
 Open access Journal Article DOI:10.1109/TNET.2021.3054924

BDS+: An Inter-Datacenter Data Replication System With Dynamic Bandwidth
Separation — Source link

Yuchao Zhang, Xiaohui Nie, Junchen Jiang, Wendong Wang ...+6 more authors

Institutions: Beijing University of Posts and Telecommunications, Tsinghua University, University of Chicago,
University of Essex ...+3 more institutions

Published on: 10 Feb 2021 - IEEE ACM Transactions on Networking (IEEE)

Topics: Dynamic bandwidth allocation, Bandwidth (computing), Overlay network, Multicast and Server

Related papers:

A bandwidth management method using available wavelength resources in backend servers for network services
based on distributed components

 A bandwidth reallocation scheme to improve fairness and link utilization in data center networks

 Dynamic Bandwidth Management System Using IP Flow Analysis for the QoS-Assured Network

 A Well-organized Dynamic Bandwidth Allocation Algorithm for MANET

 Multi-path channel allocation for multimedia stream services with multi-rate supports

Share this paper:

View more about this paper here: https://typeset.io/papers/bds-an-inter-datacenter-data-replication-system-with-dynamic-
2ppbaz9037

https://typeset.io/
https://www.doi.org/10.1109/TNET.2021.3054924
https://typeset.io/papers/bds-an-inter-datacenter-data-replication-system-with-dynamic-2ppbaz9037
https://typeset.io/authors/yuchao-zhang-5dcnizr6xq
https://typeset.io/authors/xiaohui-nie-2t6zje8m9z
https://typeset.io/authors/junchen-jiang-chm4s0k4gf
https://typeset.io/authors/wendong-wang-42uzq1cdhp
https://typeset.io/institutions/beijing-university-of-posts-and-telecommunications-28zyvzwb
https://typeset.io/institutions/tsinghua-university-3bq4rije
https://typeset.io/institutions/university-of-chicago-3d5e7aat
https://typeset.io/institutions/university-of-essex-2hcqk90p
https://typeset.io/journals/ieee-acm-transactions-on-networking-258z7e07
https://typeset.io/topics/dynamic-bandwidth-allocation-2x22ks3l
https://typeset.io/topics/bandwidth-computing-2frh6cxa
https://typeset.io/topics/overlay-network-2tow00dj
https://typeset.io/topics/multicast-2beme6v0
https://typeset.io/topics/server-10sn6dgt
https://typeset.io/papers/a-bandwidth-management-method-using-available-wavelength-4tiyo7zga1
https://typeset.io/papers/a-bandwidth-reallocation-scheme-to-improve-fairness-and-link-pihf6pjtwk
https://typeset.io/papers/dynamic-bandwidth-management-system-using-ip-flow-analysis-2133lucsy4
https://typeset.io/papers/a-well-organized-dynamic-bandwidth-allocation-algorithm-for-1k3g63dv8q
https://typeset.io/papers/multi-path-channel-allocation-for-multimedia-stream-services-aso3qk995h
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bds-an-inter-datacenter-data-replication-system-with-dynamic-2ppbaz9037
https://twitter.com/intent/tweet?text=BDS+:%20An%20Inter-Datacenter%20Data%20Replication%20System%20With%20Dynamic%20Bandwidth%20Separation&url=https://typeset.io/papers/bds-an-inter-datacenter-data-replication-system-with-dynamic-2ppbaz9037
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bds-an-inter-datacenter-data-replication-system-with-dynamic-2ppbaz9037
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bds-an-inter-datacenter-data-replication-system-with-dynamic-2ppbaz9037
https://typeset.io/papers/bds-an-inter-datacenter-data-replication-system-with-dynamic-2ppbaz9037

1

BDS+: An Inter-Datacenter Data Replication
System with Dynamic Bandwidth Separation

Yuchao Zhang*, Member, IEEE, Xiaohui Nie*, Member, IEEE, Junchen Jiang, Member, IEEE,

Wendong Wang, Senior Member, IEEE, Ke Xu, Senior Member, IEEE,

Youjian Zhao, Senior Member, IEEE, Martin J. Reed, Member, IEEE,

Kai Chen, Senior Member, IEEE, Haiyang Wang, Member, IEEE, and Guang Yao

Abstract—Many important cloud services require replicating massive data from one datacenter (DC) to multiple DCs. While the

performance of pair-wise inter-DC data transfers has been much improved, prior solutions are insufficient to optimize bulk-data

multicast, as they fail to explore the rich inter-DC overlay paths that exist in geo-distributed DCs, as well as the remaining bandwidth

reserved for online traffic under fixed bandwidth separation scheme. To take advantage of these opportunities, we present BDS+, a

near-optimal network system for large-scale inter-DC data replication. BDS+ is an application-level multicast overlay network with a

fully centralized architecture, allowing a central controller to maintain an up-to-date global view of data delivery status of intermediate

servers, in order to fully utilize the available overlay paths. Furthermore, in each overlay path, it leverages dynamic bandwidth

separation to make use of the remaining available bandwidth reserved for online traffic. By constantly estimating online traffic demand

and rescheduling bulk-data transfers accordingly, BDS+ can further speed up the massive data multicast. Through a pilot deployment

in one of the largest online service providers and large-scale real-trace simulations, we show that BDS+ can achieve 3-5× speedup

over the provider’s existing system and several well-known overlay routing baselines of static bandwidth separation. Moreover, dynamic

bandwidth separation can further reduce the completion time of bulk data transfers by 1.2 to 1.3 times.

Index Terms—Overlay Network, Data Replication, Centralized Control, Dynamic Bandwidth Separation.

✦

1 INTRODUCTION

For large-scale online service providers, such as Google, Face-

book, and Baidu, an important data communication pattern is

inter-DC multicast of bulk data–replicating massive amounts

of data (e.g., user logs, web search indexes, photo sharing,

blog posts) from one DC to multiple DCs in geo-distributed

locations. Our study on the workload of Baidu shows that inter-DC

• Yuchao Zhang is with the School of Computer Science (National Pilot

Software Engineering School) at the Beijing University of Posts and

Telecommunications. Wendong Wang is with the State Key Laboratory of

Networking and Switching Technology at the Beijing University of Posts

and Telecommunications. Beijing, China.

E-mail: yczhang@bupt.edu.cn, wdwang@bupt.edu.cn

• Xiaohui Nie, Ke Xu and Youjian Zhao are with Tsinghua University,

Beijing, China. Ke Xu is also with BNRist and Peng Cheng Laboratory.

E-mail: niexiaohui@mail.tsinghua.edu.cn, xuke@tsinghua.edu.cn, zhaoy-

oujian@tsinghua.edu.cn

• Junchen Jiang is with the Department of Computer Science at The

University of Chicago, Chicago, US.

E-mail: junchenj@uchicago.edu

• Martin J. Reed is with the School of Computer Science and Electronic

Engineering at the University of Essex, Colchester, UK.

E-mail: mjreed@essex.ac.uk

• Kai Chen is with Hong Kong University of Science and Technology, Hong

Kong, China.

E-mail: kaichen@cse.ust.hk

• Haiyang Wang is with the Department of Computer Science at the

University of Minnesota at Duluth, US.

E-mail: haiyang@d.umn.edu

• Guang Yao is with Baidu Company, Beijing, China.

E-mail: yaoguang@baidu.com

*This paper significantly extends BDS [1] by adding dynamic bandwidth

separation.

*Yuchao Zhang and Xiaohui Nie contribute equally to this paper.

Corresponding Author: Yuchao Zhang, yczhang@bupt.edu.cn

multicast already amounts to 91% of inter-DC traffic (§2), which

corroborates the traffic pattern of other large-scale online service

providers [2], [3]. As more DCs are deployed globally and bulk

data are exploding, inter-DC traffic then needs to be replicated in

a frequent and efficient manner.

DC	A DC	B

DC	C

DC	B

DC	C

DC	A

(a) Direct	replication	 over

pair-wise	 inter-DC	WANs

(b)	Replication	 leveraging	

overlay	paths

1
2

2 2

1
2

Overlay	 servers

Fig. 1: A simple network topology illustrating how overlay

paths reduce inter-DC multicast completion time. Assume that

the WAN link between any two DCs is 1GB/s, and that A

wants to send 3GB data to B and C. Sending data from A to B

and C separately takes 3 seconds (a), but using overlay paths

A→B→C and A →C→B simultaneously takes only 2 seconds

(b). The circled numbers show the order for each data piece

is sent.
While there have been tremendous efforts towards better inter-

DC network performance (e.g., [4], [5], [2], [6], [7], [8]), the focus

has been improving the performance of the wide area network

(WAN) path between each pair of DCs. These WAN-centric

approaches, however, are incomplete, as they fail to leverage

the rich application-level overlay paths across geo-distributed

DCs, as well as the capability of servers to store-and-forward

data. As illustrated in Figure 1, the performance of inter-DC

multicast could be substantially improved by sending data in

2

parallel via multiple overlay servers acting as intermediate points

to circumvent slow WAN paths and performance bottlenecks in

DC networks. It is important to notice that these overlay paths

should be bottleneck-disjoint; that is, they do not share common

bottleneck links (e.g., A→B→C and A→C→B in Figure 1).

and that such bottleneck-disjoint overlay paths are available in

abundance in geo-distributed DCs.

This paper first introduces BDS+, an application-level cen-

tralized near-optimal network system, which splits data into fine-

grained units, and sends them in parallel via bottleneck-disjoint

overlay paths with dynamic bandwidth sharing. These paths are

selected dynamically in response to changes in network conditions

and the data delivery status of each server. Note that BDS+

selects application-level overlay paths, and is therefore comple-

mentary to network-layer optimization of WAN performance.

While application-level multicast overlays have been applied in

other contexts (e.g., [9], [10], [11], [12]), building one for inter-

DC multicast traffic poses two challenges. First, as each DC

has tens of thousands of servers, the resulting large number of

possible overlay paths makes it unwieldy to update overlay routing

decisions at scale in real time. Prior work either relies on local

reactive decisions by individual servers [13], [14], [15], which

leads to suboptimal decisions for lack of global information, or

restricts itself to strictly structured (e.g., layered) topologies [16],

which fails to leverage all possible overlay paths. Second, even a

small increase in the delay of latency-sensitive traffic can cause

significant revenue loss [17], so the bandwidth usage of inter-DC

bulk-data multicasts must be tightly controlled to avoid negative

impact on other latency-sensitive traffic.

