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Abstract

Neurotrophic factors, a family of secreted proteins that support the growth, survival and 

differentiation of neurons, have been intensively studied for decades due to the powerful and 

diverse effects on neuronal physiology, as well as their therapeutic potential. Such efforts have led 

to detailed understanding on molecular mechanisms of neurotrophic factor signaling. One 

member, brain-derived neurotrophic factor (BDNF) has drawn much attention due to its 

pleiotropic role in the central nervous system (CNS) and implications in various brain disorders. In 

addition, recent advances linking the rapid-acting antidepressant, ketamine to BDNF translation 

and BDNF-dependent signaling, has re-emphasized the importance of understanding the precise 

details of BDNF biology at the synapse. While substantial knowledge related to the genetic, 

epigenetic, cell biological, and biochemical aspects of BDNF biology has now been established, 

certain aspects related to the precise localization and release of BDNF at the synapse have 

remained obscure. A recent series of genetic and cell biological studies have shed light on the 

question -- the site of BDNF release at the synapse. In this Perspectives article, these new insights 

will be placed in the context of previously unresolved issues related to BDNF biology, as well as 

how BDNF may function as a downstream mediator of newer pharmacological agents currently 

under investigation for treating psychiatric disorders.

Introduction

Over 25 years ago, Hans Thoenen, one of the scientists who, along with Yves Barde, 

discovered brain-derived neurotrophic factor (BDNF), concluded a review article with a set 

of future questions that needed to be addressed to fully understand the biological function of 
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BDNF. He noted that a key issue was to identify the precise location of BDNF secretion at 

the level of the synapse - whether BDNF “was released by dendrites and/or axon terminals 

only. These problems, although extremely challenging experimentally, must be addressed in 

order to test current speculations in the involvement of neurotrophic molecules in synaptic 

plasticity and processes related to memory”.1 While significant progress has been made in 

the subsequent decades on many aspects of BDNF-dependent molecular signaling pathways 

and biological functions, especially with relevance to neuropsychiatric disorders, this basic 

question about BDNF has not been fully clarified.

A remarkable series of studies over the past few years have shed light on this question -- the 

site of BDNF release at the synapse, which has now been established to comprise neuronal, 

astrocytic and microglial components.2 In this Perspectives article, these recent genetic and 

cell biological studies3–6 will be placed in the context of what had been established about 

BDNF localization, and how these new insights can inform previously unresolved issues 

related to BDNF biology, as well as how BDNF may function as a downstream mediator of 

newer pharmacological agents currently under investigation for treating psychiatric 

disorders.

BDNF is a member of a unique family of polypeptide growth factors, neurotrophins, which 

influence the proliferation, differentiation, survival and death of neuronal and non-neuronal 

cells. 7, 8 While the biological roles for neurotrophins were initially characterized during 

development of the nervous system, it is now clear that BDNF, in particular, has multiple 

roles in the adult nervous system, such as regulating synaptic connections, synapse structure, 

neurotransmitter release, and synaptic plasticity. BDNF is secreted into the synapse leading 

to the activation of tropomyosin receptor kinase B (TrkB) and its downstream signaling 

cascades that contribute to gene transcriptional events critical for synaptic plasticity and 

cognitive function.

It has been established that BDNF is initially synthesized in the endoplasmic reticulum as a 

precursor protein, a pre-proBDNF, which, in neurons is then selectively sorted to the 

regulated secretory pathway and ultimately packaged into dense core vesicles (DCV).9 

Trafficking of BDNF into the biosynthetic pathway is a complex, highly regulated process, 

the precise mechanisms of which remain unclear. However, two sorting molecules have been 

identified as required for optimal sorting of newly synthesized BDNF to the regulatory 

secretory pathway - a VPS10 domain protein, sortilin, which has been demonstrated to 

interact with the BDNF prodomain, and carboxypepitdase E (CPE), which interacts with the 

BDNF mature domain.10, 11 At the presynaptic terminal, synaptotagmin-IV12, and SNAREs, 

Syb2, SNAP25 and SNAP4713 have all be demonstrated to regulate the activity-dependent 

vesicular release of BDNF. Cleavage and processing of pre-proBDNF can occur at multiple 

sites including the Golgi apparatus by furin, the DCV by proconvertases, and extracellularly 

by plasmin generated by TPA or selective matrix metalloproteinases including MMP3 and 

