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It is widely accepted that neuronal activity plays a pivotal role in synaptic plasticity. Neurotrophins have
emerged recently as potent factors for synaptic modulation. The relationship between the activity and
neurotrophic regulation of synapse development and plasticity, however, remains unclear. A prevailing
hypothesis is that activity-dependent synaptic modulation is mediated by neurotrophins. An important but
unresolved issue is how diffusible molecules such as neurotrophins achieve local and synapse-specific
modulation. In this review, I discuss several potential mechanisms with which neuronal activity could control
the synapse-specificity of neurotrophin regulation, with particular emphasis on BDNF. Data accumulated in
recent years suggest that neuronal activity regulates the transcription of BDNF gene, the transport of BDNF
mRNA and protein into dendrites, and the secretion of BDNF protein. There is also evidence for
activity-dependent regulation of the trafficking of the BDNF receptor, TrkB, including its cell surface
expression and ligand-induced endocytosis. Further study of these mechanisms will help us better understand
how neurotrophins could mediate activity-dependent plasticity in a local and synapse-specific manner.

Much of the brain’s ability to adapt or modify itself in re-
sponse to experience and environment lies in the plasticity
of synaptic connections, both short- and long- terms. Sub-
stantial evidence indicates that the number and the strength
of synapses can be changed by neuronal activity (Bliss and
Collingridge 1993; Linden 1994; Malenka and Nicoll 1999;
McEwen 1999). It is now widely accepted that activity-de-
pendent modulation of synapses is critical for brain devel-
opment as well as many cognitive functions in the adult.
Molecular mechanisms that translate patterns of neuronal
activity into specific changes in the structures and function
of synapses, however, remain largely unknown. A hypoth-
esis was put forward several years ago that neurotrophins
may serve as molecular mediators for synaptic plasticity
based on two observations: (1) The expression of neuro-
trophins is regulated by neuroelectric activity; and (2) neu-
rotrophins could modulate the efficacy of synaptic transmis-
sion or the growth of dendrites and axons, the structural
elements necessary for synaptogenesis (Thoenen 1995;
Berninger and Poo 1996; Bonhoeffer 1996; Katz and Shatz
1996; Lu and Figurov 1997). It was proposed that neuronal
activity would enhance local synthesis/secretion of neuro-
trophins, which would in turn regulate synaptic efficacy or
growth. This simple idea was very attractive to scientists in
both the neurotrophin and plasticity fields. The conver-
gence of the two fields has brought an exciting new area of
research—neurotrophic regulation of synapse development

and plasticity. There has been a rapid growth of this area in
recent years. It is now widely accepted that neurotrophins
have a crucial role in synaptic transmission and plasticity. As
many growing fields, enthusiastic efforts by scientists with
different backgrounds and expertise have generated more
questions than answers, and these efforts are likely to bring
in many new and unexpected findings.

Neurotrophins belong to a family of secretory proteins
that include nerve growth factor (NGF), brain-derived neu-
rotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4/
5. These proteins initiate their biological functions by inter-
acting with their cognate receptors. All neurotrophins bind
to the p75 neurotrophin receptor (p75NR) (Chao 1992),
and each neurotrophin also binds to a specific Trk receptor
tyrosine kinase: NGF binds to TrkA; BDNF and NT-4/5 to
TrkB; and NT-3 to TrkC (Barbacid 1993). So far, all the
synaptic functions of neurotrophins seem to be mediated by
the Trk receptors. Ligand binding results in dimerization
and autophosphorylation of the Trk receptors, leading to
activation of the tyrosine kinases. Activated receptors in
general are capable of triggering a number of signal trans-
duction cascades including the MAPK pathway, the phos-
phatidylinositol 3-kinase (PI3K) pathway, and the phospho-
lipase C-� (PLC-�) pathway (Kaplan and Miller 2000; Pata-
poutian and Reichardt 2001). These signals then pass on to
the nucleus to activate transcription factors that alter gene
expression. Although for decades neurotrophins have been
viewed as major regulators for neuronal survival and differ-
entiation during embryonic development and maintenance
of viability of neurons in adulthood (Levi-Montalcini 1987;
Lewin and Barde 1996; Huang and Reichardt 2001), there is
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no doubt that these factors are also important for the de-
velopment and function of synapses.

