348178

ϕ1 IS 16▽ 19 16 2473680 7083283

ϕ2 IIS 2300▽ 0 2 508521 793923

ϕ2 IS 2300 0 2 80601 131343

ϕ2 IS 2350▽ 0 2 82351 134193

ϕ3 IIS 5▽ 21 22 2014710 6344695

ϕ3 IS 5 9 10 267628 805315

ϕ3 IS 11▽ 15 16 2167850 6635325
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As one can see from the line charts for the FTC system, in the case of this benchmark

over the IIS semantics, the BDD-based BMC performs much better in terms of the total

time and the memory consumption for the formula ϕ1. More precisely, in the time limit set

for the benchmarks, the BDD-based BMC is able to verify the formula ϕ1 for 2,500 trains,

while the SAT-based BMC can handle 650 trains only. For ϕ2 the BDD-based BMC is still

more efficient—it is able to verify 1,700 trains, whereas the SAT-based BMC verifies only

450 trains. However, in the case of the IS semantics the SAT-based BMC is superior to the

BDD-based BMC for all the tested formulae. Namely, in the set time limit, the SAT-based

BMC is able to verify the formula ϕ1 for 5,500 trains, while BDD-based BMC can handle

16 trains only.

Similarly, in the case of the formula ϕ2 the SAT-based BMC is able to verify 1,800 trains,

while BDD-based BMC computes the results for 16 trains only.

As one can see from the line charts for the FGPP system, in the case of this benchmark

over the IIS semantics the SAT-based BMC performs much better in terms of the total time

and the memory consumption for the formulae ϕ2, ϕ3, and ϕ4, but it is worse for the formula

ϕ1. More precisely, in the set time limit, the SAT-based BMC is able to verify the formulae

ϕ2, ϕ3 and ϕ4, respectively, for 35, 1200, and 1100 nodes, while the BDD-based BMC

has computes the results, respectively, for 30, 10, and 600 nodes only. In the case of the

formula ϕ1 the BDD-based BMC is able to verify the formula for 40 nodes, whereas the

SAT-based BMC can verify this formula for 30 nodes only. Here, the reason for a higher

efficiency of the BDD-based BMC is the presence of the knowledge operator that causes

the partitioning of the problem to several smaller ELTL verification problems, which are

handled much better by the operations on BDDs. The reason for a higher efficiency of the

SAT-based BMC for the formulae ϕ2, and ϕ3 is the translation which uses only one symbolic

k-path, whereas a higher efficiency for the formula ϕ4 results from the constant length of the

counterexample.

As far as the FGPP system under the IS semantics is considered, the SAT-based BMC is

superior to BDD-based BMC for all the tested formulae. Namely, in the set time limit, the

SAT-based BMC is able to verify the formulae ϕ1, ϕ2, ϕ3 and ϕ4, respectively, for 40, 55,

1300 and 1200 nodes, while BDD-based BMC computes the results, respectively, for 6, 5, 9

and 13 nodes only.

123



Auton Agent Multi-Agent Syst (2014) 28:558–604 595

 1

 10

 100

 1000

 10000

 1  10  100

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, Formula 1

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time usage for FGPP, Formula 1

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

 1

 10

 100

 1000

 1  10  100

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, Formula 2

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

123



596 Auton Agent Multi-Agent Syst (2014) 28:558–604

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time usage for FGPP, Formula 2

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, Formula 3

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time usage for FGPP, Formula 3

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

123



Auton Agent Multi-Agent Syst (2014) 28:558–604 597

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, Formula 4

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time usage for FGPP, Formula 4

SAT-IIS
SAT-IS

BDD-IIS
BDD-IS

MCK-BMC

As one can see from the line charts for the DC system, in the case of this benchmark over

the IIS semantics the BDD-based approach significantly outperforms the SAT-based BMC

for the formulae ϕ1 and ϕ3, but for the formula ϕ2 this is the other way around. Namely,

in the set time limit, the BDD-based BMC is able to verify the formulae ϕ1 and ϕ3 for

12 cryptographers, while SAT-based BMC computes the results, respectively, for 6 and 5

cryptographers only. In the case of formula ϕ2 SAT-based BMC computes the results for

2,300 cryptographers, whereas BDD-based BMC for 15 only.

