
BDS: A BDD-Based Logic Optimization System

Congguang Yang Maciej Ciesielski
Dept. of Electrical & Computer Engineering
University of Massachusetts, Amherst, MA

cyang,ciesiel@ecs.umass.edu

Vigyan Singhal
Tempus Fugit, Inc.
Albany, CA 94706

vigyan@home.com

Abstract
This paper describes a new BDD-based logic optimization
system, BDS. It is based on a recently developed theory
for BDD-based logic decomposition, which supports both
algebraic and Boolean factorization. New techniques, which
are crucial to the manipulation of BDDs in a partitioned
Boolean network environment, are described in detail. The
experimental results show that BDS has a capability to
handle very large circuits. It offers a superior runtime
advantage over SIS, with comparable results in terms of
circuit area and often improved delay.

1. INTRODUCTION
Through the continuously intensive research and develop-
ment in logic synthesis area for the last twenty years, the
general framework for logic synthesis has been well estab-
lished. While the space for further improvement of the syn-
thesis flow seems to be limited, there is still potential for sig-
nificant improvement in many procedures in the synthesis
process [1]. This is especially true when more efficient ways
to represent Boolean functions become available.

The history of logic synthesis demonstrates a simple, yet
clear fact that the representation of Boolean logic plays a
central role in the evolution of synthesis methods. It seems
natural that logic synthesis methods will continue evolving
with the advent of newer and more efficient Boolean logic
representations. We believe that this evolution will be further
enabled by the accumulation of expertise in Binary Decision
Diagrams (BDDs). Our research is trying to address this new
opportunity.

BDDs were first proposed by Akers [2], and popularized by
Bryant [3] and Brace et al [4]. Due to their implicit power to
represent Boolean functions, BDD’s are considered the most
efficient Boolean representation known so far. The synthesis
approaches based on decomposition and manipulation of
BDD’s have been found promising in FPGA synthesis [5,
6, 7], PTL synthesis [8, 9, 10], multi-level synthesis [11, 12,
13, 14, 15], and mixed CMOS/PTL synthesis [16, 17]. All
these BDD-based synthesis methods have a great potential

to outperform traditional logic synthesis approaches.

In [18] we proposed a new BDD-based logic decomposition
method based on dominators. Our work was based on
the observation that the structure of a properly ordered
BDD reveals important information about its functional
decomposition. Different structures, called dominators can
be identified in a BDD, leading to efficient AND, OR, XOR
and MUX decompositions. This method offers a capability to
efficiently perform both algebraic and Boolean factorizations.
In terms of the area and runtime, the synthesis results
obtained with this method for AND/OR-intensive functions
are comparable to that of SIS, while results for XOR-intensive
functions are significantly better than SIS. In both cases, our
program demonstrates great runtime advantage over SIS.
However, the method is limited to the decomposition of
monolithic (global) BDDs, and as such it can only be used
to optimize circuits for which BDDs can be constructed.

In this paper, a complete BDD-based logic optimization sys-
tem, BDS, designed to handle arbitrarily large circuits, is de-
scribed. While retaining the BDD decomposition capability
of [18], a more general framework which incorporates a typ-
ical logic synthesis procedures has been implemented. Sev-
eral techniques which proved very efficient in manipulating
BDDs in the partitioned Boolean network environment are
discussed in detail.

2. SYNTHESIS FLOW
A very important feature of a logic synthesis system is
its scalability. The scalability requires that the size of the
representation of a problem be proportional to the size of the
problem itself. In our case, the size of a BDD should be
proportional to the size of a circuit (which is commonly
measured by the number of gates). However, the size of
a global BDD for a given Boolean network is completely
unpredictable. It strongly depends on the type of the circuit,
and not necessarily on the total number of gates. Therefore,
a proper partitioning of Boolean network is required prior to
performing the BDD decomposition. Fortunately, the same
problem appeared in traditional logic synthesis, where it has
been handled properly.

Current multi-level logic synthesis flow exemplified by SIS
has drawn from twenty years of intensive research. We
believe it has the capability to handle very large circuits
and it does grasp the essence of logic synthesis in general.
Therefore, BDS adopts the general synthesis flow of SIS.
Fig. 1 compares the synthesis flow of SIS and BDS. The
similarity between the two systems is obvious. The
fundamental difference between SIS and BDS is the way

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

in which they represent Boolean nodes and carry out all
individual synthesis procedures. In BDS, after a Boolean
network has been built all Boolean nodes are represented as
local BDDs (using only immediate fanins for each node). All
the subsequent procedures are carried out based on the local
BDDs.