To address these challenges, BDS+ fully centralizes the

scheduling and routing of inter-DC multicast. Contrary to the

intuition that servers must retain certain local decision-making

to achieve desirable scalability and responsiveness to network

dynamics, BDS+’s centralized design is built on two empirical

observations (§3): (1) While it is hard to make centralized

decisions in real time, most multicast data transfers last for at least

tens of seconds, and thus can tolerate slightly delayed decisions

in exchange for near-optimal routing and scheduling based on

a global view; (2) Centrally coordinated sending rate allocation

is amenable to minimizing the interference between inter-DC

multicast traffic and latency-sensitive traffic.

The key to making BDS+ practical is how to update the

overlay network in near real-time (within a few seconds) in

response to performance churns and dynamic arrivals of requests.

BDS+ achieves this by decoupling its centralized control into

two optimization problems, scheduling of data transfers, and

overlay routing of individual data transfers. Such decoupling

attains provable optimality, and at the same time, allows BDS+

to update overlay network routing and scheduling in a fraction

of second; this is four orders of magnitude faster than solving

routing and scheduling jointly when considering the workload

of a large online service provider (e.g., sending 105 data blocks

simultaneously along 104 disjoint overlay paths).

In practice, there is always a fixed upper bound of available

bandwidth for bulk-data multicast, because multicast overlay

network shares the same inter-DC WAN with online latency-

sensitive traffic. Existing solutions always reserve a fixed amount

of bandwidth for the latency-sensitive traffic, according to its

peak value. This guarantees the strict bandwidth separation, but

the side affect is the waste of bandwidth, especially when the

online traffic is in its valley. To further improve link utilization,

BDS+ implements dynamic bandwidth separation that can predict

online traffic and reschedule bulk-data transfer. In other words,

BDS+ achieves dynamic bandwidth separation between bulk-data

multicast and online traffic to further speed up data transfer.

We have implemented a prototype and integrated it in Baidu.

We first deployed BDS+ in 10 DCs and ran a pilot study on

500 TB of data transfer for 7 days (about 71 TB per day).

Our real-world experiments show that BDS+ achieves 3-5×
speedup over Baidu’s existing solution named Gingko, and it can

eliminate the incidents of excessive bandwidth consumption by

bulk-data transfers. Using micro-benchmarking, we show that:

BDS+ outperforms techniques widely used in CDNs, that BDS+

can handle the workload of Baidu’s inter-DC multicast traffic

with one general-purpose server, and that BDS+ can handle

various failure scenarios 1. We then use trace-driven simulations

to evaluate BDS+ with dynamic bandwidth separation, the results

show that: BDS+ further speeds up the bulk data transfer by 1.2

to 1.3 times in the network where online and offline services are

mixed deployed. Our contributions are summarized as followed:

• Present the characteristics of Baidu’s workload of inter-DC

bulk-data multicast, which motivates the need of application-level

multicast overlay networks (§2).

• Presenting BDS+, an application-level multicast overlay network

that achieves near-optimal flow completion time by a centralized

control architecture (§3,4).

• Making dynamic bandwidth separation to further improve link

utilization in the network where online and offline services are

mixed deployed. (§3,5).

• Demonstrating the practical benefits of BDS+ by a real-world

pilot deployment and large-scale simulations in Baidu (§6,7).

2 MOTIVATION OF BDS+ DESIGN

We start by providing a case for an application-level multicast

overlay network. We first characterize the inter-DC multicast

workload in Baidu, a global-scale online service provider (§2.1).

We then show the opportunities of improving multicast per-

formance by leveraging disjoint application-level overlay paths

available in geo-distributed DCs, and by leveraging dynamic

bandwidth separation (§2.2). Finally, we examine Baidu’s current

solution of inter-DC multicast (Gingko), and draw lessons from

real-world incidents to inform the design of BDS+ (§2.3). We

conclude all these observations, which are based on a dataset of

Baidu’s inter-DC traffic collected in a duration of seven days. The

dataset comprises of about 1265 multicast transfers among 30+

geo-distributed DCs (§2.4).

2.1 Baidu’s inter-DC multicast workload

Share of inter-DC multicast traffic: Table 1 shows inter-DC

multicast (replicating data from one DC to multiple DCs) as a

fraction of all inter-DC traffic 2. We see that inter-DC multicast

dominates Baidu’s overall inter-DC traffic (91.13%), as well as

the traffic of individual application types (89.2 to 99.1%). The

fact that inter-DC multicast traffic amounts to a dominating share

1. As the existing solutions are with fixed bandwidth separation, so in these
series of experiments, we use BDS+ without dynamic bandwidth separation
(named BDS) as comparation, while BDS+ with dynamic bandwidth
separation is evaluated separately.

2. The overall multicast traffic share is estimated using the traffic that
goes through one randomly sampled DC, because we do not have access to
information of all inter-DC traffic, but this number is consistent with what we
observe from other DCs.

3

Type of application % of multicast traffic

All applications 91.13%

Blog articles 91.0%

Search indexing 89.2%

Offline file sharing 98.18%

Forum posts 98.08%

Other DB sync-ups 99.1%

TABLE 1: Inter-DC multicast (replicating data from one DC to

many DCs) dominantes Baidu’s inter-DC traffic.

(a) Proportion of multicast trans-
fers destined to percent of DCs.

(b) Proportion of multicast trans-
fers larger than certain threshold.

Fig. 2: Inter-DC multicasts (a) are destined to a significant

fraction of DCs, and (b) have large data sizes.

of inter-DC traffic highlights the importance of optimizing the

performance of inter-DC multicast.

Where are inter-DC multicasts destined? Next, we want to

know if these transfers are destined to a large fraction (or just

a handful) of DCs, and whether they share common destinations.

Figure 2a sketches the distribution of the percentage of Baidu’s

DCs to which multicast transfers are destined. We see that 90%

of multicast transfers are destined to at least 60% of the DCs, and

70% are destined to over 80% of the DCs. Moreover, we found a

great diversity in the source DCs and the sets of destination DCs

(not shown here). These observations suggest that it is untenable

to pre-configure all possible multicast requests; instead, we need

a system to automatically route and schedule any given inter-DC

multicast transfers.

Sizes of inter-DC multicast transfers: Finally, Figure 2b

outlines the distribution of data size of inter-DC multicast. We see

that for over 60% multicast transfers, the file sizes are over 1TB

(and 90% are over 50GB). Given that the total WAN bandwidth

assigned to each multicast is on the order of several Gb/s, these

transfers are not transient but persistent, typically lasting for

at least tens of seconds. Therefore, any scheme that optimizes

multicast traffic must dynamically adapt to any performance

variation during a data transfer. On the flip side, such temporal

persistence also implies that multicast traffic can tolerate a small

amount of delay caused by a centralized control mechanism, such

as BDS+ (§3).

These observations together motivate the need for a systematic

approach to optimizing inter-DC multicast performance.

2.2 Potentials of inter-DC application-level overlay

It is known that, generally, multicast can be delivered using

application-level overlays [18]. Here, we show that inter-DC mul-

ticast completion time (defined by the time until each destination

DC A DC C

DC B

DC A DC C

DC B

(b) Direct replication: 18 sec
(= max(36GB/6GB/s, 36GB/2GB/s))

DC A DC B DC C

…

(c) Chain replication: 13 sec
(=6GB/6GB/s+6GB/3GB/s+6GB/3GB/s+

6GB/3GB/s+6GB/3GB/s+6GB/3GB/s+6GB/3GB/s)

(d) Intelligent overlay: 9 sec
(= 3s+6s)

1st step: 3 sec

= max(18GB/6GB/s, 6GB/2GB/s)

2nd step: 6 sec

= max(18GB/6GB/s, 18GB/3GB/s, 12GB/2GB/s)

A sends B & C a 36GB-file which

consists of six 6-GB blocks (6 ×)

DC A DC C

1st step:

2nd step:

3rd step:

7th step:

…

Server b

DC B

6GB/s 3GB/s

2GB/s

(a) Set up and topology

Fig. 3: An illustrative example comparing the performance

of an intelligent application-level overlay (d) with that of

baselines: naive application-level overlay (c) and no overlay

(b).

DC has a full copy of the data) can be greatly reduced by

an application-level overlay network. Note that an application-

level overlay does not require any network-level support, so it is

complementary to prior work on WAN optimization.

The basic idea of an application-level overlay network is

to distribute traffic along bottleneck-disjoint overlay paths [19],

i.e., the two paths do not share a common bottleneck link or

intermediate server. In the context of inter-DC transfers, two

overlay paths either traverse different sequences of DCs (Type I),

or traverse different sequences of servers of the same sequence

of DCs (Type II), or some combination of the two. Next, we

use examples to show bottleneck-disjoint overlay paths can arise

in both types of overlay paths and how they improve inter-DC

multicast performance.

Examples of bottleneck-disjoint overlay paths: In Figure 1,

we have already seen how two Type I overlay paths (A→B→C

and A→C→B) are bottleneck-disjoint, and how it improves the

performance of inter-DC multicast. Figure 3 shows an example

of Type II bottleneck-disjoint overlay paths (traversing the same

sequence of DCs but different sequence of servers). Suppose we

need to replicate 36GB data from DC A to B and C via two

bottleneck-disjoint paths: (1) A→C: from A through B to C using

IP-layer WAN routing with 2GB/s capacity, or (2) A→b→C: from

A to a server b in B with 6GB/s capacity and b to C with 3GB/s

capacity. The data is split into six 6GB-blocks. We consider three

strategies. (1) Direct replication: if A sends data directly to B

and C via WAN paths (Figure 3(b)), the completion time is 18

seconds. (2) Simple chain replication: a naive use of application-

level overlay paths is to send blocks through server b acting as

a store-and-relay point (Figure 3(c)), and the completion time

is 13 seconds (27% less than without overlay). (3) Intelligent

multicast overlay: Figure 3(d) further improves the performance

by selectively sending blocks along the two paths simultaneously,

which completes in 9 seconds (30% less than chain replication,

and 50% less than direct replication).

Bottleneck-disjoint overlay paths in the wild: It is hard

to identify all bottleneck-disjoint overlay paths in our network

performance dataset, since it does not have per-hop bandwidth

4

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Fig. 4: There is a significant performance variance among the

inter-DC overlay paths in our network, indicating that most

pairs of overlay paths are bottleneck disjoint.

information of each multicast transfer. Instead, we observe that if

two overlay paths have different end-to-end throughput at the same

time, they should be bottleneck-disjoint. We show one example of

bottleneck-disjoint overlay paths in the wild, which consists of two

overlay paths A→b→C and A→C, where the WAN routing from

DC A to DC C goes through DC B, and b is a server in B (these

two paths are topologically identical to Figure 3). If
BWA→C

BWA→b→C
6= 1,

they are bottleneck-disjoint (BWp denotes the throughput of path

p). Figure 4 shows the distribution of
BWA→C

BWA→b→C
among all possible

values of A, b, and C in the dataset. We can see that more than 95%

pairs of A→b→C and A→C have different end-to-end throughput,

i.e., they are bottleneck disjoint.