The synaptic function of neurotrophins was first dis-
covered at the neuromuscular junction (NMJ) in vitro. Ap-
plication of BDNF, or NT3 to the neuromuscular synapses,
elicits a rapid enhancement of transmitter release (Lohof et
al. 1993; Stoop and Poo 1995). The synthesis of NT3 and
secretion of NT4 from the postsynaptic muscle cells in-
crease rapidly in response to presynaptic activity (Wang and
Poo 1997; Xie et al. 1997). The acute effect of neurotroph-
ins occurs preferentially to active synapses and requires
cAMP as a gate (Boulanger and Poo 1999a,b). Moreover,
such regulation requires a cascade of protein phosphoryla-
tion events (He et al. 2000; Yang et al. 2001), and is inde-
pendent of new protein synthesis (Stoop and Poo 1995;
Chang and Popov 1999). At hippocampal CA1 synapses,
substantial evidence indicates that BDNF acutely facilitates
long-term potentiation (LTP) (Korte et al. 1995; Figurov et
al. 1996; Patterson et al. 1996). This effect is caused prima-
rily to a presynaptic mechanism (Gottschalk et al. 1998; Xu
et al. 2000) and has been attributed to a potentiation of
synaptic responses to tetanic stimulation and an enhance-
ment of synaptic vesicle docking, possibly through changes
in the levels and/or phosphorylation of synaptic proteins
(Gottschalk et al. 1999; Pozzo-Miller et al. 1999; Jovanovic
et al. 2000). Postsynaptic effects of BDNF on dentate LTP in
slices and on NMDA receptors in cultured hippocampal
neurons have also been reported (Levine et al. 1998; Koval-
chuk et al. 2002). In the visual cortex, BDNF has been
shown to facilitate LTP (Akaneya et al. 1997; Huber et al.
1998; Jiang et al. 2001) and attenuates LTD in layer II/III
synapses of young adult rats (Akaneya et al. 1996; Huber et
al. 1998; Kinoshita et al. 1999; Kumura et al. 2000).

In addition to their acute effects on synaptic transmis-
sion and plasticity, neurotrophins also exhibit a long-term
regulatory role in synapse development and function. Long-
term application of neurotrophins exerts complex modula-
tion of dendritic and axonal growth in the brain, particularly
in the visual system (Cohen-Cory and Fraser 1995; McAllis-
ter et al. 1995). Neurotrophins are involved in activity-de-
pendent synaptic competition and formation of ocular
dominance columns in the visual cortex (Maffei et al. 1992;
Cabelli et al. 1995; Huang et al. 1999). Substantial evidence
suggests that neurotrophins promote the maturation of the
neuromuscular synapses in vitro and in vivo (Wang et al.
1995; Liou and Fu 1997; Gonzalez et al. 1999; Nick and
Ribera 2000). Long-term regulation of synaptic transmission
by neurotrophins has also been observed in glutamatergic
and GABAergic synapses in the central nervous system
(CNS) (Rutherford et al. 1998; Vicario-Abejon et al. 1998;
Huang et al. 1999; Sherwood and Lo 1999). Interestingly,
the long-term synaptic effects of BDNF in hippocampal
slices appear to be dependent on cAMP and new protein
synthesis (Tartaglia et al. 2001), characters reminiscent of

late phase LTP (L-LTP) and long-term memory seen in many
model systems.

The synaptic functions of neurotrophins have been
covered in some detail by a number of recent reviews (Lu
and Chow 1999; McAllister et al. 1999; Schuman 1999; Poo
2001). This review addresses the relationship between neu-
ronal activity and neurotrophins in synaptic modulation. I
have primarily focused on BDNF because it has been stud-
ied most extensively. I describe how neuronal activity regu-
lates the transcription of BDNF gene, the transport of BDNF
mRNA, and the secretion of BDNF protein. I also discuss
evidence for activity-dependent modulation of trafficking of
the BDNF receptor, TrkB. Efforts have been made to put
complex and sometimes conflicting results into perspec-
tive. I believe that these recent studies may provide impor-
tant insights into how synapse-specific modulation could be
achieved by diffusible molecules, such as BDNF.

Possible Mechanisms for Local and Synapse-
Specific Modulation by Neurotrophins
The studies described above strongly suggest an intimate
relationship between neuronal activity and neurotrophins
in the modulation of synapse structures and functions.
Thus, neurotrophins have been proposed to mediate activ-
ity-dependent synaptic potentiation in the CNS (Thoenen
1995; Berninger and Poo 1996; Bonhoeffer 1996; Katz and
Shatz 1996; Lu and Figurov 1997). This hypothesis is par-
ticularly attractive for homosynaptic and associative LTPs
because it links patterned neuronal activity to molecular
signals that control synaptic efficacy and connectivity. To
qualify neurotrophins as mediators for these types of syn-
aptic potentiation, however, two key issues must be ad-
dressed. First, because many forms of activity-dependent
plasticity occur in a local and synapse-specific manner
(Stent 1973; Bliss and Collingridge 1993; Linden 1994;
Malenka and Nicoll 1999), neurotrophins should act locally
to translate the effect of neuronal activity into structural and
functional changes in specific synapses. In a number of
carefully designed studies, such local and synapse-specific
effects of neurotrophins have been demonstrated. For ex-
ample, whereas focal application of NT3 to any part of
motor neurons could elicit acute synaptic potentiation
(Chang and Popov 1999), BDNF must be applied to the
synapse, not cell body, to elicit its acute effect (Stoop and
Poo 1995). When a motor neuron innervates two myocytes,
one of which over-expresses NT4, synaptic potentiation is
restricted to the NT4-expressing synapses without spread-
ing to the control synapse made by the same presynaptic
neuron as close as 60 µm away (Wang et al. 1998). In hip-
pocampal cultures, application of BDNF preferentially po-
tentiates immature synapses with lower release probability
without affecting nearby mature synapses (Lessmann and
Heumann 1998; Berninger et al. 1999). The effect of BDNF
may also be limited to specific postsynaptic targets. In a
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single excitatory neuron innervating both glutamatergic and
GABAergic neurons, BDNF selectively potentiates the syn-
apses with glutamatergic, but not GABAergic, neurons as
their postsynaptic partners (Schinder et al. 2000). When
two sets of Schaffer collaterals-CA1 synapses in the same
hippocampal slice are monitored simultaneously, BDNF
treatment potentiates the tetanized pathway without affect-
ing the synaptic efficacy of the untetanized pathway
(Gottschalk et al. 1998). These results indicate that BDNF
effects could be spatially restricted and selective to certain
specific synapses.