For the formulae ϕ1 and ϕ3 the reason of a higher efficiency of the BDD-based BMC

is that the SAT-based BMC deals with a huge number of symbolic k-paths. In the case

of ϕ1 this number results from the fact that ϕ1 contains the disjunction of the knowledge

operators, whereas in the case of ϕ3 the huge number of symbolic k-paths follows from

the fact that ϕ3 contains the common knowledge operator. A noticeable superiority of the

SAT-based BMC for ϕ2 follows from the following two facts: (1) the length of the SAT

counterexample is constant and very small, and (2) a small number of symbolic paths in the

SAT counterexample (only 2 symbolic k-paths).

As fas as the DC system under the IS semantics is considered, the SAT-based BMC is

superior to BDD-based BMC for all the tested formulae. Namely, in the set time limit, the

SAT-based BMC is able to verify the formulae ϕ1, ϕ2, and ϕ3, respectively, for 16, 2,350
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and 11 cryptographers, while BDD-based BMC computes the results, respectively, for 4, 7

and 4 cryptographers only.
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For the IIS semantics, the reordering of the BDD variables does not cause any improvement

of the performance in the case of the benchmarks FTC and FGPP, but for the benchmark DC

it reduces the memory consumption. This means that the fixed interleaving order we used

can often be considered optimal, but the loss in the verification time to reorder the variables,

in favour of reducing the memory consumption, is also not significant and is often worth the

tradeoff. Therefore, in the results for IIS we include only the BDD-based BMC variant using

automatic reordering of the variables. In the case of the IS semantics the fixed interleaving

order appears to be more efficient than the used reordering method. For this reason, we

include only the results for the fixed interleaving order.

From our analyses we can conclude that the BDD-based BMC method is more efficient

when verifying systems with the IIS semantics, whereas the SAT-based BMC method is

superior when used with systems with the IS semantics. Moreover, in most cases, the BDD-

based BMC spends a considerable amount of time on encoding the system, whereas the

SAT-based BMC on verifying the formula. Therefore, the BDD-based BMC may provide

additional time gains when verifying multiple specifications of the same system.

4.1.1 Comparison with MCK

While MCK enables verification of LTLK properties and implements the semantics of IS,

it differs from our approaches in the way in which the systems are specified. We carefully

inspected how the systems are represented in MCK and what a state is composed of, using the

feature of printing out the state space for explicit-state reachability analysis, and noticed that

the differences with our modelling are not merely syntactic. The state space is constructed

by MCK in a significantly different way, for example a program counter is added for each

agent, and channels are the standard way of inter-process communication.

Taking the above facts into account, we have found it not to be justified to get the numbers

of states exactly equal to the ones reported by our tools. Reaching this aim could be not

possible at all or would require to specify examples for MCK in an unnatural way, possibly

penalising the performance. Instead, we have done our best to model the benchmarks in

MCK in a way as close as possible to our approach, but modelling similarly to the ones

distributed with MCK and available at the MCK web page. To this aim we have used the

observable semantics while dealing with the knowledge of agents as opposed to the perfect

recall semantics, which is also available in MCK.

Next, we have modelled concurrent executions in the analysed systems by means of

the message-passing communication instead of the hand-shake communication. The rea-

son is that in the message-passing communication model the protocol specification for an

agent allows to have a communication channel as an argument, which enables establishing

a two-point communication. Based on the knowledge available to the user, a corresponding

construction for the hand-shaking approach is unsupported by MCK as an agent identifier

cannot be used as an argument in the protocol definition. The hand-shaking communication

is used in MCK example benchmarks and in the documentation for unscalable systems only.