Interaction with latency-sensitive traffic: The existing multicast

overlay network shares the same inter-DC WAN with latency-

sensitive traffic. Despite using standard QoS techniques, and

giving the lowest priority to bulk data transfers, we still see

negative impacts on latency-sensitive traffic by bursty arrivals of

bulk-data multicast requests, and inefficiency on bulk-data transfer

when latency-sensitive traffic is in its valley. Figure 5 shows the

bandwidth utilization of an inter-DC link in two days during

which a 6-hour long bulk data transfer started at 11:00pm on

the second day. The blue line denotes the outgoing bandwidth,

and the green line denotes the incoming bandwidth. We can

see that the bulk data transfer caused excessive link utilization

(i.e., exceeding the safety threshold of 80%), and as a result,

the latency-sensitive online traffic experienced over 30× delay

inflation. Also, at 4:00-5:00am in the first day, near 50% of the

bandwidth was being wasted. These cases show that, an algorithm

with dynamical interactions with latency-sensitive traffic would be

more reasonable and efficient.

2.3 Limitations of existing solutions

Realizing and demonstrating the potential improvement of an

application-level overlay network has some complications. As

a first order approximation, we can simply borrow existing

techniques from multicast overlay networks in other contexts. But

the operational experience of Baidu shows two limitations of this

approach that will be described below.

Existing solutions of Baidu: To meet the need of rapid growth

of inter-DC data replication, Baidu has deployed Gingko, an

application-level overlay network a few years ago. Despite years

of refinement, Gingko is based on a receiver-driven decentralized

overlay multicast protocol, which resembles what was used in

other overlay networks (such as CDNs and overlay-based live

video streaming [11], [20], [21]). The basic idea is that when

multiple DCs request a data file from a source DC, the requested

data would flow back through multiple stages of intermediate

servers, where the selection of senders in each stage is driven

by the receivers of the next stage in a decentralized fashion.

100%

80%

60%

40%

20%

Day1 12:00 Day1 24:00 Day2 12:00 Day2 24:00

Outgoing (outbound)

link

Incoming (inbound)

link

Safety

threshold

Latency-sensitive traffic experienced 30× longer delay

More than 50% bandwidth is wasted

Latency-sensitive traffic experienced 30× longer delay

Fig. 5: The utilization of the inter-DC link in two days: The

traffic valley on the 1st day results in nearly 50% bandwidth

waste. Inter-DC bulk data transfer on the 2nd day caused

severe interference on latency-sensitive traffic.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Completion Time (m)

C
D

F

Current Solution

Ideal solution

Fig. 6: The CDF of the actual flow completion time at different

servers in the destination DCs, compared with that of the ideal

solution.

Limitation 1: Inefficient local adaptation. The existing decen-

tralized protocol lacks the global view and thus suffers from

suboptimal scheduling and routing decisions. To show this, we

sent a 30GB file from one DC to two destination DCs in Baidu’s

network. Each DC had 640 servers, each with 20Mbps upload

and download bandwidth (in the same magnitude of bandwidth

assigned to each bulk-data transfer in production traffic). This

30GB file was evenly stored across all these 640 servers. Ideally,

if the servers select the best source for all blocks, the completion

time will be 30×1024
640×20Mbps×60s/min

= 41 minutes. But as shown in

Figure 6, servers in the destination DCs on average took 195

minutes (4.75× the optimal completion time) to receive data, and

5% of servers even waited for over 250 minutes. The key reason

for this problem is that individual servers only see a subset of

available data sources (i.e., servers who have already downloaded

part of a file), and thus cannot leverage all available overlay paths

to maximize the throughput. Such suboptimal performance could

occur even if the overlay network is only partially decentralized

(e.g., [15]), where even if each server does have a global view,

local adaptations by individual servers would still create potential

hotspots and congestion on overlay paths.

Limitation 2: High computation overhead. To obtain a global

view and achieve optimal scheduling protocols, existing cen-

tralized protocols suffer from high computation overhead. Most

formulations are super-linear, so the computational overhead of

centralized protocols always grows exponentially, making them

intractable in practice.

Limitation 3: Fixed bandwidth separation. As shown in

Figure 5, a fixed separation of link bandwidth would result in

both excessive utilization and underutilization. Ideally, if we can

make full use of the available bandwidth left by online traffic in

real time, then the link utilization would be more stable. In this

particular example, about 18.75% bandwidth was wasted in those

two days (while still caused excessive utilization case).

5

BDS+ Controller

Server

DC

1 2

Data transmission
1 Gather data delivery status to the controller

2 Push overlay routing decisions to servers

Fig. 7: The centralized design of BDS+.

2.4 Key observations

The key observations from this section are following:

• Inter-DC multicasts amount to a substantial fraction of inter-DC

traffic, have a great variability in source-destination, and typically

last for at least tens of seconds.

• Bottleneck-disjoint overlay paths are widely available between

geo-distributed DCs.

• Existing solutions that rely on local adaptation can have subopti-

mal performance and negative impact on online traffic.

• Dynamic bandwidth separation can be helpful to improve link

utilization by making full use of the remaining bandwidth of online

services.

3 SYSTEM OVERVIEW

To optimize inter-DC multicasts on overlay network with dy-

namical separation with latency-sensitive traffic, we present

BDS+, a fully centralized near-optimal network system with

dynamic bandwidth separation for data inter-DC multicast. Before

presenting the details, we first highlight the intuitions behind the

design choices, and the challenges behind its realisation.

Centralized control: Conventional wisdom on wide-area overlay

networks has relied, to some extent, on local adaptation of

individual nodes (or relay servers) to achieve desirable scalability

and responsiveness to network dynamics (e.g., [11], [14], [15],

[22]), despite the resulting suboptimal performance due to lack of

global view or orchestration. In contrast, BDS+ takes an explicit

stance that it is practical to fully centralize the control of wide-area

overlay networks and still achieve near-optimal performance in

the setting of inter-DC multicasts. The design of BDS+ coincides

with other recent works that centralize the management of large-

scale distributed systems, e.g., [23]. At a high level, BDS+

uses a centralized controller that periodically pulls information

(e.g., data delivery status) from all servers, updates the decisions

regarding overlay routing, and pushes them to agents running

locally on servers (Figure 7). Note that when the controller fails

or is unreachable, the system will fall back to a decentralized

control scheme to ensure graceful performance degradation to

local adaptation (§6.3).

Our centralized design is driven by several empirical observa-

tions:

1. Large decision space: The sheer number of inter-DC overlay

paths (which grow exponentially with the increasing number

servers acting as overlay nodes) makes it difficult for individual

servers to explore all available overlay paths based only on

local measurements. In contrast, we could significantly improve

overlay multicast performance by maintaining a global view of

data delivery status of all servers, and dynamically balancing the

availability of various data blocks, which turns out to be critical to

achieving near-optimal performance (§4.3).

2. Large data size: Unlike latency-sensitive traffic which lasts on

timescales of several to 10s of milliseconds, inter-DC multicasts

last on much coarser timescales. Therefore, BDS+ can tolerate

a short delay (of a few seconds) in order to get better routing

decisions from a centralized controller which maintains a global

view of data delivery and is capable of orchestrating all overlay

servers.

3. Flexible traffic control: BDS+ can enforce bandwidth allocation

by setting limit rates in each data transfer, while each server can use

Linux Traffic Control (tc) to enforce the limit on the teal bandwidth

usage. This allows BDS+ to leverage flexible dynamic bandwidth

separation. Once any network changes are detected, BDS+ could

easily adjust bandwidth for each data transfer by controlling the

sending rate at all servers in a centralized fashion (no matter to

reserve more bandwidth when online traffic burst, or to reduce

transfer rate when online traffic is in valley). (§6.4).

4. Lower engineering complexity: Conceptually, the centralized

architecture moves the control complexity to the centralized

controller, making BDS+ amenable to a simpler implementation,

in which the control logic running locally in each server can be

stateless and triggered only on arrivals of new data units or control

messages.

The key to realizing centralized control: In essence, the

design of BDS+ performs a trade-off between incurring a small

update delay in return for the near-optimal decisions brought by

a centralized system. Thus, the key to striking such a favorable

balance is a near-optimal yet efficient overlay routing algorithm

that can update decisions in near realtime. At a first glance,

this is indeed intractable. For the workload at a scale of Baidu,

the centralized overlay routing algorithm must pick the next

hops for 105 of data blocks from 104 servers. This operates

at a scale that could grow exponentially when we consider the

growth in the number of possible overlay paths that go through

these servers and with finer grained block partitioning. With the

standard routing formulation and linear programming solvers, it

could be completely unrealistic to make near-optimal solutions by

exploring such a large decision space (§7.2.4).

The key to realizing dynamic bandwidth separation: Dynamic

bandwidth separation raises two requirements, one is to reserve

enough bandwidth for latency-sensitive online traffic so as to avoid

negative impacts on these services, and the other is to make full

use of the residual bandwidth so as to reduce the completion time

of bulk data transfer. With the traditional strict safety threshold and

decentralized protocols, it could be impossible to make efficient

bandwidth usage in the dynamic and mixed deployed network

(§7.3).

The potential under different topologies: The potential of

BDS+ comes from two aspects, one is the dynamic bandwidth

separation, and the other is the bottleneck disjoint overlay

path. While dynamic bandwidth separation could improve link

utilization no matter in any network topology, the overlay path

brings performance improvement under most network topologies,

but not all. The premise for this algorithm to work is that there are

bottleneck disjoint overlay paths under such network topology.

For example, on the topologies such as ring, star, tiered, full

mesh, partial mesh, BDS+ could work well because there are

potential bottleneck disjoint overlay paths under such topologies.

6

Variables Meaning

B Set of blocks of all tasks

b A block

ρ(b) The size of block b

Ps,s′ Set of paths between a source and destination pair

p A particular path

l A link on a path

c(l) Capacity of link l

∆T A scheduling cycle

Tk The k-th update cycle

w
(Tk)
b,s Binary: if s is chosen as destination server for b at Tk

Rup(s) Upload capacity of server s

Rdown(s) Download capacity of server s

f
(Tk)
b,p Bandwidth allocated to send b on path p at Tk

TABLE 2: Notations used in BDS+’s decision-making logic.