It should be mentioned that all procedures in the synthesis
flow are heavily influenced by the underlying Boolean
representation. Therefore, while retaining a similar synthesis
flow, new algorithms specially tailored for BDDs should be
developed for all the procedures. In the following section,
the BDD decomposition techniques introduced in [18] are
briefly reviewed. These techniques are central to BDS. Other
essential procedures in the synthesis flow are presented next.

Logic simplification through

BDD variable reordering

Sharing extraction on factoring trees
Sharing extraction from multi-BDDs

Recursive BDD decomposition

Boolean Network

Factorization, resubstitution, etc.

Eliminate

SIS BDS

Sweep. Constant propogation.

based on BDD statisticsEliminate based on factored form

Sweep. Constant propogation

Logic simplification using two-level

Removal of functionally equivalent nodes

Technology mapping

logic minimization technique

Figure 1: Synthesis flow of SIS and BDS

3. REVIEW OF BDD DECOMPOSITION
The BDD-based logic decomposition techniques used by
BDS are summarized in Table 1. Detailed explanation of
the terminology and examples can be found in [18]. All
types of atomic decompositions and their corresponding
BDD structures (dominators) have been identified. These
dominators form the central BDD decomposition engine of
BDS. The decomposition begins with the BDD structure scan.
The BDD structural information obtained by the scan is used
to guide the various decomposition types.

Type BDD Structure Decomposition
1 1-dominator algebraic AND
2 0-dominator algebraic OR
3 x-dominator algebraic XNOR
4 generalized dominator Boolean AND/OR
5 generalized x-dominator Boolean XNOR
6 cof. w.r.t. single node simple MUX
7 cof. w.r.t. super node complex MUX

Table 1: Various dominators used in BDD decomposition

The BDD decomposition process is recorded by constructing
a set of factoring trees for each function. A factoring tree will
keep growing until the BDD decomposition is completed.
Subsequently, several steps can be applied to the factoring

trees to further improve the decomposition results. In
particular, sharing between different factoring trees can be
efficiently detected. For this purpose, BDDs are constructed
for all factoring trees in a bottom-up fashion, and canonicity
property of a BDD is used to identify functionally equivalent
sub-trees.

3.1 BDD Decomposition - Review
The following example, for function F = e + bd, shown
in Fig. 2(a), will illustrate the idea of Boolean AND/OR
decomposition based on a general dominator. First, a cut is
performed on the BDD of F . The generalized dominator
is the portion of the BDD above the cut. The edges
of the generalized dominator that that are connected to
terminal nodes in the original BDD remain connected to
those terminals, while the remaining edges (in this case a 1-
edge incident to node d) are redirected to constant 1. This
results in a Boolean divisor D = e + d. The quotient Q is
obtained from F by minimizing F using the off-set fe0d0g
of D as a don’t care. This leads to Q = e + b. The final
decomposition is F = (e + d)(e + b). It can be shown that
all cuts form a set of compatible classes, each class leading to
a unique decomposition (division). This feature drastically
reduces the number of cuts to be considered.

(a)

(b)

(c)

e

d

0 1
1

e

d

0 1 10

e

d

D = e+d
D D

b

0 1

e

b

0 1

e

d

DC

Q Q = e + bb

0 1

e

d

F = e+bd

Figure 2: A simple example of Boolean division.

The following example illustrates additional BDD decompo-
sition capabilities of our tool, namely the XOR and MUX de-
compositions. Given an initial global BDD representation
of a two-output function, fg; hg, the BDD for each primary
output is decomposed independently of each other, and the
factoring trees constructed for each function. Finally, logic
sharing is identified in the resulting factoring trees. Fig. 3
shows the decomposition of BDD g. First, an x-dominator of
g is found, leading to an algebraic XNOR decomposition. X-
dominator is a BDD structure which contains a node (in our
example node d) with the property that all paths from root to
terminal nodes 1 and 0 pass through that node. In this case
F can be decomposed into F = u�f , where f is a function
rooted at d, and u is obtained from the original BDD by re-
placing f with 1. A factoring tree node, with operator XNOR,
is created to record this decomposition.