The second key issue is how BDNF can act preferen-
tially on active synapses. The widely accepted Hebb’s hy-
pothesis predicts that more active synapses are favored dur-
ing synaptic competition (Stent 1973). If diffusible neuro-
trophins are to mediate the activity-dependent synaptic
potentiation, they must be able to distinguish the active and
inactive synapses that are right next to each other. One way
to achieve this is to have activity-dependent control of the
synaptic responsiveness to neurotrophins. A number of re-
cent experiments suggest that at least for BDNF, this may be
a plausible mechanism. For example, presynaptic depolar-
ization greatly facilitates BDNF modulation of synaptic trans-
mission at the neuromuscular junction (Boulanger and Poo
1999b). The survival effect of BDNF on retinal ganglion
neurons requires depolarization by high K+ or glutamate
agonists, or an elevation of intracellular cAMP (Meyer-
Franke et al. 1995). In the hippocampus, the effect of BDNF
on synaptic responses to repetitive stimulation at CA1 syn-
apses is observed only when presynaptic neurons are stimu-
lated at high frequency (Gottschalk et al. 1998). Moreover,
pairing of BDNF with neuronal activity appears to be more
effective in inducing long-term synaptic potentiation. At
CA1 synapses, weak tetanus induces only short-term poten-
tiation of low magnitude, but strong LTP when paired with
BDNF application (Figurov et al. 1996). At dentate synapses,
pairing of a brief puff of BDNF with a weak presynaptic
stimulation elicits a robust LTP (Kovalchuk et al. 2002). The
selective pairing of BDNF and high-frequency neuronal ac-
tivity could potentially provide the signal for coincidence
detection. In the visual cortex, regulation of dendritic arbo-
rization in the visual cortex by BDNF requires neuronal
activity and Ca2+ influx through NMDA receptors (McAllis-
ter et al. 1996). Taken together, these results support the
notion that BDNF preferentially regulates synapses with
higher activity levels.

The local and synapse-specific modulation, together
with preference in active neurons/synapses, suggests that
neurotrophins must preferentially regulate active synapses
with little or no effect on nearby less active synapses. As a
diffusible molecule, how could BDNF distinguish active and
inactive neurons or synapses? In the following sections, I
discuss experimental data that demonstrate various ways by
which BDNF restricts its biological effects to active syn-

apses. First, the transcription of BDNF could be regulated by
neuronal activity (Fig. 1A). This phenomenon has been re-
peatedly observed in the many different populations of neu-
rons in the CNS (Thoenen 1995; McAllister et al. 1999). As
transcription must occur in the cell body, BDNF mRNA
needs to be either actively transported or passively trapped
at specific synapses. Activity-dependent dendritic targeting
of BDNF mRNA and its local translation may be one solution
for this conundrum (Fig. 1A). Second, activity-dependent
secretion of BDNF could occur locally at the site of active
synapses, with mechanisms that limit its diffusion (Fig. 1B).
BDNF is a sticky molecule with limited diffusion capacity.
Truncated TrkB molecules are highly expressed in the cell
surface of mature CNS neurons may also limit BDNF diffu-
sion (Biffo et al. 1995; Fryer et al. 1996; McAllister et al.
1999). Third, active neurons/synapses may respond better
to BDNF compared to inactive ones, and this could be
achieved by an activity-dependent control of the number of
TrkB receptors on the cell surface (Fig. 1C). Cell surface
insertion of TrkB receptors appears to be enhanced by ex-
citatory synaptic activity, suggesting local insertion of TrkB
at active synapses (Du et al. 2000). Finally, neuronal activity
could also facilitate the internalization of BDNF-receptor
complex (Fig. 1D), which is a key signaling event that me-
diates many of the BDNF functions.