In the Dining Cryptographers code available at the MCK web page, the message-passing

communication approach is used.

Therefore, forcing the hand-shaking communication model in MCK for our benchmarks

would be very unnatural and clearly cause a performance penalty. Further, we have ensured

that for each considered benchmark, the counterexamples found by the tools are of similar

size, i.e., either they are constant or their complexity is the same with respect to the number

of the processes. Of course, we restrict our comparisons to the IS case. While we possibly

could force the IIS semantics in the IS systems, this would be inefficient.
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In the comparison of MCK with our methods, the lengths of counterexamples behave

similarly, i.e. either unfold to the depth proportional to the benchmark parameter or have

a fixed number of steps (with the exception of the DC model, what is described below),

thus minimising the factor played by different communication schemes. These lengths are in

general not equal, and do not scale in the exactly the same way, what can be seen especially

for formulae ϕ1 and ϕ2 for FGPP. This may have two reasons: the way in which the model

description is translated into the model itself, and the encoding for checking the requested

properties. We can say little about the latter as no detailed counterexamples are produced by

the tool. Concerning the former, we figured out by looking into the structure of the model

reported for simple reachability properties that the bigger lengths are caused by a differ-

ent approach to specifying systems. For example, a synchronous change of state for several

components is performed in one step in our approaches, as variable values are represented

by interpreted system states. On the contrary, in MCK communications via channels as well

as testing and assigning of variables result in more steps. Additionally, sending and receiv-

ing messages combined with reading and assigning variables can possibly result in several

values of a program counter. The comparison shows that for FGPP and FTC our BDD-

BMC and SAT-BMC are superior to MCK for all the tested formulae (sometimes by several

orders of magnitude). MCK consumes all the available memory even when the formulae are

surprisingly small (approx. 106 clauses and 105 variables) compared to those successfully

tested in our SAT-based BMC experiments (more than 108 clauses and variables in some

cases).

An additional comment is required for the DC benchmark, where for the formulae ϕ1

and ϕ3, there are differences in the length of counterexamples: constant for MCK and linear

for our methods. This can be traced back to the presence of the counter. In our modelling,

the counter works sequentially. It introduces some limited concurrency as its actions can

interleave with the preceding actions of cryptographers (to the limited degree, because the

order of counting cryptographers is fixed). In MCK, there is an XOR operation available,

computed in a single step. We have decided not to add a sequential counter in this case,

finding it unnatural. However, it should be noted that the models are not the same for MCK

and our tools for the DC benchmark, what influences the efficiency when they are explored

to the full length (the diamater of the model).

The general conclusion is that while our methods can be found to be much more efficient,

MCK offers a much richer specification language, which in certain situations (see DC) results

in a more efficient modelling.

5 Final remarks

We have proposed, implemented, and experimentally evaluated SAT- and BDD-based

bounded model checking approaches for ELTLK interpreted over both the standard inter-

preted systems and the interleaved interpreted systems. The experimental results show that

the approaches are complementary, and that the BDD-based BMC approach appears to be

superior for the IIS semantics, while the SAT-based approach appears to be superior for the IS

semantics. This is a novel and interesting result, which shows that the choice of the semantics

should depend on the symbolic method applied.

We have also done our best to provide a comparison of our BMC methods with the

MCK tool. This comparison shows that the efficiency of the verification approach is strongly

influenced by the semantics used to model MAS, i.e., whether IS or IIS are applied.
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In the future we are going to extend the presented algorithms to handle also the ECTL∗K

properties.
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36. Mȩski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., & Zbrzezny, A. (2012). Two approaches to

bounded model checking for linear time logic with knowledge. In The Proceedings of the 6th KES

International Conference on Agent and Multi-Agent Systems, Technologies and Applications (KES-

AMSTA’2012). Lecture Notes in Computer Science (Vol. 7327, pp. 514–523). Berlin: Springer.
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