However, under the simple point-to-point network topology, BDS+

could not bring performance improvement because there are no

alternative paths. Generally speaking, the topology of large-scale

inter-DC network is more complex than the point-to-point network

topology, so BDS+ could bring performance improvement in most

cases.

The following two sections will present how BDS+ works.

4 NEAR-OPTIMAL APPLICATION-LEVEL OVERLAY

NETWORK

The core of BDS+ is a centralized decision-making algorithm

that periodically updates overlay routing decisions at scale and in

near real-time. BDS+ strikes a favorable tradeoff between solution

optimality and near real-time updates by decoupling the control

logic into two steps (§4.2): overlay scheduling, i.e., which data

blocks to be sent (§4.3), and routing, i.e., which paths to use

to send each data block (§4.4), each of which can be solved

efficiently and near-optimally.

4.1 Basic formulation

We begin by formulating the problem of overlay traffic engineer-

ing. Table 2 summarizes the key notations.

The overlay traffic engineering in BDS+ operates at a fine

granularity, both spatially and temporally. To exploit the many

overlay paths between the source and destination DCs, BDS+

splits each data file into multiple data blocks (e.g., 2MB). To cope

with changes of network conditions and arrivals of requests, BDS+

updates the decisions of overlay traffic engineering every ∆T (by

default, 3 seconds3.).

Now, the problem of multicast overlay routing can be formu-

lated as following:

Input: BDS+ takes as input the following parameters: the set of

all data blocks B, each block b with size ρ(b), the set of paths

from server s′ to s, Ps′,s, the update cycle interval ∆T , and for

each server s the upload (resp. download) capacity Rup(s) (resp.

Rdown(s)). Note that each path p consists of several links l, each

defined by a pair of servers or routers. We use c(l) to denote the

capacity of a link l.

Output: For each cycle Tk, block b, server s, and path p ∈ Ps′,s

destined to s, BDS+ returns as output a 2-tuple 〈w
(Tk)
b,s , f

(Tk)
b,p 〉, in

3. We use a fixed interval of 3 seconds, because it is long enough for BDS+
to update decisions at a scale of Baidu’s workload, and short enough to adapt
to typical performance churns without noticeable impact on the completion
time of bulk data transfers. More details in §7

which w
(Tk)
b,s denotes whether server s is selected as the destination

server of block b in Tk, f
(Tk)
b,p denotes how much bandwidth is

allocated to send block b on path p in Tk, and f
(Tk)
b,p = 0 denotes

path p is not selected to send block b in Tk.

Constraints:

• The allocated bandwidth on path p must not exceed the capacity

of any link l in p, as well as the upload capacity of the source

server Rup(s), and the download capacity of the destination server

Rdown(s
′).

f
(Tk)
b,p ≤ min

(

minl∈pc(l),q
(Tk)
b,s′ ·Rup(s

′),w
(Tk)
b,s ·Rdown(s)

)

for ∀b, p ∈ Ps′,s

(1)

where q
(Tk)
b,s = 1−∏i<k(1−w

(Ti)
b,s) denotes whether server s has ever

been selected to be the destination of block b before cycle Tk.

• For all the paths, the summed allocated bandwidth of a link

should be no more than its capacity c(l).

c(l)≥ ∑
b∈B

f
(Tk)
b,p , for ∀l ∈ p (2)

• All blocks selected to be sent in each cycle must complete their

transfers within ∆T , that is,

∑
b∈B

w
(Tk)
b,s ·ρ(b)≤ ∑

p∈P
∑
b∈B

f
(Tk)
b,p ·∆T, for ∀Tk (3)

• Finally, all the blocks must be transmitted at the end of all cycles.

∑
b∈B

ρ(b)≤
N

∑
k=1

∑
p∈P

∑
b∈B

f
(Tk)
b,p (4)

Objective: We want to minimize the number of cycles needed to

transfer all data blocks. That is, we return as output the minimum

integer N for which the above constraints have a feasible solution.

Unfortunately, this formulation is intractable in practice for

two reasons. First, it is super-linear and mixed-integer, so the

computational overhead grows exponentially with the increase

in potential source servers, and data blocks. Second, to find the

minimum integer N, we need to check the feasibility of the

problem for different values of N.

4.2 Decoupling scheduling and routing

At a high level, the key insight behind BDS+ is to decouple

the aforementioned formulation into two steps: a scheduling step

which selects the subset of blocks to be transferred each cycle

(i.e., w
(Tk)
b,s), followed by a subsequent routing step which picks the

path and allocates bandwidth to transfer the selected blocks (i.e.,

f
(Tk)
b,p).

Such decoupling significantly reduces the computational over-

head of the centralized controller. As the scheduling step selects

a subset of blocks, and only these selected blocks are considered

in the subsequent routing step, the searching space is thus sig-

nificantly reduced. Mathematically, by separating the scheduling

step from the problem formulation, the routing step is reduced

to a mixed-integer LP problem, which though is not immediately

tractable, can be solved with standard techniques. Next, we present

each step in more details.

4.3 Scheduling

The scheduling step selects the subset of blocks to be transferred

in each cycle, i.e., w
(Tk)
b,s .

7

The key solving the scheduling (picking the subset of blocks)

is to make sure that the subsequent data transmission can be done

in the most efficient manner. Inspired by the “rarest-first” strategy

in BitTorrent [24] that tries to balance block availability, BDS+

adopts a simple-yet-efficient way of selecting the data blocks: for

each cycle, BDS+ simply picks the subset of blocks with the least

amount of duplicates. In other words, BDS+ generalizes the rarest-

first approach by selecting a set of blocks in each cycle, instead of

a copy of a single block. The proof of optimality of this algorithm

is shown in the Appendix.

In addition, BDS+ also supports setting different priorities for

different blocks (i.e., applications) if necessary. For example, we

can set higher priority for those blocks from more important (or

shorter) applications, making those blocks selected for transmis-

sion as early as possible, even if they are not the rarest ones. But

in the current version of BDS+, it treats them equally.

4.4 Routing

After the scheduling step selects the block set to transfer in each

time slot (w
(Tk)
b,s), the routing step decides the paths and allocates

bandwidth to transfer the selected blocks (i.e., f
(Tk)
b,p). To minimize

the transfer completion time, BDS+ maximizes the throughput

(total data volume transferred) in each cycle Tk.

max ∑
p∈P

∑
b∈B

f
(Tk)
b,p (5)

This is of course an approximation, since greedily maxim-

ixing the throughput in one cycle may lead to suboptimal data

availability and lower the maximum achivable throughput in

the next cycle. But in practice, we find that this approximation

can lead to significant performance improvement over baselines,

partly because the scheduling step, described in the last section,

automatically balances the availability of blocks, so suboptimal

data availability (e.g., starvation of blocks) caused by greedy

routing decisions in past cycles happens rarely.

This formulation, together with the constraints from §4.1 is

essentially an integer multi-commodity flow (MCF) algorithm,

which is known to be NP-complete [25]. To make this problem

tractable in practice, the standard approximation assumes each

data file can be infinitesimally split and transferred simultaneously

on a set of possible paths between the source and the destination.

BDS+’s actual routing step closely resembles this approximation

as BDS+ also splits data into tens of thousands of fine-grained data

blocks (though not infinitesimally), and it can be solved efficiently

by standard linear programming (LP) relaxation commonly used

in the MCF problem [26], [27].

However, when splitting tasks infinitesimally, the number of

blocks will grow considerably large, and the computing time will

be intolerable. BDS+ adopts two coping strategies: (1) it groups

the blocks with the same source and destination pair to reduce

the problem size (detailed in §6.1); and (2) it uses the improved

fully polynomial-time approximation schemes (FPTAS) [28] to

optimize the dual problem of the original problem and works out

an ε-optimal solution. These two strategies further reduces the

running time of centralized algorithm.

5 DYNAMIC BANDWIDTH SEPARATION

The primary version without dynamic bandwidth separation

(BDS) performs well under fixed network separation, but in the

Agent Monitor

Controller

Fig. 8: Logical diagram of BDS+’s dynamic bandwidth

separation.

mixed deployment situations where online traffic and offline traffic

shares the same server I/O, it results in low link utilizations when

online traffic reduces. This is because bulk data transfer will never

occupy any bandwidth exceeding the fixed threshold even though

online traffic is far below the reserved bandwidth (see §2.3).

So we further present BDS+ with dynamic bandwidth separa-

tion, which adjusts the available bandwidth for bulk data transfer

in a real-time manner, by continuously predicting online traffic

and automatically adjusting the scheduling decisions, so as to

fully utilize network bandwidth accordingly. To be specific, BDS+

automatically adjust the scheduling results under different network

conditions: if online traffic encounters its peak, BDS+ shirks its

occupied bandwidth to avoid congestions, while online traffic

encounters its valley, BDS+ aggressively uses more bandwidth

to make full use of the residual bandwidth.

To achieve this, BDS+ leverages a customized online traffic

prediction algorithm, which identifies the changes of server

bandwidth usage, and triggers re-scheduling to adjust bandwidth

allocation to the bulk-data transfer. Figure 8 shows the logical

diagram of BDS+’s dynamic bandwidth separation. The Network

Change Monitor reads the agent observations (bwin and bwout) and

executes a customized combination of k-Sigma [29] and a change

point detection algorithm [30]. k-Sigma is responsible to calculate

the mean and standard deviation of agent observation, and the

change point detection is responsible for detecting abrupt changes

by observing historical data, in order to make the Agent Monitor

both stable and sensitive.

To integrate to BDS, we make the above online traffic

prediction at the beginning of each cycle, and based on the

predicted traffic, BDS updates the available link status and then

calculates bottleneck disjoint paths. As the online traffic is time-

varying, the available bandwidth of all paths are therefore varies

along with the online traffic, making the bottleneck disjoint path

different in each scheduling cycle. This requires BDS+ to be able

to work under different scenarios (varying number of bottleneck

disjoint paths), which also proves the generalizability of BDS+.

5.1 Design Logic

To detect online traffic changes and dynamically adjust config-

urations, there are some basic methods, such as exponentially

weighted moving average (EWMA) control scheme, k-sigma [31],

[32]. Such approaches sometimes result in continual reconfigu-

rations even when the network is (statistically) stationary (since

samples may vary in time series). So it encounters a tradeoff

when predicting the available bandwidth: When we put more

importance to the recent values as a reference (i.e., k is small),

there will be an obvious oscillation in the predicted value, which

introduces continual but unnecessary reschedules. When we put

more importance to the historical values as references (i.e., k is

large), the predicted value will not be affected timely when a

change point is suddenly detected, making the system insensitive

to network changes.