Fig. 4 shows the decomposition of function h based on the
extraction of complex MUX. Such a MUX decomposition
exists if the BDD contains two nodes that cover all paths from

a

bb

c

g

d

e

1

0

a

1

b

ca c

d e
e

1

d

a

bb

c

1

g g

Figure 3: Decomposition of BDD g.

root to terminal nodes. In our case these are the d nodes
below the cut. The function can then be decomposed into
F = v0(de) + v(d + e), where v is derived from the portion
of the BDD above the cut, by redirecting the two d nodes
to 0 and 1, respectively. Additional MUX decomposition is
possible for function v. A factoring tree node, with operator
MUX, is created to record this decomposition.

a

bb

c

h

d d

1

e

10

10

dde
b

ac

e

a c

10

a

b

c

1

d d

e

1

h

b

h

v
v

Figure 4: Decomposition of BDD h.

Finally, logic sharing between functions g and h is efficiently
identified by constructing BDDs in a bottom-up fashion
on the factoring trees for both functions. Fig. 5 shows
the process of extracting the shared logic. The shadowed
subtrees of g and h are functionally equivalent. This
equivalence can be identified by constructing BDDs on both
factoring trees.

1

0 1

d d

0

ee
b

aca c

ed

ca c a

b
e d d e

0 1

0 1

0

b

a

1

ed

ca c

hghg

Figure 5: Sharing extraction on the factoring trees of g and h.

3.2 BDD Store/Load Mechanism
In our BDD-based logic optimization scheme [18], BDD
variable reordering algorithm serves as an implicit logic
simplification. It should be emphasized that variables are
reordered with respect to a BDD manager, not w.r.t. a
specific BDD. Hence, if there is more than one BDD in
the manager, variable reordering may not result in the
desired simplification. In order to achieve maximum logic
simplification of a Boolean function (BDD), all other BDDs
must be freed from this BDD manager before performing
variable reordering. However, those ”freed” BDDs must
be present in the BDD manager when they are needed
for decomposition at a later time. Therefore, an efficient
store/load mechanism must be developed.

A naive way to store BDDs is to represent them in a SOP
form. The advantage of SOP form is that the BDD can be
reconstructed under a variable order which is different from
the order when the BDD is stored. This offers some flexibility
for the implementation. However, since the number of SOP
terms of a BDD could be exponential in the number of BDD
nodes, storing BDDs in SOP form is not a feasible solution.

A new data structure, bddPool , has been devised to perform
BDD store/load operations. Basically, a bddPool is a DAG
which is graphically isomorphic to the BDD it represents. A
BDD is copied to a bddPool before it is freed from the BDD
manager. The BDD can be reconstructed later by applying
an ite operation jV j times, where jV j is the number of BDD
nodes. Since an ite operation takes constant time, the overall
complexity of our BDD store/load algorithm is O(jV j). The
disadvantage of bddPool is that the variable order of the
BDD manager into which a BDD is loaded must be the
same as the order in which a BDD is stored. Forcing a
BDD manager to a certain variable order could result in an
exponential increase in the BDD size if the manager is not
empty. However, in our application, when a BDD is loaded,
the BDD manager is always empty. A complete process of
store/load is shown in Fig 6.

Another important feature of our bddPool mechanism is
to allow the variable substitution during the process of
BDD reconstruction. This can be accomplished easily by
modifying the ite operator as f = ite(M(x); g; h), while M
is the mapping of variables. This feature plays a crucial role
in our efficient iterative eliminate paradigm (Section 4.2).

b

1

61

4867

4862

F

a

c

(a)

dd = NULL
index = 61

dd = NULL
index = 4867

dd = NULL

F

index = CONST

index = 4862

(b)

F

index = CONST

index = 4862

index = 4867

index = 61

dd =

dd =

dd =

4867

1

1

4867

4862

61

1

4867

4862

(c)

Figure 6: BDD store/load mechanism. (a) A BDD. (b)
BDD stored in bddPool . (c) Re-construction of BDD from
bddPool in a bottom-up fashion.

4. IMPLEMENTATION ISSUES
4.1 Sweeping Boolean Networks
Procedure sweep is the first step in the proposed synthesis
flow. It removes some obvious redundancy from the Boolean
networks. There is no real logic optimization involved in
this procedure. However, for some multi-level Boolean
functions, sweep plays a very important role in removing
redundancy from the networks.