MMP7.14

Thus, it has been traditionally assumed that BDNF synthesis and secretion occur from 

presynaptic neuronal sites. In vitro evidence for presynaptic storage and release had been 

shown in cultured neurons through co-localization of ectopically expressed and endogenous 
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BDNF with vesicular markers such as synaptotagmin and secretogranin II.10, 12, 15 However, 

localization of endogenous BDNF protein in the intact brain has been difficult to 

demonstrate due to the low basal levels of BDNF, the variability in the available peptide-

based polyclonal BDNF antibodies, as well as lack of age-matched genetic knock-out (KO) 

controls (as the global BDNF KO mice die in early postnatal life) to validate the 

immunoreactivity. In vivo genetic evidence has supported the role of presynaptic BDNF 

when it was first demonstrated that conditional BDNF knock-out mice lacking cortical 

BDNF (Emx-BDNFKO) displayed preferential neuronal loss in the striatum, a region that 

expresses minimal BDNF and had been assumed to receive neurotrophic support via 

anterograde delivery of BDNF from regions including the cortex.16

Presynaptic BDNF

A recent landmark study by Yves Barde utilized a series of newly developed reagents 

including a monoclonal BDNF antibody, an epitope-tagged BDNF knock-in mouse line 

(BDNF-Myc), as well as a conditional BDNF KO mouse line (cBDNF-ko) to identify its 

subcellular localization in the mature mouse brain.3 They focused on the hippocampal 

granule cell mossy fiber projections to the CA3 – one of the brain regions with the highest 

BDNF levels, as well as the CA3 Schaffer collaterals to the CA1. They determined using 

both immnuohistochemical techniques and immuno-electron microscopy (EM) that BDNF 

was almost exclusively localized to presynaptic DCV. Strikingly, almost no BDNF 

immunoreactivity was observed in post-synaptic compartments. Interestingly, the DCV 

subtype that BDNF was stored in was distinct from those that contained other neuropeptides 

such as cholecystokinin and Met-enkephalin, suggestive of selective segregation of BDNF 

into a subpopulation of secretory vesicles. In addition, using separate antibodies for the 

prodomain and mature domains, they determined that mature BDNF and the cleaved BDNF 

prodomain co-localized in these DCV. They also reported co-secretion of the mature BDNF 

along with the cleaved prodomain, which has subsequently been confirmed by others.17

These findings are significant as they provide rigorous evidence supporting the notion that 

newly synthesized BDNF is localized to the presynaptic compartment. These findings also 

support the numerous electrophysiological studies implicating the requirement of 

presynaptic BDNF release in synaptic plasticity events, especially in hippocampal circuits. 

Of note, endogenous BDNF has been implicated in enhancing calcium transients in CA3 

dendrites.18 In addition, it has also been shown that BDNF is necessary for LTP induction at 

hippocampal CA3-CA1 synapses.19, 20 In particular, region-specific BDNF KO mice also 

specifically implicated a requirement for presynaptic BDNF in LTP induction at the CA3-

CA1 synapse.21

BDNF from other Synaptic Sites

However, recently, accumulating evidence has suggested that BDNF is capable of being 

synthesized and secreted from other components of the synapse including astrocytes 22, 

microglia4, and post-synaptic dendrites9 (Figure 1). One of the key lines of support for 

additional sites of BDNF localization was subsequent immune-EM studies analyzing 

another epitope-tagged BDNF knock-in mouse line (BDNF-HA) that demonstrated 

Song et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2018 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



endogenous BDNF localization presynaptically (axons, terminals) and postsynaptically 

(dendrites, spines) in vesicular compartments in the mature hippocampus.5 One 

interpretation of these divergent results may be due to the higher sensitivity of the anti-HA 

antibody, as compared to the monoclonal BDNF antibody, allowing for detection of the 

lower levels of BDNF in the other compartments. In this context, while the predominant 

mode of BDNF secretion is from presynaptic sites, local effects at individual synapses may 

be modulated by lower levels of BDNF secreted from alternative sites.