8

Changes/Adjustments Scheduling Routing

Online Traffic ↑ w
(Tk)
b,s - f

(Tk)

b,p∈P̂
↓

Online Traffic ↓ w
(Tk)
b,s + f

(Tk)

b,p∈P̂
↑

TABLE 3: Dynamic adjustment in BDS+ according to the online

traffic prediction.

To address the above problem, BDS+ combines k-sigma with

a change point detection algorithm [30], which can identify

abrupt changes of sequential data. Such algorithms offers both

online and offline processing methods, while offline methods [33],

[34], [35], [36] require the complete data in full time series to

generate samples from the posterior distribution over change point

locations, online methods [37], [38], [39] can generate an accurate

distribution of the next unseen data with only already observed

data. In BDS+, we implemented our customized sliding − k

algorithm based on [30] (with code can be found in [40]) into

the Network Change Monitor. Specifically, we set an upper bound

K for the EWMA algorithm, k gradually increases to K when

there is no change point, and will be reset to 0 once a change

point is detected, and then gradually increases to K again. This

improvement makes the sliding− k more stable.

5.2 Integrated to BDS

5.2.1 Online traffic prediction algorithm

During a scheduling cycle ∆Tk in BDS+, Network Change Monitor

is continually fed with a series of agent observations of server

throughput (bandwidth usage), which is used to predict the

available bandwidth in the next scheduling cycle. To get the

bandwidth usage, the Network Change Monitor periodically reads

the record in process activity monitor on servers. For particular

servers, they continuously log processing activities (including

server throughput) and send the sampled summed throughput to

the Network Change Monitor. In this way, any network changes

occurred during the bulk data downloading can be timely detected.

In addition, it should also be noted that BDS+ faces different

mixes of delay sensitive traffic and bulk data traffic at every

moment. Specifically, online traffic consists of all the real-time

traffic from all the online applications (such as online search,

shopping transactions, real-time conversations and so on), which

is a different mix at every moment, and it is unknown what

applications the online traffic come from in the next cycle. At the

same time, bulk data consists of the traffic from multiple offline

applications (such as blog articles, search index, forum posts, file

sharing and so on). Therefore, when BDS+ is running, the scenario

it faces in each scheduling cycle is a different mix of online traffic

and bulk data transfer traffic.

5.2.2 Dynamic Bandwidth Separation

When a change is detected, the Network Change Monitor signals

the change and the updated available bandwidth to the Controller,

triggering rescheduling in BDS+ to make bandwidth adjustments

in the next scheduling cycle. Shown in Table 3, such adjustment

can be two-fold (assume the affected path by the online traffic

change is P̂):

• When the total link utilization exceeds the pre-configured

safety threshold (80% in the example in §2.3), BDS+ shirks the

occupied bandwidth for bulk-data transfer in both scheduling and

ServerServer

Controller

Agent	Monitor

BDS+

2.	Monitor	information

(block_id,	block_num,	

server_status,	link	

capacity,	Predicted	link	

capacity)

3.	Schedule		&	Decisions

(agent_id,	block_id,

!∗, $%, &',)

Agent Agent Agent… …

1.	Report	requirements	

&	local	status

(block_id,server_status)

4.	Control	message

(block_id,	!∗, $%, &')

Server

Fig. 9: Interfaces of BDS+’s centralized control.

routing steps to avoid congestions: 1. cancel some blocks that

were scheduled in the current scheduling cycle ∆T but not yet

transferred; 2. reduce the allocated bandwidth f
(Tk)
b,p for block b on

path p ∈ P̂ in Tk.

• When online traffic usage encounters its valley, making link

utilization fall below the safety threshold, BDS+ aggressively

occupies more bandwidth in scheduling and routing steps: 1.

transfer some additional blocks that were not scheduled in the

current scheduling cycle ∆T ; 2. increase the allocated bandwidth

f
(Tk)
b,p for block b on path p∈ P̂ in Tk, to make full use of the residual

bandwidth detected by the online traffic prediction algorithm.

6 SYSTEM DESIGN

This section presents the system design and implemetation of

BDS+.

6.1 Centralized control of BDS+

BDS+ periodically (by default, every three seconds) updates the

routing and scheduling decisions in a centralized fashion. Figure

9 outlines the workflow in each three-second cycle.

1) It starts with the Agent, running locally on each server,

checking the local states, including data block delivery

status (which blocks have arrived, and which blocks are

outstanding), server availability, and disk failures, etc.

2) These statistics are then wrapped in a control message, and

sent to the centralized BDS+ Controller via an efficient

messaging layer called an Agent Monitor.

3) The BDS+ Controller also receives network-level statistics

(the bandwidth consumption by latency-sensitive traffic and

the utilization on each inter-DC link) from a Network

Monitor.

4) On receiving the updates from all Agents and the Network

Monitors, the BDS+ Controller runs the centralized decision-

making algorithm (§4) to work out the new scheduling and

routing decisions, and sends the difference between the new

decision and the previous one to the per-server local Agent

via the Agent Monitor messaging layer.

5) Finally, the Agent allocates bandwidth for each data transfer,

and carries out the actual data transfers according the

Controller’s routing and scheduling decisions.

9

BDS+ uses two additional optimizations to make the workflow

more efficient.

• Block merging. To reduce the computational scale and

achieve more efficient transmissions, BDS+ merges the

blocks with the same source and destination into one subtask.

Its benefits are two-fold: (1) it significantly reduces the

number of pending blocks in each scheduling cycle, thus

reducing the computational cost of the centralized decision-

making logic; and (2) it reduces the number of parallel TCP

connections between servers, which could otherwise reduce

link utilization and degraded performance.

• Non-blocking update. To avoid being blocked by the con-

troller’s decision-making logic, each local Agent keeps the

ongoing data transmissions alive while the Controller runs the

centralized decision-making logic. Similarly, the Controller

takes this into account by speculating the changes in data

delivery status while the decisions are being re-calculated,

and using these speculated data delievery status as the input

of the centralized logic.

6.2 Dynamic bandwidth separation of BDS+

To guarantee dynamic bandwidth separation between inter-DC

bulk-data multicasts and delay-sensitive traffic, the BDS+ Network

Change Monitor detects any changes of the aggregated bandwidth

usage of all latency-sensitive flows on each inter-/intra-DC

link, and dynamically allocates the bandwidth for bulk-data

multicast transfer accordingly. To protect delay-sensitive flows

from being negatively affected by bursty bulk-data transfers,

BDS+ is designed to be sensitive to network changes by using a

sliding k in the traffic prediction algorithm. In other words, it puts

more importance to sudden increases or decreases when online

traffic oscillates (to be sensitive), while simultaneously referring

to history information when online traffic doesn’t change much (to

be stable).

BDS+’s dynamic bandwidth separation also takes advantages

of the centralized logic of BDS. The traditional techniques

(e.g., [2]) that gives higher priority to online latency-sensitive traf-

fic can still have bandwidth wastage or performance interference

in the presence of dynamic network environments [41]. BDS+,

in contrast, dynamically predicts the bandwidth usage of latency-

sensitive applications, and calculates the residual bandwidth that

can be allocated to inter-DC multicast. Finally, note that BDS+

optimizes the application-level overlay, thus is complementary to

network-layer techniques that improve the WAN performance and

fairness [42], [43], [44], [45].

6.3 Fault tolerance

Next we describe how BDS+ handles the following failures.

1. Controller failure: The controller is replicated [46]: if the master

controller fails, another replica will be elected as the new controller.

If all controller replicas are not available (e.g., a network partition

between DCs and the controllers), the agents running in servers will

fallback to the current decentralized overlay protocol as default to

ensure graceful performance degradation.

2. Server failure: If the agent in a server is still able to work, it will

report the failure state (e.g., server crash, disk failure, etc.) to the

agent monitor in the next cycle. Otherwise, the servers that selected

this server as a data source would report the unavailability to the

agent monitor. In either case, the controller will remove that server

from the potential data sources in the next cycle.

3. Network partition between DCs: If network partitioning happens

between DCs, the DCs located in the same partition with the

controller will work the same as before, while the DCs in the

other partition(s) will fallback to the aforementioned, decentralized

overlay network.

6.4 Implementation and deployment

We have implemented BDS+, and deployed it on 67 servers in

10 of Baidu’s geo-distributed DCs, with 3621 lines of code in the

Go language [47]. Evaluation in the next section is based on this

deployment.

The controller was duplicated (for reliability) on three different

geo-located zookeeper servers. The Agent Monitor uses HTTP

POST to send control messages between the controller and

servers. BDS+ uses wget to make each data transfer, and enforce

bandwidth allocation by setting --limit-rate field in each

data transfer. The agent running in each server uses Linux Traffic

Control (tc) to enforce the limit on the total bandwidth usage of

inter-DC multicast traffic.

BDS+ can be seamlessly integrated with any inter-DC com-

munication patterns. All the applications need to do is to call

the APIs that consist of three steps: (1) provide the source DC,

destination DCs, intermediate servers, and the pointer to the bulk

data; (2) install agents on all intermediate servers; (3) and finally,

set the start time of the data transfers. Then BDS+ will start

the data distribution at the specified time. We speculate that our

implementation should be applicable to other companies’ DCs too.

BDS+ has several parameters that are set either by admini-

trators of Baidu, or empirically by evaluation results. These

parameters include: the bandwidth reserved for latency-sensitive

traffic (20%), the data block size (2MB), and update cycle length

(3 seconds).

7 EVALUATION

Using a combination of pilot deployment in Baidu’s DCs,

microbenchmarking, and trace-driven simulations, we show that:

1. BDS+ completes inter-DC multicast 3-5× faster than Baidu’s

existing solutions, as well as other baselines used in industry (§7.1).

2. BDS+ can scale to the traffic demand of a large online service

provider, tolerate various failure scenarios, and achieves close to

optimal flow completion time (§7.2).

3. BDS+ can: (1). further complete inter-DC multicast 1.2 to 1.3

times faster with dynamic bandwidth separation, (2). predict the

bandwidth utilization of online traffic with about 95% accuracy,

(3). increase bandwidth utilization when the online traffic is low,

while reducing the bulk data transfer when online traffic bursts, (4).

achieve near real-time scheduling with relatively low computational

overhead (§7.3).