4.1.1 Constant and Single-Variable Nodes Removal
A logic optimization program should take advantage of
constant and single-variable nodes to reduce the complexity
of a Boolean network. It should be noted that the removal

of one constant or single-variable node may create another,
and such nodes may be produced during the process of logic
optimization. Therefore, sweep is iterative, and it is invoked
many times in a complete logic optimization process.

4.1.2 Removal of Functionally Equivalent Nodes
Traditionally, when a multi-level Boolean function is repre-
sented as a SOP form, only constant and single-variable nodes
can be identified and removed from the Boolean network
during sweep . When a Boolean network is represented in
the BDD form, there is an added bonus. Since BDD is canon-
ical, the functional equivalence between different Boolean
nodes can be detected easily. Therefore, in addition to re-
moving constant and single-variable nodes, all functionally
equivalent nodes can be also be removed from a Boolean net-
work during sweep .

Although the functionally equivalent Boolean nodes in a
Boolean network can also be removed by later optimization
procedures (e.g. eliminate, re-substitution) in the traditional
synthesis flow, it is always beneficial to remove this type of
redundancy before the actual logic optimization. Shown in
Table 2 is the number of functionally duplicated nodes for
some famous testcases. We were surprised to find so much
redundancy in those testcases. This is the first time ever
that functionally duplicated Boolean nodes can be removed
before actual logic optimization.

Circuit Total Nodes Duplicated Nodes
C1908 441 118
C2670 787 72
C3540 956 247
C5315 1467 197
C6228 2353 30
C7552 2165 355
C880 302 10
dalu 985 249
i8 1183 186
i9 329 22
i10 1634 84
pair 830 16
vda 123 3

Table 2: Number of functionally duplicated nodes in a
Boolean network

Since the removal of one functionally equivalent node
may create another, the duplication removal in BDS is
iterative. The numbers shown in Table 2 are just the
number of duplicated nodes in the first iteration. Removing
functionally duplicated Boolean nodes helps BDS to reach
the final optimized netlist. This also contributes to the
runtime advantage over traditional approaches, because
logic optimization algorithms are generally more expensive
than sweep .

4.2 Node Elimination
To comply with the scalability requirement, a Boolean
network should be allowed to be partially collapsed into a set
of super Boolean nodes; then logic optimization algorithms
can be applied on each super node. Partial collapsing also
helps to remove logic redundancy which is embedded in
the multi-level configuration. The most frequent cause of

redundancy is the so-called re-convergence. Partial collapsing
is very efficient at removing it.

To carry out partial collapsing, procedure such as elimi-
nate comes into play. eliminate attempts to find a par-
tially collapsed Boolean network such that Boolean nodes
are not too large for logic optimization algorithms. On the
other hand, Boolean nodes should not be too fine, otherwise
some redundancy may remain in the network. A properly
designed eliminate scheme provides a better starting point
for logic optimization algorithms.

eliminate has been successfully implemented in SIS [19].
Cost estimation based on the factored forms was used to
guide the process of elimination. Two approaches have
been proposed for eliminate using BDDs. The first one is
based on progressive elimination [9]. In this approach, BDDs
are constructed from primary inputs to primary outputs.
At any point, if the size of a BDD is larger than a pre-
defined threshold, an intermediate variable is introduced
and the BDD construction process continues until primary
outputs are reached. This approach, however, ignores the
specific structure of a Boolean network. As a result, the
elimination often stops at boundaries which are not natural
to the specific Boolean network. This approach may also
cause memory blow-up. The second approach is based
on iterative elimination [10] which is quite similar to the
eliminate procedure in SIS [19]. In the process, BDD node
count is used as the cost function to guide the elimination.

To comply with the mainstream synthesis flow, an approach
similar to that of [19, 10] has been adopted in it BDS.
However, due to the efficiency of described techniques for
BDD manipulations, our eliminate is orders of magnitude
faster than [10].