It is now well accepted that glial cells are active components contributing to multiple aspects 

of synapse physiology, including clearance of extracellular ions and neurotransmitters, initial 

synapse formation and maintenance.2 In response to neuronal activity, microglia, a 

population of brain resident macrophage, are activated and release so-called 

“gliotransmitters” to modulate neuronal communication. It had been previously been shown 

that BDNF is synthesized and secreted from microglia23–25, and involved in pain 

modulation26. A recent study by Wenbiao Gan demonstrated the direct contribution of 

BDNF secreted from microglia on synaptic remodeling associated with another function - 

learning and memory.4 The study showed that depletion of microglia leads to deficits in 

behavioral performance in multiple learning paradigms ranging from motor skill learning to 

fear conditioning and novel object recognition, as well as learning-induced remodeling of 

excitatory synapses. Using an epitope-tagged BDNF knock-in mouse line (BDNF-HA), they 

were able to detect endogenous BDNF in the microglia. Intriguingly, loss of microglial 

BDNF recapitulates the defects observed in microglia-depleted mice, suggesting that BDNF 

from non-neuronal sources regulates important functions related to learning and memory at 

the synapse.

With regards to BDNF synthesis and secretion from postsynaptic sites, there exists a long-

standing series of studies suggesting its localization to this component of the synapse. For 

example, a number of in vitro studies in cultured neurons have demonstrated localization of 

ectopically expressed BDNF protein in dendrites.12, 13, 27–29 In vitro studies that 

overexpressed fluorescence-tagged BDNF constructs have also demonstrated activity-

dependent BDNF secretion from dendrites utilizing similar regulators of vesicular secretion 

as used for presynaptic BDNF secretion (synaptotagmin-IV, Syb2, SNAP25 and 

SNAP47)12, 13, as well as from post-synaptic endocytic compartments that were regulated 

by synaptotagmin-6 and complexin30. In addition, in situ hybridization (ISH) studies have 

reliably detected endogenous Bdnf mRNA in neuronal dendrites in both cultured neurons 

and the intact brain; this expression increases following induction of neuronal activity.31, 32 

The Bdnf gene has nine unique promoters that drive transcription of at least twenty different 

Bdnf transcripts that encode an identical BDNF protein.33–36 Each variant consists of a 5′ 
untranslated region (UTR) exon that is alternatively spliced to a downstream common 

coding exon. The existence of multiple Bdnf splice variants has led to the spatial code 

hypothesis, which posits that differential expression of Bdnf transcripts enables local spatial, 

temporal, and stimulus-specific BDNF production.37 Indeed, Bdnf mRNA variants show 

activity-dependent targeting to dendrites, especially in the hippocampus.32, 34, 38, 39 Upon 

activation of both cortical and hippocampal neurons, exon 1 and 4-containing Bdnf 
transcripts are localized to the cell body and proximal dendrites, while exon 2 and 6-

containing Bdnf transcripts are found in distal dendrites.40–42 Supporting these findings, 
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silencing exon 1 and 4-containing Bdnf transcripts in cultured hippocampal neurons reduces 

proximal dendrite number, while silencing exon 2 and 6-containing Bdnf transcripts alters 

distal dendrite morphology.40 Recent studies confirmed that loss of exon 2 and 6-containing 

Bdnf splice variants impacts dendritic structure and spine morphology in CA1 and CA3 

pyramidal cells of the intact hippocampus.43 In addition to differential localization by the 

5′UTR, Bdnf transcripts with short versus long 3′ untranslated regions (3′ UTRs) exhibit 

distinct subcellular localization to dendrites as well as cell bodies.44 Alternative 

polyadenylation of Bdnf transcripts also differentially impacts spine morphology and 

synaptic plasticity in CA1 hippocampal neurons.44 Existence of Bdnf transcripts in dendrites 

suggests local production of BDNF protein, and several lines of evidence support the 

existence of BDNF protein as well as a functional role for it in the dendritic compartment. 

Indeed, disruption of dendritic localization of Bdnf transcripts leads to deficiencies in 

dendritic spine morphology and long-term potentiation.44 In addition, EM studies in intact 

brain localized endogenous BDNF to post-synaptic compartments5, 45, although a caveat to 

the earlier EM studies was that appropriate age matched BDNF KO controls could not 

validate the specificity of the immunoreactivity. Finally, a series of electrophysiological 

studies in dissociated neuronal cultures, as well as hippocampal slices have implicated that 

postsynaptic BDNF release is required for certain synaptic events including enhancement of 

presynaptic glutamate release, as well as homeostatic synaptic plasticity.46–48

In this context, a recent study by James McNamara’s and Ryohei Yasuda’s laboratories 

elegantly demonstrated a role for newly synthesized BDNF in postsynaptic dendritic spines 

in a form of neuronal plasticity termed structural long-term potentiation (sLTP). While 

previously BDNF had been implicated in this form of structural plasticity involving rapid 

enlargement of dendritic spines, the source of BDNF was not specified.49 Utilizing a series 

of live cell-imaging techniques, as well as a series of BDNF and TrkB receptor knock-in and 

knock-out mice, they were able to demonstrate the role of postsynaptically synthesized 