7.1 BDS+ over existing solutions

7.1.1 Methodology

Baselines: We compare BDS+ with three existing solutions:

Gingko (Baidu’s existing decentralized inter-DC multi-cast strat-

egy), Bullet [13], and Akamai’s overlay network [11] (a central-

ized strategy for multicasting live videos).

Pilot deployment: We choose several services with different

data sizes, and run A/B testing in which we run BDS+ instead

of Baidu’s default solution Gingko for the same hours in several

randomly chosen days.

10

0 50 100 150 200 250 300
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Completion Time (m)

C
D

F

Gingko
BDS+

(a) Distribution of completion time.

Large Medium Small
0

50

100

150

200

250

Application Types

C
om

pl
et

io
n

T
im

e
(m

)

Gingko
BDS+

(b) Comparison by application types.

0 1 2 3 4 5 6
0

50
100
150
200
250
300
350

Days

C
om

pl
et

io
n

T
im

e
(m

)

Gingko
BDS+

(c) Comparison by completion time.

Fig. 10: [BDS+ vs. Gingko (Baidu’s existing solution)] Results from pilot deployments.

Trace-driven simulation: Complementary to the pilot deploy-

ment on real traffic, we also use trace-driven simulation to evaluate

BDS+ on a larger scale. The simulation is not to reproduce the

results of the above pilot deployment, but to provide evaluation

results in large-scale scenarios, which is complementary to the

pilot deployment. Specifically, we simulate the other two overlay

multicast techniques using the same topology, number of servers,

and link capacities as BDS+, and replay inter-DC multicast

data requests in the same chronological order as in the pilot

deployment.

As the existing solutions are all designed under the situation

where the available bandwidth is fixed, so in this subsection,

we evaluate the basic version of BDS+ with fixed bandwidth

separation, to ensure fairness. The additional improvements by

BDS+’s dynamic bandwidth separation are shown in §7.3. The

whole logic of BDS+ can be summarized as follows: BDS+ first

obtains all the paths from the topology of Baidu network, and

then conducts the dynamic bandwidth separation by predicting

the online traffic on each link. Thus, BDS+ obtains the residual

bandwidth of all the paths, and therefore confirms the available

links for the subsequent bulk data transfer. On this base, BDS+

runs the scheduling and routing algorithm periodically to find

overlay paths for those selected blocks. With the power of the

bottleneck disjoint overlay paths, blocks can be transmitted on

multiple paths simultaneously, and avoid going through bottleneck

links. That’s the key to accelerate inter-DC bulk data transfer.

7.1.2 BDS+ vs. Gingko

We begin by evaluating BDS+ and Gingko on one service that

needs to distribute 70 TB data from one source DC to ten

destination DCs. Figure 10a shows the cumulative distribution

function (CDF) of the completion time on each destination server.

We can see that the median completion time of BDS+ is 35

minutes, 5× faster than Gingko, where most DCs takes 190

minutes to get the data.

To generalize the finding, we pick three applications whose

data volumes are large (70 TB), medium (50 TB) and small

(20 TB), and compare BDS+’s and Gingko’s mean (and standard

deviation) of completion time for each application in Figure 10b.

We see that BDS+ consistently outperforms Gingko, and has

less performance variance. We also see that BDS+ has greater

improvement in applications with larger data sizes. This is because

BDS+ adopts ”rarest-first” strategy in the scheduling stage, which

treats all blocks as the same no matter it belongs to a larger bulk

data transmission or a smaller transmission, so there is a strong

possibility that blocks from large bulk data transmissions will be

scheduled earlier, resulting in greater improvement for those larger

bulk data. Finally, Figure 10c shows the timeseries of the mean

completion time of BDS+ and Gingko in one randomly chosen

Solution Baseline Large Scale Rate Limit

Bullet 28m 82m 171m

Akamai 25m 87m 138m

BDS+ 9.41m 20.33m 38.25m

TABLE 4: [BDS+ vs. Bullet [13], Akamai [11]] Completion time

of the three solutions in trace-driven simulation.

application, and we see that BDS+ consistently outperforms

Gingko by 4×.

7.1.3 BDS+ vs. other overlay multicast techniques

Table 4 compares BDS+ with two other baselines, Bullet and

Akamai’s overlay network, using trace-driven simulation. In the

simulation, we set the inter-DC bandwidth to the range from 5T B

to 25T B, which is scaled down proportionally according to the

real network. We show the results in three setups. In the baseline

evaluations, we send 1TB data from one DC to 11 DCs, each

has 100 servers, and the upload and download link capacities are

set to be 20MBs. In the large-scale evaluations, we send 10TB

data between the same DCs, each with 1000 servers. In the rate-

limited evaluations, the setup is the same as that in the baseline

experiments except the server upload and download rate limit set

to be 5MBs. We see that BDS+ achieves 3× shorter completion

time than Bullet and Akamai in the baseline setup, and over 4×
shorter completion time in the large-scale and small bandwidth

setups, which corroborates the findings in §7.1.2 that BDS+ has

greater improvement when data sizes are large.

7.2 Micro-benchmarks

Next, we use micro-benchmarking to evaluate BDS+ along

three metrics: (1) scalability of the centralized control; (2) fault

tolerance; and (3) optimality of BDS+ parameters.

7.2.1 Scalability

Controller running time: As the controller needs to decide

the scheduling and routing of each data block, the running time

of the control logic naturally scales with the number of blocks.

Figure 11a shows the running time as a function of the total

number of blocks. We can see that the centralized BDS+ controller

can update the scheduling and routing decision within 800ms with

106 blocks. To put this number into perspective, in Baidu’s DCs,

the maximum number of simultaneous outstanding data blocks is

around 3×105, for which BDS+ can finish updating the decisions

within 300ms.

Network delay: BDS+ works in inter-DC networks, so the

network delay among DCs is a key factor in the algorithm updating

11

0.5 1 1.5 2 2.5 3 6 12
0

100

200

300

400

500

600

700

800

900

1000

R
u
n
n
in

g
 T

im
e
 (

m
s
)

of Blocks x 10
5

(a) The controller running time.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Network Delay (ms)

C
D

F

(b) The inter-DC network delay.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feedback Loop Delay (ms)

C
D

F

(c) Feedback loop delay.

Fig. 11: [System scalability] Measurements on (a) controller running time, (b) network delay, (c) Feedback loop delay.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

Cycle

#
 o

f
b
lo

c
k
s

(a) Average number of downloaded blocks
per cycle under failures.

1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

DCs

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
)

2M/blk

64M/blk

(b) Completion time under different block
sizes.

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

Cycle Length (s)

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
)

(c) Completion time under different cycle
lengths.

Fig. 12: BDS+’s (a) fault tolerance, (b) sensitivity to different block sizes, and (c) different cycle lengths.

process. We recorded the network delay of 5000 requests and

present the CDF in Figure 11b. We can see that 90% of the

network delays are below 50ms and the average value is about

25ms, which is less than 1% of the decision updating cycle (3

seconds).

Feedback loop delay: For centralized algorithms, a small

feedback loop delay is essential for algorithmic scalability. In

BDS+, this feedback loop consists of several procedures: status

updating from agents to the controller, running of the centralized

algorithm, and decision updating from the controller back to

agents. We measure the delay of the whole process, as shown

in the CDF of Figure 11c, and find that in most cases (over 80%),

the feedback loop delay is lower than 200ms. So we claim that

BDS+ demonstrates a short enough latency and is able to scale to

even larger systems.

7.2.2 Fault tolerance

Here we examine the impact of the following failure scenario on

the number of downloaded blocks per cycle. During cycles 0 to

9, BDS+ works as usual, and one agent fails in the 10th cycle.

The controller fails in the 20th cycle and recovers in the 30th

cycle. Figure 12a shows the average number of downloaded blocks

per cycle. We find that the slight impact of agent failure only

lasts for one cycle, and the system recovers in the 11th cycle.

When the controller is unavailable, BDS+ falls back to a default

decentralized overlay protocol, resulting in graceful performance

degradation. With the recovery of the controller, the performance

recovers in the 30th cycle.

7.2.3 Choosing the values of key parameters

Block size: In BDS+, the bulk data file is split into blocks and can

be transferred on bottleneck-disjoint paths. But this introduces a

tradeoff between scheduling efficiency and calculation overhead.

We therefore conduct two series of experiments using different

block sizes (2MB and 64MB). Figure 12b shows that the

completion time in the 2MB/block scenario is 1.5 to 2 times

shorter than that in the 64MB/block scenario. However, this

optimization introduces a longer controller running time, as shown

in Figure 11a. We pick block size by balancing two considerations:

(1) constraints on the completion time, and (2) the controller’s

operational overhead.

Update cycle lengths: Since any change in network environment

may potentially alter the optimal overlay routing decisions, BDS+

reacts to the changing network conditions by adjusting the

routing scheme periodically. To test the adjustment frequency,

we set different cycle lengths from 0.5s to 95s for the same

bulk data transfer, and Figure 12c shows the completion time.

Smaller cycle lengths result in shorter completion time, but the

benefit diminishes when the cycle length is less than 3s. This

is because updating too frequently introduces greater overhead

on: (1) the information collection from agents to the controller,

(2) the execution of the centralized algorithm, and (3) the

re-establishment of new TCP connections. Thus, considering

adjustment granularity and the corresponding overhead, we finally

choose 3s as the default cycle length.

7.2.4 In-depth analysis.

Optimization over algorithm running time: BDS+ decouples

scheduling and routing, which can significantly reduce the compu-

tational complexity. To clearly show the optimization, we measure

the algorithm running time under BDS+ and the standard LP

solution. For the standard LP experiments, we use the linprog

library on MATLAB [48], set the upper bound of the iteration

number (106) if the algorithm does not converge, and record the

CPU time as a function of the block number. Figure 13a shows

that the running time of BDS+ keeps below 25ms while that of

standard LP grows quickly to 4s with only 4000 blocks. BDS+ is

much faster than an off-the-shelf LP solver.

Near-optimality of BDS+: To measure the near-optimality, we

evaluate the data transfer completion time under the standard LP

and BDS+: 2 DCs, 4 servers, 20MBs for server upload/download

rate. We vary the number of blocks from 1 to 4000, over which

12

0 800 1600 2400 3200 4000
100

101

102

103

104

105

of Blocks

R
un

ni
ng

 T
im

e
(m

s)

BDS+
Standard LP

(a) The reduction on algorithm running
time of BDS+ over standard LP.

0 800 1600 2400 3200 4000
0

3

6

9

12

15

of Blocks

C
om

pl
et

io
n

T
im

e
(m

)

BDS+
Standard LP

(b) The near-optimality of BDS+ to
standard LP in small scale.