Activity-Dependent BDNF Transcription
and Local Translation
The idea for an activity-dependent transcription of BDNF
gene was first supported by the findings that BDNF mRNA
expression in the hippocampus is dramatically increased in
animals undergoing experimental seizure (Zafra et al. 1990;
Ernfors et al. 1991; Isackson et al. 1991; Dugich-Djordjevic
et al. 1992). Subsequently, the level BDNF mRNA has been
shown to increase markedly by LTP-inducing tetanic stimu-
lation, with little or no effects on other neurotrophins (Pat-
terson et al. 1992; Castren et al. 1993; Dragunow et al. 1993;
Kesslak et al. 1998; Morimoto et al. 1998). This observation
has inspired the efforts to correlate BDNF mRNA expression
with learning and memory (Falkenberg et al. 1992; Kesslak
et al. 1998; Hall et al. 2000; Mizuno et al. 2000). Enriched
environment also enhances BDNF gene expression (Young
et al. 1999; Ickes et al. 2000; Zhao et al. 2001). In the visual
cortex, the expression of BDNF, but not NGF, in the visual
cortex is regulated by visual inputs (Castren et al. 1992;
Schoups et al. 1995; Pollock et al. 2001), and monocular
activity blockade elicits a striking decrease in BDNF mRNA
and protein in the visual cortex corresponding the deprived
eye (Bozzi et al. 1995; Rossi et al. 1999; Lein and Shatz
2000). Sensory stimulation of whiskers enhances the ex-
pression of BDNF in the barrel cortex (Rocamora et al.
1996; Nanda and Mack 2000). Other physiologically rel-
evant stimuli, such as physical activity and running (Neeper
et al. 1996; Oliff et al. 1998; Russo-Neustadt et al. 1999;
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Cirelli and Tononi 2000; Berchtold et al. 2001), dietary re-
striction (Lee et al. 2000), sleep and circadian rhythm (Bova
et al. 1998; Liang et al. 1998; Berchtold et al. 1999; Cirelli
and Tononi 2000), also appear to affect BDNF gene expres-
sion. Moreover, BDNF mRNA levels could be influenced
under a variety of pathological conditions known to alter
neuronal activity in the brain, including Alzheimer’s (Phil-
lips et al. 1991; Narisawa-Saito et al. 1996; Connor et al.
1997; Holsinger et al. 2000), ischemia (Lindvall et al. 1992;
Kokaia et al. 1998; Miyake et al. 2002), depression (Kokaia

et al. 1993; Kawahara et al. 1997), and stress (Smith et al.
1995; Smith and Cizza 1996; Ueyama et al. 1997).

Timmusk and colleagues discovered that in the rat ge-
nomic structures of BDNF, there are four promoters in front
of four short 5� exons, all of which are individually spliced
onto a common 3� exon encoding the entire prepro-BDNF
protein (Metsis et al. 1993; Timmusk et al. 1993). Exon IV
transcript is predominantly expressed in the lung and heart
whereas exon I, II, III transcripts are mainly in the brain
(Timmusk et al. 1993). These three transcripts exhibit dif-

Figure 1 Possible mechanisms to ensure synapse specificity of BDNF modulation. (A) Activity-dependent transcription (1); translocation of
mRNA (2); and translation (3). mRNA could be selectively targeted to the active synapse or nonselectively translocated to dendrites, but
trapped by an active spine. (B) Activity-dependent secretion. BDNF is secreted locally at or near active synapses and its diffusion is limited
by truncated TrkB (TrkB-T1). (C) Activity-dependent insertion of TrkB receptor on cell surface. Neuronal/synaptic activity induces Ca2+ influx,
leading to fusion of TrkB containing vesicles to the cell membranes. (D) Activity-dependent internalization of TrkB receptor. Activity and Ca2+

enhance TrkB receptor tyrosine kinase, which in turn facilitates ligand-induced internalization of TrkB.
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ferential spatial and temporal regulation, and respond dif-
ferently to kainic acid-induced seizure (Falkenberg et al.
1993; Metsis et al. 1993; Timmusk et al. 1993, 1994a,b;
Kokaia et al. 1994). Exon III-containing transcript is by far
the most effectively regulated by neuronal activity in the
hippocampus and cortex (Metsis et al. 1993; Lauterborn et
al. 2000). To analyze the relative importance of the four
promoters in vivo, Timmusk et al. generated transgenic
mouse lines with individual promoters fused with a reporter
gene (Timmusk et al. 1995). They confirmed that different
promoters are responsible for tissue-specific distribution of
the four transcripts. Moreover, different promoters are used
to control lesion-induced BDNF expression in the sciatic
nerve, or to upregulate BDNF transcription in neurons by
KCl or kainate. The existence of multiple BDNF promoters
may control BDNF gene expression at transcription, mRNA
stability, translation, and subcellular distribution levels, and
fulfill the different functions of BDNF (such as regulation of
neuronal survival, differentiation, synaptic transmission,
and plasticity).

At cellular levels, the expression of BDNF mRNA is
enhanced when the non-NMDA-type glutamate receptor is
activated (Zafra et al. 1990,1991; Lindefors et al. 1992; Lau-
terborn et al. 2000) and suppressed when GABAa receptor
is activated (Lindholm et al. 1994; Berninger et al. 1995).
Cholinergic afferent inputs to the cortex and hippocampus
also increase the levels of BDNF mRNA (da Penha Berzaghi
et al. 1993). An important finding was that the enhance-
ment of BDNF gene expression requires an increase in in-
tracellular calcium concentrations ([Ca2+]i) (Zafra et al.
1992; Ghosh et al. 1994; Sano et al. 1996), possibly by Ca2+

influx through L-type Ca2+ channels or NMDA receptors
(Shieh et al. 1998; Tao et al. 1998; Tabuchi et al. 2000).
Application of high K+ to cultured cortical neurons appears
to selectively enhance exon III transcript without affecting
those of other exons (Tao et al. 1998). Further character-
ization identified two elements in the promoter III involved
in Ca2+-dependent BDNF expression—the novel Ca2+ re-
sponsive sequence 1 (CaRE1, −73∼−64 bp) (Tao et al. 2002)
and the cAMP responsive element (CRE, −40∼−30 bp)
(Shieh et al. 1998; Tao et al. 1998). Binding of CRE to CREB,
which becomes newly activated by CaM kinase IV-depen-
dent phosphorylation on Ser-133 on Ca2+ influx, is required
for depolarization-induced BDNF transcription (Shieh et al.
1998; Tao et al. 1998). The transcription factor that binds to
CaRE1, named CaRF, has been cloned recently and shown
to be regulated in a Ca2+- and neuron-specific manner (Tao
et al. 2002). Activity-dependent transcription of BDNF gene
is therefore mediated by a mechanism that involves coop-
eration of CREB/CRE and CaRF/CaRE1.