BDNF in eliciting autocrine BDNF/TrkB signaling in individual dendritic spines. They 

utilized two-photon fluorescence lifetime imaging combined with fluorescence resonance 

energy transfer (FRET)-based sensor for TrkB receptors to assess BDNF-dependent receptor 

activation after sLTP induction by single spine glutamate–uncaging.5 They detected, rapid 

onset of TrkB receptor activation, as well as BDNF release from spines utilizing BDNF that 

was fused to pH-sensitive fluorophore (superecliptic pHluorin; SEP). The study also directly 

demonstrated by immune-EM the existence of endogenous BDNF protein in an epitope-

tagged BDNF knock-in mouse line (BDNF-HA) in the intact mature hippocampus. The HA-

immunoreactivity was found both presynaptically (axons, terminals) and postsynaptically 

(dendrites, spines) in vesicular compartments. In addition, selectively knocking out BDNF in 

post-synaptic CA1 neurons, led to deficits in sLTP, which could be rescued by addition of 

BDNF.

These findings do come with caveats, such as that ectopic overexpression of pHluorin-fused 

BDNF has the limitation of possibly not representing endogenous conditions. Also, the 

subcellular localization findings are different than those reported from the previous BDNF 

EM study3, which did not detect BDNF immunoreactivity in dendrites or spines. As noted 

above, localization of endogenous BDNF to both pre and postsynaptic compartments may be 

due to differences in sensitivity of the antibodies utilized (anti-HA vs monoclonal anti-
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BDNF). Even with these caveats, the latter study is noteworthy as it demonstrates the 

contribution of postsynaptic BDNF on structural and functional plasticity. It is intriguing to 

speculate that postsynaptically localized Bdnf transcripts would produce BDNF protein that 

would be packaged into vesicles for release from dendrites that were separate in class from 

presynaptic DCV’s containing BDNF. In the hippocampus, it has been demonstrated that 

other neuropeptides, such as dynorphin can be secreted from postsynaptic sites in a manner 

distinct from presynaptic dynorphin secretion.50, 51 However, in neuronal dendrites there is 

sparse distribution of DCV’s, suggesting that there may also be specialized structures for 

postsynaptic BDNF protein production, packaging, and release. Finally, another study from 

this same group demonstrated that the postsynaptically released BDNF from one dendritic 

spine is capable of priming neighboring dendritic spines for subsequent structural plasticity 

– a finding that suggests that postsynaptically released BDNF can have a different impact 

than presynaptically released BDNF on synaptic plasticity within a set of synapses.6

Clinical Implications

BDNF signaling has been linked to the etiology of depression and implicated in the action of 

traditional antidepressant therapies (including SSRIs, TCAs, and ECT). Importantly, several 

recent reports have established that BDNF plays a critical role in contributing to the synaptic 

plasticity mechanisms underlying the fast-acting antidepressant effects of ketamine and 

other NMDA receptor antagonists.52–54 Decreases in BDNF expression have been identified 

in a number of brain regions, including the prefrontal cortex and hippocampus, of 

individuals with mood disorders.55–59 Moreover, the expression of BDNF is increased in 

depressed patients after administration of antidepressants.57, 60 Deletion of the Bdnf gene in 

a number of mouse models attenuates behavioral responses to antidepressants and infusion 

of exogenous BDNF into the ventricles or the hippocampus has antidepressant effects.61

The recent studies discussed above highlight the possibility that BDNF biosynthesis and 

secretion occurs at different synaptic sites thereby allowing for multiple levels of regulation 

by a single growth factor. In this context, the precise subcellular localization of BDNF has 

significant implications for multiple classes of antidepressant treatments in which elevating 

BDNF levels is considered a main downstream mechanism of action.62–67 As such, these 

recent studies open up new questions about which pools of BDNF, and from which cell 

types, are being affected by different antidepressants treatments. For example, postsynaptic 

BDNF biosynthesis may be particularly noteworthy in the quest to elucidate the mechanism 

of action of the glutamatergic receptor modulator, ketamine, an NMDA receptor antagonist, 

which has been demonstrated to lead to rapid and sustained antidepressant responses. By 

blocking post-synaptic NMDA receptors, it has been shown that ketamine deactivates a 

kinase (eEF2 kinase), which alleviates a block on BDNF translation, resulting in rapid 