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of servers

C
D

F

(c) The proportion of blocks downloaded
from the original source.

Fig. 13: [In-depth analysis] on (a) reduction on algorithm running time, (b) near-optimality, and (c) effects of overlay

transmission.

the LP solver cannot finish in a reasonable time. Figure 13b shows

the near-optimality of BDS+.

Benefit of disjoint overlay paths: §2.2 reveals the benefits of

disjoint paths on application-level overlay networks. To explore

the potential benefit, we record the ratio of the number of blocks

downloaded from the original source to the total number of blocks,

and the CDF is shown in Figure 13c. For about 90% of servers,

the proportion is less than 20%, which means that more than

80% blocks are downloaded from other DCs on the disjoint paths,

demonstrating the great potential of a multicast overlay network.

7.3 BDS+’s dynamic bandwidth separation

As existing solutions reserve fixed amount of bandwidth for

online traffic according to the peak value (e.g., 20%), while real

traces show that online traffic rarely reaches that peak and is

far below that in most cases. Thus, BDS+ leverages dynamic

bandwidth separation between online traffic and offline traffic,

allowing offline traffic (bulk data transfer) to use more bandwidth

when online traffic is below the threshold. BDS+ achieves this by

designing an online traffic prediction algorithm, and this section

shows the results of improved performance by dynamic bandwidth

separation. For easy description, we name the basic version with

fixed bandwidth separation BDS, while the version with dynamic

bandwidth separation BDS+.

In the following experiments, we send 1TB data from one

DC to 11 DCs, each has 100 servers, and the upload and

download link capacities are set to be 20MBs, same as the previous

experiments. The online traffic is set according to the cluster trace

(machine usage) from Ali [49].

7.3.1 Further improvements over BDS.

Completion time: We start the bulk data transfer at 23:00 on

27, Jan, 2019. Figure 14a shows the CDF of the completion time

on each destination server. We can see that the average completion

time of BDS+ is 150ms, while that under BDS is more than 200ms.

Improvements over BDS: To make the results more general,

we further conduct a series of experiments during different time

periods, in other words, once per 30 minutes. We compare the

completion time of BDS and BDS+, and show the results in

Figure 14b. We can see that the improvements of BDS+ changes

with time, specifically, the improvements during midnight is much

higher than that during the day, especially at 05:30, when online

traffic is at its valley. These results show that BDS+ can make full

use of the idle bandwidth that is not used by online traffic. Overall,

the CDF of improvements is shown in Figure 14c, which means

that BDS+ can bring at least 17.8% improvement in about 86%

cases.

7.3.2 BDS+’s prediction algorithm.

The improvement of BDS+ mainly comes from the prediction of

online traffic, so in this subsection, we evaluate the accuracy of

the prediction algorithm, and then analyze the overhead incurred

in achieving such improvements.

Algorithm accuracy: The online traffic is set according to the

cluster trace (machine usage) from Ali [49], the real residual

bandwidth (the difference between server I/O and online traffic) is

shown in black in Figure 15a, where the predicted value is shown

in red (after normalization to 100). As we can see that the red

line is smooth and quite close to the real bandwidth, indicating

that BDS+ can predict online traffic precisely. The exact statistics

are shown in Figure 15b, which indicates that the accuracy of

about 99% predictions is greater than 92%. Only in 1.6% cases,

BDS+ shows a little bit aggressiveness by giving a little bit higher

predicted value (where the x-axis is below zero). Taken together,

BDS+ can not only increases bandwidth utilization when online

traffic is in valley, but also reduces the incidents of interferences

caused by bulk-data transfer.

Algorithm overhead: Although BDS+ bring performance im-

provements by making full use of the residual bandwidth, it

introduces some overhead by introducing an additional algorithm.

So here we evaluate the additional time spent on making

predictions on online traffic. Figure 15c shows the running time

during a complete bulk data transfer. We can see that BDS+ takes

less than 20ms to make predictions in more than 97% cases.

What’s more, this overhead does not increase with system scale,

because the prediction on each server is independent of each other

and thus can be executed simultaneously.

In summary of all the above experiments, both the prototype

pilot deployment and the trace-driven simulations of BDS+ with

fixed bandwidth separation show 3-5× speedup over existing

solutions, with good scalability, reliability, and near-optimal

scheduling results. While BDS+ with dynamic bandwidth sepa-

ration further brings 1.2 to 1.3 times improvement, thus working

harmoniously with time-varying online traffic.

8 RELATED WORK

Here we discuss some representative work that is related to BDS+

in four categories.

Overlay Network Control. Overlay networks realize great

potential for various applications, especially for data transfer

applications. The representative networks include Peer-to-Peer

(P2P) networks and Content Delivery Networks (CDNs). The

P2P architecture has already been verified by many applications,

such as live streaming systems (CoolStreaming [21], Joost [50],

13

120 140 160 180 200 220 240
Completion Time (s)

0

20

40

60

80

100

C
D

F(
%

)
BDS+
BDS

(a) CDF of server completion time.

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

Time

160
170
180
190
200
210
220
230

C
o
m

p
le

ti
o
n
 T

im
e
 (

s)

BDS+
BDS

(b) Comparison at different periods.

14 16 18 20 22 24 26 28
BDS+ Improvment

0

20

40

60

80

100

C
D

F
(%

)

(c) CDF of improvement.

Fig. 14: [BDS+ vs. BDS] Further improvements from BDS.

02:00
04:00

06:00
08:00

10:00
12:00

14:00
16:00

18:00
20:00

22:00

Time

74
76
78
80
82
84
86
88
90
92

N
o
m

a
rl

iz
e
d
 B

a
n
d
w

id
th

Real BW
Predicted BW

(a) Available bandwidth and the predicted
value.

6 4 2 0 2 4 6 8 10
Accuracy

0

20

40

60

80

100

C
D

F
(%

)

(b) CDF of accuracy of the online traffic
prediction algorithm.

0 5 10 15 20 25
Algorithm Overhead (ms)

0

20

40

60

80

100

C
D

F
(%

)

(c) Running time of the prediction
algorithm.

Fig. 15: [BDS+’s prediction algorithm] Evaluations on: (a) predicted value, (b) algorithm accuracy, (c) running time.

PPStream [51], UUSee [52]), video-on-demand (VoD) applica-

tions (OceanStore [53]), distributed hash tables [54] and more

recently Bitcoin [55] and routing [56]. But, self-organizing

systems based on P2P principles suffer from long convergence

times. CDN distributes services spatially relative to end-users to

provide high availability and performance (e.g., to reduce page

load time), serving many applications such as multimedia [57]

and live streaming [20].

We briefly introduce the two baselines in the evaluation

section: (1) Bullet [13], which enables geo-distributed nodes to

self-organize into an overlay mesh. Specifically, each node uses

RanSub [58] to distribute summary ticket information to other

nodes and receive disjoint data from its sending peers. The main

difference between BDS+ and Bullet lies in the control scheme,

i.e., BDS+ is a centralized method that has a global view of data

delivery states, while Bullet is a decentralized scheme and each

node makes its decision locally. (2) Akamai designs a 3-layer

overlay network for delivering live streams [11], where a source

forwards its streams to reflectors, and reflectors send outgoing

streams to stage sinks. There are two main differences between

Akamai and BDS+. First, Akamai adopts a 3-layer topology where

edge servers receive data from their parent reflectors, while BDS+

successfully explores a larger search space through a finer grained

allocation without the limitation of three coarse grained layers.

Second, the receiving sequence of data must be sequential in

Akamai because it is designed for a live streaming application. But

there is no such requirements in BDS+, and the side effect is that

BDS+ has to decide the optimal transmission order as additional

work.

Data Transfer and Rate Control. Rate control of trans-

port protocols at the DC-level plays an important role in data

transmission. DCTCP [59], PDQ [60], CONGA [61], DCQCN

[62] and TIMELY [63] are all classical protocols showing

clear improvements in transmission efficiency. Some congestion

control protocols like the credit-based ExpressPass [64] and

load balancing protocols like Hermes [65] could further reduce

flow completion time by improving rate control. On this basis,

the recent proposed Numfabric [66] and Domino [67] further

explore the potential of centralized TCP on speeding up data

transfer and improving DC throughput. To some extend, co-flow

scheduling [68], [69] has some similarities to the multicast overlay

scheduling, in terms of data parallelism. But that work focuses on

flow-level problems while BDS+ is designed at the application-

level.

Centralized Traffic Engineering. Traffic engineering (TE)

has long been a hot research topic, and many existing studies [42],

[43], [44], [45], [70], [71], [72] have illustrated the challenges

of scalability, heterogeneity etc., especially on inter-DC level.

The representative TE systems include Google’s B4 [5] and

Microsoft’s SWAN [6]. B4 adopts SDN [73] and OpenFlow

[74], [75] to manage individual switches and deploy customized

strategies on the paths. SWAN is another online traffic engi-

neering platform, which achieves high network utilization with

its software-driven WAN. In recent years, there are also some

new research work on inter-DC multicast, for example, [76],

[77] propose a tree selection technique called QuickCast, which

reduces the centralized computation overhead by cutting the large

forwarding tree into multiple smaller ones. As comparison, BDS+

decouples the whole algorithm into scheduling and routing stages.

Further, some deadline-aware algorithms like [78], [79] are also

emerging, but in our scenario, the data need to be transferred

are large amount of bulk data, so we treat small block the same

priority, except some special cases (as explained in Section 4.3).

Bandwidth preemption. Resource over-subscription or

under-subscription is a common problem in DCs or WANs, and it

often leads to unreasonable utilization in clusters, cloud, and data

center environments. There have been many efforts that try to

schedule more ad-hoc jobs on the premise that the QoS of critical

jobs can be guaranteed. One of the most representative schemes

is preemption. To eliminate sharing-induced unpredictability,

[80] leverages the notion of recurring reservation, which isolates

periodic tasks from the sharing noisiness. [81] also proposes a

reservation-based scheduling scheme, which delivers resource

allocations to both production jobs and best-effort jobs to

14

improve cluster utilization. This work shares the similar problem

with BDS+, but it builds upon Hadoop/YARN, which means

preemption will happen when critical workloads increase, while

BDS+ eliminates the possibility of preemption by dynamically

predicting online traffic and make reservation. Flowtime proposed

in [82] is also a scheduling framework for both deadline-aware

workflows and ad-hoc jobs, and formulates the optimization

into a linear program (LP) problem by decomposing workflows

into direct acyclic graph (DAG). The difference between BDS+

and this work is the working scenario, in the bulk data transfer

problem, online traffic has no deadlines but must be scheduled in

real time, while the bulk data (equal to ad-hoc jobs) has deadline

which is relatively not so strict. So all these existing solutions can

not be applied into Baidu directly.