Despite extensive studies, the functional significance
of activity-dependent transcription of BDNF gene in synap-
tic plasticity is still unclear. Although BDNF is considered an
immediate-early gene, the kinetics of the induction of BDNF

transcription is quite slow (2–4 h) compared with proto-
type such as c-fos. The slow time course of transcription
makes it less likely to mediate most forms of synaptic plas-
ticity including early phase LTP (E-LTP). It offers, however,
a mechanism that translates acute changes in synaptic ac-
tivity to long-lasting alteration of synaptic physiology and
morphology. For example, BDNF mRNA expression in the
hippocampus is markedly increased 2–4 h after application
of tetanic stimulation (Patterson et al. 1992; Morimoto et al.
1998). This time course correlates well with L-LTP, which is
implicated in long-term memory (Abel et al. 1997; Miller et
al. 2002; Villarreal et al. 2002; for review, see Kandel 2001).
Inhibition of BDNF signaling, either by BDNF gene knock-
out or by the BDNF scavenger TrkB–IgG, markedly attenu-
ates L-LTP induced by multiple tetani or forskolin exposure
(Kang et al. 1997; Korte et al. 1998; Patterson et al. 2001).
It is therefore tempting to speculate that the tetanus-in-
duced BDNF expression in the hippocampus mediates L-
LTP but not E-LTP. One way to test this hypothesis is to
create a situation in which activity-dependent BDNF tran-
scription is selectively prohibited while activity-indepen-
dent BDNF transcription remains intact. This could perhaps
be accomplished by generating a “knock-in” mouse line in
which the wild-type promoter III is replaced with a mutant
one.

Another issue that needs to be addressed is how activ-
ity-dependent BDNF transcription contributes to local and
synapse-specific modulation. Transcription occurs in the
cell body. A homogenous increase of BDNF mRNAs in the
cell body may be of some use to regulate neuronal/synaptic
activity of a local neuronal network, but this by no means
ensures selectivity to any synapses made on the same neu-
ron. One way to overcome this problem is to selectively
target BDNF mRNA or protein to the dendrites of activity
synapses. Translocation of mRNAs to dendrites for local
translation is a new and attractive idea that has been pro-
posed to mediate synapse specificity of hippocampal LTP
(Steward and Schuman 2001). BDNF mRNA has been found
in the dendrites of hippocampal pyramidal neurons (Dug-
ich-Djordjevic et al. 1992; Wetmore et al. 1994; Crino and
Eberwine 1996). An increase in neuronal activity as a con-
sequence of high K+-induced depolarization facilitates the
translocation of BDNF mRNA into the dendrites of cultured
hippocampal neurons (Tongiorgi et al. 1997), but selective
targeting of BDNF mRNA to active synapses has yet to be
established. BDNF itself has been shown to induce dendritic
targeting of BDNF mRNA (Righi et al. 2000). One must
demonstrate, however, that local and activity-dependent se-
cretion of BDNF could recruit BDNF mRNA to the active
synapses. An alternative mechanism could be that BDNF
mRNA is nonselectively transported to dendritic spines, but
is trapped by synapses that undergo high-frequency trans-
mission. This idea is quite similar to the “synaptic tagging”
model for the synapse specificity of L-LTP (Frey and Morris
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1997). In either dendritic targeting or dendritic trapping
model, a key element is the local translation of BDNF
mRNA.