A generic algorithm for iterative elimination is shown in
Algorithm 1. In collect all Boolean nodes which are
eligible for collapsing into its fanout are collected. In
execute the Boolean network is modified to lock the recent
changes. The BDD manager is reordered before the next
collect . The whole process is iterated until no Boolean
node can be eliminated.

candidate = collect(bddmgr,network);
while(candidate) {

execute(bddmgr,candidate);
reorder(bddmgr);
candidate = collect(bddmgr,network); }

Algorithm 1: Eliminate

In practice, a straightforward implementation of this process
does not work. This is mainly because of the abuse of BDD
variable reordering. When local BDDs are constructed for a
Boolean network, an intermediate variable is created for each
Boolean node. Therefore, in addition to all primary inputs, a
BDD manager also contains all intermediate variables. The
number of such variables could be huge even for a medium-
size circuits. Since the complexity of variable reordering
could be exponential, reordering a BDD manager with
large number of variables will severely degrade the overall
runtime performance.

candidate = collect(bddmgr,network);
while(candidate) {

execute(bddmgr,candidate);
newbddmgr = bddMapping(bddmgr,network);
reorder(newbddmgr);
free(bddmgr);
bddmgr = newbddmgr;
candidate = collect(bddmgr,network); }

Algorithm 2: Efficient Iterative Eliminate Paradigm

In BDS, new BDD manipulation techniques are developed to
make the approach feasible in practice. Algorithm 2 shows
the modified version of Algorithm 1. In this algorithm,
instead of using a single BDD manager for all the operations,
a new BDD manager is initialized in each iteration. All BDDs
after one iteration are mapped (to be explained later) into
the new BDD manager. A variable reordering is performed
for the new BDD manager. The old BDD manager is
abandoned. The process is iterated until no Boolean nodes
can be eliminated.

The need for a new BDD manager and BDD mapping
technique can be justified as follows. A typical approach for
variable reordering is based on adjacent variable swapping.
To find the optimal position for a variable, a bulk of unique
table will be traversed. During the process of eliminate, the
removal of one Boolean node from the Boolean network
corresponds to the demise of one variable in the BDD
manager, so the variable will not be used again. Let us refer
these variables to as unused variables. After the termination
of one iteration many Boolean nodes have been removed,
and the BDD manager contains large number of unused
variables. Table 3 shows the reduction of Boolean nodes after
first iteration. It can be found that about 63% variables in the
BDD manager become unused. It is obvious that performing
variable reordering in a BDD manager with large number of
unused variables is very inefficient.

Circuit Before After Reduction
C1355 474 60 88 %
C1908 325 94 72 %
C2670 656 281 58 %
C3540 793 344 57 %
C432 123 63 49 %
C499 162 57 65 %
C5315 1228 387 69 %
C6288 2338 704 70 %
C7552 1829 455 76 %
C880 296 122 59 %
dalu 764 241 69 %
des 681 294 57 %
mult32 5507 2467 56 %
pair 818 450 45 %
Total 15994 6019 63 %

Table 3: Number of Boolean node reduction after first
eliminate

Instead of reordering the BDD manager with large number
of unused variables, a new BDD manager with set of used
variables is initialized. BDDs are then transfered into the

new BDD manager using our bddPool mechanism (see
Section 3.2). During the process, variables are substituted
according to M, where M is the mapping of variables
between the old and new BDD managers. When all BDDs
are reconstructed in the new BDD manager, a set of BDDs
which are graphically isomorphic to the original ones, but
much more compact in the range of indexes, are obtained.
This process is referred to as a BDD mapping.

Table 4 shows the results of our iterative eliminate paradigm.
The results of [10] are also listed for comparison. On average,
our eliminate is 85 times faster than [10]. The runtime
advantage of BDS becomes stronger for larger test cases.
Although BDS is targeting multi-level implementation, it is
obvious that the iterative eliminate paradigm in BDS will
also be useful for PTL synthesis as well. Due to the efficient
way of handling BDD variable reordering, our iterative
eliminate paradigm has the capability to handle very large
circuits.

Circuit Chaudhry et al [10] BDS
BDD nodes CPU (s) BDD nodes CPU (s)

C1355 211 270 207 0.3
C1908 310 25.4 276 0.6
C2670 615 197 527 1.7
C3540 974 101.7 901 3.2
C432 181 4.5 183 0.5
C499 196 2.4 228 0.2
C5315 1008 307.6 918 4.0
C6288 1677 540.7 1507 4.4
C7552 1592 382.1 1227 6.4
C880 298 7.5 300 0.4
Total 7066 1838.9 6274 21.7

Table 4: Results of iterative eliminate paradigm. Both
experiments are carried out on Pentium-200.