(within 30 minutes) BDNF protein synthesis.52 Of note, a recent preclinical study in mice 

showed that metabolites of ketamine have rapid antidepressant effects that are independent 

of the NMDA receptor. Specifically, they report that the (2R,6R)-hydroxynorketamine 

metabolite has antidepressant effects that do not require NMDARs, but do involve alpha-

amino-3-hydroxy-5-methyl-4-isoxazole proprionic (AMPA) receptor activation as well as 

rapid upregulation of BDNF expression.68 However, whether the antidepressant activity of 

(2R,6R)-hydroxynorketamine requires BDNF has not yet been tested. Moreover, the 
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challenge to the view that the primary mechanism by which ketamine mediates its 

antidepressive qualities is via NMDAR antagonism, has fueled substantial debate in the 

field.69–71 Definitive answers to these important questions, including the extent to which 

BDNF is required for the behavioral effects of ketamine and its metabolites, will require 

further investigations.

Since it was traditionally assumed that ketamine acts on postsynaptic NMDA receptors, 

these recent BDNF studies discussed here suggest that pharmacological agents used to 

alleviate symptoms of depression, including ketamine, could also be selectively enhancing 

the rapid synthesis of a postsynaptic pool of BDNF. It is tempting to speculate that the rapid, 

yet sustained, effects of glutamatergic modulators, including ketamine, may differ from 

conventional antidepressants in that the pool (or pools) of BDNF that are being upregulated 

may lead to enhancement of BDNF-TrkB signaling at separate synaptic sites. Expression of 

dendritic BDNF may be particularly important in the context of mechanisms underlying 

rapid acting antidepressants because it has been demonstrated that BDNF application to 

isolated dendrites results in increased local translation in dendrites, a process which is 

critical for spine remodeling and synthesis, synaptogenesis and induction of synaptic 

plasticity.72 Thus, future antidepressant therapeutic development efforts may involve 

strategies to selectively elevate these separate pools of BDNF at the synapse (neuronal, 

astrocytic, microglia) that may lead to distinct functional outcomes. Given that individual 

Bdnf transcripts may differentially contribute to separate pools of BDNF at alternate 

synaptic sites, the unique Bdnf promoters as well as the 5′ and 3′ UTR sequences 

themselves are potentially promising candidates.

Conclusion

These recent series of studies highlight how BDNF biosynthesis and secretion can occur at 

different synaptic sites thereby allowing for multiple levels of regulation by a single growth 

factor. In particular, the studies highlight one theme in which even though the majority of 

BDNF that can be detected using current methodologies is stored and secreted from 

presynaptic sites, microglia, astrocytes and neuronal dendritic spines can produce and secret 

BDNF at lower levels that can have qualitatively significant functional outcomes. Future 

studies undoubtedly will address the main questions in determining the precise mechanism 

on biosynthesis and release of BDNF, and relative impact of BDNF from these alternate 

synaptic sites in terms of in vivo consequences. Equally important will be a renewed focus 

on the downstream effects of secreted BDNF interacting with not only the selective 

populations of TrkB receptors, which are localized on the various constituents of the synapse 

(Figure 1), but also the array of other BDNF receptors and co-receptors (truncated TrkB, 

p75, SorCS2, and Slitrk5), which are also present at the synapse.17, 73–75 As example, as 

noted above, it has been shown that postsynaptically released BDNF from one dendritic 

spine can interact with postsynaptic TrkB receptors in neighboring dendritic spines to 

mediate heterosynaptic plasticity.6 Thus, understanding the basic cell biology of BDNF and 

its receptors at the synapse will continue to provide insights into the myriad of functions of 

this neurotrophin in both normal and pathological conditions.
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Figure 1. BDNF and its receptors at the mature synapse
Schematic of synapse showing localization of BDNF and its receptors in presynaptic, 

postsynaptic neuronal compartments, as well as from astrocytes and microglia. BDNF is 

stored in dense core vesicles (DCV) in the presynaptic compartment. The storage organelle 

for BDNF in the other synaptic components has not been identified. Conventional 

antidepressants (such as SSRI) elevate presynaptic BDNF, while ketamine has been 

postulated to enhance postsynaptic BDNF protein translation. While neurons express full-

length TrkB as well as truncated TrkB with developmental and pathologically changing 

levels, non-neuronal cells mainly exhibit expression of truncated TrkB.76–78
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