Activity-Dependent BDNF Secretion
Most secretory proteins are initially synthesized from their
respective mRNA as precursor proteins in the endoplasmic
reticulum (ER) and subsequently translocated to a series of
intracellular organelles including the Golgi complex, imma-
ture and mature secretory vesicles, and finally secreted into
extracellular space (Halban and Irminger 1994). The pre-
cursor proteins could be cleaved by two enzymatic path-
ways, which contribute significantly to how the mature pro-
teins are secreted. Cleavage by furin or furin-like enzymes
occurs within the trans-Golgi network (TGN), and prefers
the carboxy-terminal side of multibasic sites (Arg–X–Lys/
Arg–Arg) (Hosaka et al. 1991; Dubois et al. 1995). This path-
way is used for proteins that are secreted without any trig-
ger (constitutive pathway) (Kelly 1985; Glombik and
Gerdes 2000). In excitable cells, such as neurons and neu-
roendocrine cells, neuropeptides are cleaved by prohor-
mone convertase 1 and 2 (PC1 and PC2) (Rouille et al.
1995). This pathway is used for proteins whose secretion is
triggered by certain extracellular and intracellular signals
(regulated pathway) (Kelly 1985; Glombik and Gerdes
2000). Neuropeptides are generally secreted through regu-
lated pathway, whereas most growth factors are secreted
through constitutive pathway. Neurotrophins are also syn-
thesized in proforms, which could be cleaved by furin as
well as PC1 at the same site. The secretion of neurotrophins
could be either constitutive or regulated. Non-neuronal
cells, such as fibroblasts and Schwann cells, cleave neuro-
trophins by furin and secrete these proteins constitutively
(Bresnahan et al. 1990; Acheson et al. 1991; Seidah et al.
1996a,b). Abundant evidence indicates that neurotrophins
can also be cleaved by PC1 (Seidah et al. 1996a; Mowla et al.
1999) and secreted in response to depolarization signals in
neurons and neuroendocrine cells (Edwards et al. 1988;
Blochl and Thoenen 1995; Blochl and Thoenen 1996; Good-
man et al. 1996; Heymach Jr. et al. 1996; Canossa et al.
1997; Kruttgen 1998). It should be pointed out, however,
that protease cleavage is not essential for neurotrophin se-
cretion. Small but significant amounts of pro-neurotrophins
can be secreted from neurons and the neuroendocrine
AtT20 cells (Heymach Jr. et al. 1996; Mowla et al. 1999,
2001; Farhadi et al. 2000; Fahnestock et al. 2001). Hemp-
stead and colleagues recently demonstrated that the pro-
forms of NGF and BDNF can be secreted and cleaved ex-
tracellularly by plasmin and a number of metalloproteinases
(Lee et al. 2002). Remarkably, they found that pro-NGF
binds p75NR with high affinity, leading to p75NR-depen-
dent cell death in cultured neurons, with minimal activation
of TrkA. In contrast, the mature NGF prefers TrkA to
p75NR, regulating cell survival and neuronal differentiation

(Lee et al. 2002). These results suggest that the function of
neurotrophins can be controlled by proteolytic cleavage,
and pro- and mature forms of neurotrophins may bind to
different receptors, eliciting entirely different biological ef-
fects.

Mechanisms underlying regulated secretion of neuro-
trophins have been studied in some detail. Secretion of neu-
rotrophins transfected into the hippocampal neurons could
be induced by a variety of stimuli including depolarization
agents high potassium (KCl) and veratridine, excitatory
transmitter glutamate, cholinergic agonist carbachol, and
neurotrophins themselves (Blochl and Thoenen 1995). Ini-
tial experiments suggest a requirement for Na+ influx, be-
cause replacing Na+ with N-methyl-D-glucamine (NMDG)
prevented depolarization-induced NGF secretion (Blochl
and Thoenen 1995). Subsequent analysis indicated that the
secretion of NGF and BDNF is independent of Na+ influx,
and the NMDG may by itself interfere with NGF secretion
(Hoener 2000). Although whether neurotrophin secretion
requires the influx of extracellular Ca2+ remains debatable
(Goodman et al. 1996; Griesbeck et al. 1999; Hartmann et
al. 2001), studies by Thoenen and colleagues strongly sug-
gest that the secretion requires a rise of intracellular Ca2+

([Ca2+]i) as a consequence of the activation of the IP3 re-
ceptors on ER membranes (Canossa et al. 1997; Griesbeck
et al. 1999). IP3 is generated by phospholipse C-� (PLC-�),
which is coupled to the neurotrophin receptors Trks and
metabotropic glutamate receptors. Thus, activation of
PLC-� and the subsequent mobilization of Ca2+ from intra-
cellular Ca2+ stores seem to be the major mechanisms me-
diating neurotrophin secretion initiated by neurotrophins
or neurotransmitter glutamate (Canossa et al. 2001). Using a
vaccinia virus expression system, Murphy and colleagues
showed that BDNF is sorted into the regulated pathway
whereas other neurotrophins are sorted primarily into the
constitutive pathway in hippocampal neurons (Mowla et al.
1999; Farhadi et al. 2000). Interestingly, inhibition of furin-
mediated cleavage shifts pro-NGF and pro-NT3 sorting into
the regulated pathway (Mowla et al. 1999; Farhadi et al.
2000). Thus, whether a neurotrophin is directed to consti-
tutive or regulated secretion may depend on the efficiency
of furin-cleavage. Furthermore, overexpression of pro-NT3
or formation of NT3–BDNF heterodimer when the two pre-
cursors are co-expressed also results in regulated secretion
of NT3, suggesting that NT3 could hijack the regulated path-
way normally used by BDNF (Mowla et al. 1999; Farhadi et
al. 2000).