5. EXPERIMENTAL RESULTS
The experiments have been conducted on a Pentium-III/500
machine running Linux. Most large combinational circuits in
LGSynth91 test case suite are covered in the experiment. All
test cases are synthesized by both BDS and SIS (script.rugged).
The results are then mapped by the SIS mapper.

Table 5 shows the experimental results. Two testcases,
dalu and vda, have been singled out from this table for
special illustration. In summary, BDS uses about 3% more
area than SIS. The delay of circuits synthesized by BDS is
13% smaller. The memory used by BDS is 30% less than
SIS. It should be noted that the memory usages reported
for SIS in Table 5 only include the memory used by logic
optimization procedures in script.rugged. Memory used
by full simplify is not included. Since global BDDs
are constructed during full simplify , which is not the
case for BDS, it is unfair to compare the total memory
used by script.rugged with BDS. In terms of runtime, BDS
demonstrates superior advantage over SIS, it is more than
8 times faster than SIS. We must mention that compared
with real industrial circuits, all the test cases used in this
experiment are very small. We run both BDS and SIS on
a set of circuits with more than 40K gates. BDS was over
100 times faster than SIS. Since those circuits are not in the
public domain, the experimental results are not published

Circuit SIS BDS-1.3
Area Delay CPU (s) Mem (M) Area Delay CPU (s) Mem (M)

C1355 689 39.40 6.6 1.2 711 45.60 0.4 1.0
C1908 695 68.60 8.1 1.2 730 65.00 0.8 1.0
C3540 1695 81.40 16.1 3.3 1713 81.20 3.6 1.9
C432 290 75.90 46.1 0.7 357 78.40 0.2 0.5
C499 689 39.40 6.8 0.9 708 43.60 0.6 0.5
C5315 2286 68.60 10.2 3.1 2402 70.50 5.3 3.0
C6288 4631 237.8 21.8 4.1 4677 178.3 3.8 1.1
C7552 3038 115.70 54.2 4.9 3112 83.30 4.2 4.8
C880 567 56.10 1.9 1.0 563 43.20 0.7 0.8
pair 2274 74.30 16.1 2.5 2466 52.60 2.1 2.0
rot 965 51.60 4.5 2.0 1025 51.90 1.0 0.9
Total 17819 908.8 192.4 24.9 18464 793.6 22.7 17.5

Table 5: Comparison between BDS-1.3 and SIS. The memory reported for SIS does not include the memory used by
full simplify .

here. However, one conclusion we can reach is that the
overall complexity of BDS is lower than that of SIS.

5.1 Analysis
There are two causes which contribute to the larger circuit
area obtained with BDS. First, BDS has a capability to
perform XOR and MUX decompositions. XORs and MUXes
have been represented explicitly on the factoring trees and
in the final BLIF format generated by BDS. However, due
to the weak capability to identify XORs and MUXes by the
tree-based technology mapper, only a small fraction of XORs
and MUXes synthesized by BDS can be mapped to XOR and
MUX gates. The same problem has been observed in our
previous experiment [18].

Second, currently BDS does not have the capability to
perform don’t care minimization. If the redundancy can not
be removed by eliminate , it will most likely remain in the
final synthesized circuits. Lack of such a capability is the
major hold-back for the current version of BDS. Shown in
Table 6 are the synthesis results for dalu and vda. The results
can be greatly improved by applying full simplify on
the circuits synthesized by BDS. However, the area and delay
of dalu is still 50% more than SIS. Extensive comparison
between BDS and SIS should be done for dalu.

Circuit SIS BDS-1.3
no full simplify full simplify

Area Delay Area Delay Area Delay
dalu 1307 58.40 2680 103.5 1927 93.3
vda 837 39.8 1380 32.6 1049 43.2

Table 6: The effect of full simplify .

6. CONCLUSION
In this paper, a new BDD-based logic optimization system
has been presented. The experimental results show that
BDD-based logic optimization is a promising alternative to
the existing logic optimization approaches. Currently, BDS is
still a very dynamic program. We anticipate the performance
of BDS will be promoted to a higher level in the near future.
A preliminary version of BDS can be downloaded from [20].

Compared with the state-of-the-art logic synthesis methodol-
ogy, BDD-based logic synthesis is new but much less mature.