Two criteria must be met if the secretion of BDNF is
involved in activity-dependent and synapse-specific modu-
lation—the secretion of neurotrophins should not only be
regulated, but also be local and be controlled by specific
patterns of neuronal activity. Data from a number of labo-
ratories have clearly demonstrated that patterned electrical
stimulation is far better than simple depolarization by KCl in
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inducing BDNF secretion in several neuronal populations,
and the most effective stimulus appears to be the LTP-in-
ducing tetanic stimulation (Balkowiec and Katz 2000; Lever
et al. 2001; Gartner and Staiger 2002). It is therefore pos-
sible that BDNF is only secreted at sites that fire high-fre-
quency action potentials. BDNF is detected in large, dense
core vesicles of sensory neurons and in brain synaptosomes
(Fawcett et al. 1997; Michael et al. 1997). Transfection ex-
periments using BDNF–GFP (green fluorescence protein)
fusion constructs demonstrate that BDNF is packaged into
secretory vesicles that are transported to somatodendritic
compartments and, to some extent, to axons (Haubensak et
al. 1998; Moller et al. 1998; Kojima et al. 2001a). It is im-
portant to note that these BDNF–GFP fluorescence spots
are often concentrated at the synaptic junctions, as indi-
cated by co-localization with the presynaptic marker synap-
sin I and postsynaptic marker PSD95 (Haubensak et al.
1998; Kojima et al. 2001a). The fluorescent spots rapidly
disappear in response to depolarization or high frequency
stimulation, suggesting secretion of BDNF–GFP from the
synaptically localized secretory vesicles (Hartmann et al.
2001; Kojima et al. 2001a). Furthermore, the postsynaptic
secretion of BDNF–GFP on high-frequency presynaptic
stimulation appears to depend on activation of postsynaptic
glutamate receptors (Hartmann et al. 2001). Kojima showed
recently that the BDNF–GFP could be induced to secrete at
one set of dendritic branches by laser-directed photolysis of
caged glutamate, whereas the BDNF–GFP spots in the
nearby dendrites of the same neurons were not affected
(Kojima et al. 2001b). These results further support the
notion that BDNF secretion could be restricted locally to
synapses that undergo high-frequency transmission. Secre-
tion of BDNF-GFP from extra-synaptic dendrites, however,
has also been observed.

In marked contrast to the experimental support for
activity-dependent and perhaps local secretion of BDNF,
nothing has been published so far that addresses the func-
tional role of the regulated BDNF secretion. This is very
difficult because functional study must be performed in a
situation in which the regulated secretion of BDNF is spe-
cifically blocked without affecting its constitutive secretion.
In a recent collaborative work, we were very fortunate to
stumble on a situation just like that (Egan et al. 2003). The
human BDNF gene contains one frequent and single nucleo-
tide polymorphism (SNP)—a valine (val) to methionine
(met) substitution in the pro region of BDNF protein. Ro-
dent hippocampal neurons transfected with val–BDNF–GFP
exhibited a punctate distribution pattern throughout the
soma and neuronal processes, whereas those with met–
BDNF–GFP showed large clusters in the peri-nuclear re-
gions. Moreover, depolarization-induced secretion of met–
BDNF was reduced significantly, while its constitutive se-
cretion was not changed. In the hippocampus of human
subjects with met–BDNF allele, there is a specific reduction

in the levels of n-acetyl asparatate (NAA), a putative mea-
sure of neuronal integrity and synaptic abundance. Func-
tional magnetic resonance imaging (fMRI) also revealed ab-
normal hippocampal activation during a memory task in
these subjects. In a cohort of 641 subjects, the met/met
genotype exhibited a specific impairment in hippocampus-
dependent episodic memory, while hippocampus-indepen-
dent cognitive functions were normal. These results repre-
sent the first demonstration of a role for BDNF in human
hippocampal function, and suggest the importance of activ-
ity-dependent secretion of BDNF in learning and memory in
vivo.

Activity-Dependent Modulation of BDNF
Receptor Trafficking
An alternative and equally attractive mechanism to con-
strain BDNF modulation to highly active synapses is the
activity-dependent modulation of the responsiveness to
BDNF. One way to achieve this is to increase the number of
BDNF receptors on the cell surface. Treatment with depo-
larizing agents results in an increase in the expression of
TrkB receptors on the plasma membranes of retinal gan-
glion cells and spinal neurons (Meyer-Franke et al. 1998).
This may explain why BDNF regulation of the survival of
retinal ganglion neurons requires depolarization by high K+

or glutamate agonists (Meyer-Franke et al. 1995). Impor-
tantly, the increase in surface expression of TrkB is very
rapid and requires no protein synthesis, suggesting an ac-
tivity-dependent recruitment of the receptor to the plasma
membrane by translocation from intracellular stores (Meyer-
Franke et al. 1998). In the hippocampus, tetanic stimula-
tion, but not simple depolarization or low frequency stimu-
lation, has been shown to facilitate the insertion of TrkB
into the cell surface (Du et al. 2000). Immunofluorescence
staining suggests that the electric stimulation facilitated the
movement of TrkB from the intracellular pool to the cell
surface, particularly on neuronal processes. This effect re-
quires Ca2+influx through NMDA receptors or voltage gated
Ca2+ channels and activation of Ca2+/calmodulin-dependent
kinase II (CaMKII), a mechanism quite similar to activity-
dependent insertion of AMPA type receptors into the post-
synaptic membrane during hippocampal LTP (Hayashi et al.
2000). Inhibition of excitatory synaptic transmission blocks
the effect of electric stimulation, suggesting that such regu-
lation could occur very locally at active synapses. It seems
that the activity-dependent insertion of TrkB receptor is
independent of ligand binding (Du et al. 2000). A preferen-
tial elevation of TrkB receptor expression at highly active
synapses could ensure local action of BDNF without affect-
ing the nearby less active synapses.