It is too soon to conclude that it will be a practical alternative
to the widely accepted methodology. Extensively fundamen-
tal research has to be done to make this approach a truly suc-
cessful synthesis method. We hope our research can initiate
a new round of research in logic synthesis area in the years
to come.

Acknowledgment:

This work has been supported by a grant from NSF under
contract No. MIP-9613864.

References
[1] R. Rudell, “Tutorial : Design of a logic synthesis system,” in Proc. 33rd Design Automation Conference,

1996, pp. 191–196.

[2] S. B. Akers, “Functional Testing with Binary Decision Diagrams,” in Eighth Annual Conference on Fault-
Tolerant Computing, 1978, pp. 75–82.

[3] Randal E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Trans. on
Computer, vol. 35, no. 8, pp. 677–691, August 1986.

[4] K. Brace, R. Rudell, and R. Bryant, “Efficient Implementation of a BDD Package,” in Proc. Design
Automation Conference, 1990, pp. 40–45.

[5] Yung-Te Lai, Kuo-Rueih Pan, and Massoud Pedram, “OBDD-Based Function Decomposition:
Algorithms and Implementattion,” IEEE Trans. on CAD, vol. 15, no. 8, pp. 977–990, August 1996.

[6] Shih-Chieh Chang, M. Marek-Sadowska, and T. Hwang, “Technology Mapping for TLU FPGA’s Based
on Decomposition of Binary Decision Diagrams,” IEEE Trans. on CAD, vol. 15, no. 10, pp. 1226–1235,
October 1996.

[7] Jason Cong and Yuzheng Ding, “Beyond the Combinational Limit in Depth Minimization for LUT-
Based FPGA Designs,” in IEEE International Conference on Computer-Aided Design, 1993, pp. 110–114.

[8] K. Yano, Y. Sasaki, K. Rikino, and K. Seki, “Top-Down Pass Transistor Logic Design,” IEEE J. Solid-State
Circuits, vol. 31, no. 6, pp. 792–803, June 1996.

[9] P. Buch, A. Narayan, R. Newton, and A. Sangiovanni-Vincentelli, “On Synthesizing Pass Transistor
Logic,” in Intl. Workshop on Logic Synthesis, 1997.

[10] R. Chaudhry, T. Liu, A. Aziz, and J. Burns, “Area-Oriented Synthesis for Pass-Transistor Logic,” in
International Conference on Computer Design, 1998, pp. 160–167.

[11] Kevin Karplus, “Using if-then-else DAGs for Multi-Level Logic Minimization,” Tech. Rep. UCSC-CRL-
88-29, University of California Santa Cruz, 1988.

[12] V. Bertacco and M. Damiani, “The Disjunctive Decomposition of Logic Functions,” in IEEE International
Conference on Computer-Aided Design, 1997, pp. 78–82.

[13] Ted Stanion and Carl Sechen, “Boolean Division and Factorization Using Binary Decision Diagrams,”
IEEE Trans. on CAD, vol. 13, no. 9, pp. 1179–1184, September 1994.

[14] S. Minato, “Fast Factorization Method for Implicit Cube Set Representation,” IEEE Trans. on CAD, vol.
15, no. 4, pp. 377–384, April 1996.

[15] M. A. Thornton and V. S. S. Nair, “Behavioral Synthesis of Combinational Logic Using Spectral Based
Heuristics,” ACM Transactions on Design Automation of Electronic Systems, vol. 4, no. 2, pp. 219–230, April
1999.

[16] S. Yamashita, K. Yano, Y. Sasaki, Y. Akita, H Chikata, K. Rikino, and K Seki, “Pass-Transistor/CMOS
Collaborated Logic: The Best of Both Worlds,” in Symposium on VLSI Circuits Digest of Technical Papers,
1997, pp. 31–32.

[17] C. Yang and M. Ciesielski, “Synthesis for Mixed CMOS/PTL Logic: Preliminary Results,” in
International Workshop on Logic Synthesis, 1999.

[18] C. Yang, V. Singhal, and M. Ciesielski, “BDD Decomposition for Efficient Logic Synthesis,” in
International Conference on Computer Design, 1999, pp. 626–631.

[19] E. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis,” Tech. Rep. UCB/ERL M92/41, ERL,
Dept. of EECS, Univ. of California, Berkeley., 1992.

[20] http://www.ecs.umass.edu/ece/labs/vlsicad/ciesielski.html .