Another way to ensure that active neurons/synapses
are preferentially regulated by BDNF is the activity-depen-
dent enhancement of the internalization of BDNF-receptor
complex. Binding of BDNF to TrkB not only activates its
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tyrosine kinase and its downstream signaling pathways
(Kaplan and Miller 2000; Patapoutian and Reichardt 2001),
but also induces the endocytosis of the receptor (Ehlers et
al. 1995; Grimes et al. 1996). Internalization of neurotroph-
in–Trk complex seems to be critical in signal transduction
that initiates cell body responses to target-derived neuro-
trophins (Bhattacharyya et al. 1997; Riccio et al. 1997; Sen-
ger and Campenot 1997; Zhang et al. 2000). This is quite
unusual because the internalization for most other growth
factor receptors is to terminate the signaling process (Sor-
kin and Waters 1993). The neurotrophin–Trk complex is
internalized through clathrin-mediated endocytosis, leading
to the formation of a specialized vesicular compartment
called signaling endosome (Grimes et al. 1996; Grimes et al.
1997; Beattie et al. 2000). The internalized Trk receptor
remains tyrosine-phosphorylated and activated, with its ex-
tracellular domain bound to the ligand neurotrophin inside
the signaling endosomes, and the intracellular domain
tightly associated with a number of signaling molecules
such as PLC-�, PI3 kinase, and proteins of the Ras–MAP
kinase pathway in the cytoplama of the responsive neurons
(Grimes et al. 1996; Howe et al. 2001). Using three inde-
pendent approaches, my laboratory has recently demon-
strated that electric stimulation enhances the internalization
of TrkB receptor in hippocampal neurons (Du 2001). This
activity-dependent modulation of receptor internalization
requires Ca2+ influx as well as the tyrosine kinase of the
TrkB receptor. Neuronal activity has been shown to rapidly
activate TrkB tyrosine kinase, but this was interpreted as a
consequence of activity-dependent secretion of BDNF
(Aloyz et al. 1999; Binder et al. 1999; Patterson et al. 2001).
We found that the same electric stimulation and Ca2+ influx
also directly enhances the TrkB kinase in these neurons.
Inhibition of internalization had no effect on TrkB kinase,
but inhibition of TrkB kinase prevents the modulation of
TrkB internalization, suggesting that the activity-dependent
receptor endocytosis is mediated by the receptor tyrosine
kinase itself. The activity- and Ca2+-dependent modulation
of TrkB tyrosine kinase and its internalization provides an
alternative and physiologically relevant mechanism by
which preferential regulation of active synapses could be
achieved. It should be pointed out that the experiments on
activity-dependent modulation of neurotrophin responsive-
ness described above were done in cultured neurons. Their
relevance to the BDNF modulation of hippocampal synaptic
plasticity in vivo has yet to be established.

Concluding Remarks
Although the concept of neurotrophic regulation of synap-
tic function and plasticity is now widely accepted, the un-
derlying mechanisms remain poorly understood. An impor-
tant but unresolved issue is the relationship between the
activity and neurotrophic regulation of synapse develop-
ment and plasticity. Neurotrophins are diffusible factors,

whereas a key feature of synaptic plasticity is that modula-
tion occurs at specific, active synapses. Thus, two questions
must be addressed before neurotrophins can truly be re-
garded as mediators for activity-dependent synaptic plastic-
ity. First, how could neurotrophins distinguish active versus
inactive synapses? Second, how could diffusible neuro-
trophins regulate synaptic efficacy or connectivity in a local
and synapse-specific manner? Studies in recent years dem-
onstrated that neuronal activity regulates the transcription
of BDNF gene, but this alone is unlikely to ensure synapse
specificity attributable to the fact that transcription occurs
in neuronal cell body. There is also evidence for activity-
dependent regulation of the transport of BDNF mRNA into
dendrites. Although these studies are promising, selective
transport of the mRNA to active synapses has yet to be
demonstrated. Furthermore, the significance of target
mRNA transport remains unclear unless local translation of
BDNF protein at active synapses can be proven. A more
acceptable scenario is the activity-dependent local secretion
of BDNF protein. Mechanisms for limited diffusion of BDNF
protein must be in place to help confine secreted BDNF at
synapses that undergo activity-dependent modifications. On
the other hand, control of cellular responsiveness to neu-
rotrophins by neuronal activity seems to be at least an
equally plausible, if not more applicable, mechanism for
neurotrophins to restrict their actions to active synapses.
Two strategies have been demonstrated in cultured hippo-
campal neurons. One is a higher level of expression of the
neurotrophin receptors on the cell surface of active neu-
rons/synapses. The other is an activity-dependent control of
the internalization of the neurotrophin-receptor complex,
leading to an enhanced neurotrophin signaling. It remains
to be tested whether these mechanisms actually work in
vivo. Although these findings are exciting and promising,
we are still in the early stage of understanding the relation-
ship between neuronal activity and neurotrophins in activ-
ity-dependent synaptic plasticity. Careful studies should be
carried out to elucidate whether these mechanisms are
physiologically relevant to the neurotrophic regulation of
synaptic plasticity in vivo. Taken together, understanding
how neurotrophins could mediate activity-dependent plas-
ticity in a local and synapse-specific manner represents an
important direction for future research.
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