Network change detection. Detecting network changes is

quite important not only in traffic prediction problems, but

also in many other applications, such as abnormality detection,

network monitoring, and security. There are two basic but mature

methods that are widely used, the exponentially weighted moving

average (EWMA) control scheme [31], [32] and the change point

detection algorithm [30]. EWMA usually gives higher weights to

recent observations while gives decreased weights in geometric

progression to the previous observations, when predicting the

next value. Although EWMA describes a graphical procedure

for generating geometric moving averages smoothly, it faces an

essential sensitivity problem, in other words, it can not identify

abrupt changes. In contrast, change point detection algorithms

could exactly solve this problem, in both online [37], [38], [39]

and offline [33], [34], [35], [36] manner. BDS+ combines these

two methods by designing a sliding observation window, which

makes BDS+’s prediction algorithm both stable and sensitive.

Overall, an application-level multicast overlay network with

dynamic bandwidth separation is essential for data transfer in

inter-DC WANs. Applications like user logs, search engine

indexes and databases would greatly benefit from bulk-data

multicast. Furthermore, such benefits are orthogonal to prior

WAN optimizations, further improving inter-DC application per-

formance.

9 CONCLUSION

Inter-DC multicast is critical to the performance of global-scale

online service providers, but prior efforts that focus on optimizing

WAN performance are insufficient. This paper presents BDS+,

an application-level multicast overlay network with dynamic

bandwidth separation that substantially improves the performance

of inter-DC bulk-data multicast. BDS+ not only demonstrates the

feasibility and practical benefits of a fully centralized multicast

overlay network that selects overlay paths and schedules data

transfers in a near-optimal yet efficient manner, but also shows

further improvements by dynamically separating online and offline

traffic instead of a fixed boundary. We believe that the insight of

multicast overlay network in BDS+, to speed up the execution

of a centralized algorithm, together with the inspiration of

dynamic bandwidth prediction, can be generalized to other control

platforms where the decision-making logic strikes a favorable

balance between insurance and efficiency.

ACKNOWLEDGMENTS

The work of Yuchao Zhang is supported in part by the

National Key Research and Development Program of China

(2019YFB1802603), The National Natural Science Foundation

of China (NSFC) Youth Science Foundation (61802024), and

The Fundamental Research Funds for The Central Universities

under Grant (2482020RC36). The work of Ke Xu is supported

in part by the Science and Technology Innovation Project

(2020KJ010501), China National Funds for Distinguished Young

Scientists (61825204), and Beijing Outstanding Young Scientist

Program (BJJWZYJH01201910003011).

REFERENCES

[1] Y. Zhang, J. Jiang, K. Xu, X. Nie, M. J. Reed, H. Wang, G. Yao,
M. Zhang, and K. Chen, “Bds: a centralized near-optimal overlay
network for inter-datacenter data replication,” in Proceedings of the

Thirteenth EuroSys Conference. ACM, 2018, p. 10.

[2] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila et al.,
“BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing,” in ACM SIGCOMM, 2015, pp. 1–14.

[3] Y. Zhang, K. Xu, G. Yao, M. Zhang, and X. Nie, “Piebridge: A cross-dr
scale large data transmission scheduling system,” in ACM SIGCOMM.
ACM, 2016, pp. 553–554.

[4] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The end-
to-end effects of Internet path selection,” in ACM SIGCOMM, vol. 29,
no. 4, 1999, pp. 289–299.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-
deployed software defined WAN,” in ACM SIGCOMM, vol. 43, no. 4,
2013, pp. 3–14.

[6] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven WAN,”
in ACM SIGCOMM, 2013, pp. 15–26.

[7] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang, “Guaranteeing deadlines for inter-datacenter transfers,” in
EuroSys. ACM, 2015, p. 20.

[8] Y. Zhang, K. Xu, H. Wang, Q. Li, T. Li, and X. Cao, “Going fast and fair:
Latency optimization for cloud-based service chains,” IEEE Network,
2017.

[9] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
Delaunay triangulation overlays,” IEEE JSAC, vol. 200, no. 8, pp. 1472–
1488, 2002.

[10] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Hybrid Tree/Mesh Overlay
for Application-Layer Live Video Multicast,” in ICDCS, 2007, p. 49.

[11] K. Andreev, B. M. Maggs, A. Meyerson, and R. K. Sitaraman,
“Designing Overlay Multicast Networks For Streaming,” SPAA, pp. 149–
158, 2013.

[12] K. Mokhtarian and H. A. Jacobsen, “Minimum-delay multicast
algorithms for mesh overlays,” IEEE/ACM TON, vol. 23, no. 3, pp. 973–
986, 2015.

[13] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in ACM SOSP,
vol. 37, no. 5. ACM, 2003, pp. 282–297.

[14] T. Repantis, S. Smith, S. Smith, and J. Wein, “Scaling a monitoring
infrastructure for the akamai network,” Acm Sigops Operating Systems

Review, vol. 44, no. 3, pp. 20–26, 2010.

[15] T. Y. Huang, R. Johari, N. Mckeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: evidence from a large video
streaming service,” SIGCOMM, pp. 187–198, 2014.

[16] E. Nygren, R. K. Sitaraman, and J. Sun, The Akamai network: a platform

for high-performance internet applications. ACM, 2010.

[17] Y. Zhang, Y. Li, K. Xu, D. Wang, M. Li, X. Cao, and Q. Liang,
“A communication-aware container re-distribution approach for high
performance vnfs,” in IEEE ICDCS 2017. IEEE, 2017, pp. 1555–1564.

[18] Y.-h. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in ACM SIGMETRICS, vol. 28, no. 1. ACM, 2000, pp. 1–12.

[19] A. K. Datta and R. K. Sen, “1-approximation algorithm for bottleneck
disjoint path matching,” Information processing letters, vol. 55, no. 1, pp.
41–44, 1995.

[20] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the internet,” in IMC. ACM, 2004, pp. 41–
54.

[21] X. Zhang, J. Liu, B. Li, and Y.-S. Yum, “CoolStreaming/DONet: a
data-driven overlay network for peer-to-peer live media streaming,” in
INFOCOM, vol. 3. IEEE, 2005, pp. 2102–2111.

15

[22] M. K. Mukerjee, J. Hong, J. Jiang, D. Naylor, D. Han, S. Seshan, and
H. Zhang, “Enabling near real-time central control for live video delivery
in cdns,” in ACM SIGCOMM, vol. 44, no. 4. ACM, 2014, pp. 343–344.

[23] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand,
“Firmament: Fast, Centralized Cluster Scheduling at Scale,” in OSDI.
Savannah, GA: USENIX Association, 2016, pp. 99–115. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/gog

[24] B. Cohen, “Incentives build robustness in bittorrent,” Proc P Economics

Workshop, pp. 1–1, 2003.

[25] N. Garg, V. V. Vazirani, and M. Yannakakis, “Primal-dual approximation
algorithms for integral flow and multicut in trees,” Algorithmica, vol. 18,
no. 1, pp. 3–20, 1997.

[26] N. Garg and J. Koenemann, “Faster and simpler algorithms for
multicommodity flow and other fractional packing problems,” SIAM

Journal on Computing, vol. 37, no. 2, pp. 630–652, 2007.

[27] M. J. Reed, “Traffic engineering for information-centric networks,” in
IEEE ICC, 2012, pp. 2660–2665.

[28] L. K. Fleischer, “Approximating fractional multicommodity flow
independent of the number of commodities,” SIDMA, pp. 505–520, 2000.

[29] Friedrich and Pukelsheim, “The three sigma rule,” The American

Statistician, vol. 48, no. 2, pp. 88–91, 1994. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/00031305.1994.10476030

[30] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detection,”
arXiv preprint arXiv:0710.3742, 2007.

[31] S. Roberts, “Control chart tests based on geometric moving averages,”
Technometrics, vol. 1, no. 3, pp. 239–250, 1959.

[32] J. M. Lucas and M. S. Saccucci, “Exponentially weighted moving
average control schemes: properties and enhancements,” Technometrics,
vol. 32, no. 1, pp. 1–12, 1990.

[33] A. Smith, “A bayesian approach to inference about a change-point in a
sequence of random variables,” Biometrika, vol. 62, no. 2, pp. 407–416,
1975.

[34] D. Stephens, “Bayesian retrospective multiple-changepoint identifica-
tion,” Applied Statistics, pp. 159–178, 1994.

[35] D. Barry and J. A. Hartigan, “A bayesian analysis for change point
problems,” Journal of the American Statistical Association, vol. 88, no.
421, pp. 309–319, 1993.

[36] P. J. Green, “Reversible jump markov chain monte carlo computation and
bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711–732,
1995.

[37] E. Page, “A test for a change in a parameter occurring at an unknown
point,” Biometrika, vol. 42, no. 3/4, pp. 523–527, 1955.

[38] F. Desobry, M. Davy, and C. Doncarli, “An online kernel change
detection algorithm,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 2961–2974, 2005.

[39] G. Lorden et al., “Procedures for reacting to a change in distribution,”
The Annals of Mathematical Statistics, vol. 42, no. 6, pp. 1897–1908,
1971.

[40] “Bayesian changepoint detection.” https://github.com/dtolpin/bocd.

[41] H. Wang, T. Li, R. Shea, X. Ma, F. Wang, J. Liu, and K. Xu, “Toward
cloud-based distributed interactive applications: Measurement, modeling,
and analysis,” IEEE/ACM ToN, 2017.

[42] Y. Chen, S. Alspaugh, and R. H. Katz, “Design insights for
MapReduce from diverse production workloads,” CALIFORNIA
UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE, Tech. Rep., 2012.

[43] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces
from a production mapreduce cluster,” in CCGrid. IEEE, 2010, pp.
94–103.

[44] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” ACM SIGMETRICS PER, vol. 37, no. 4, pp. 34–41, 2010.

[45] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in SoCC. ACM, 2012, p. 7.

[46] L. Lamport, “The part-time parliament,” ACM TOCS, vol. 16, no. 2, pp.
133–169, 1998.

[47] “The go programming language,” https://golang.org.

[48] “Solve linear programming problems - matlab linprog,” https://cn.
mathworks.com/help/optim/ug/linprog.html?s tid=srchtitle.

[49] “cluster-trace-v2018 from ali,” https://github.com/alibaba/clusterdata/
blob/v2018/cluster-trace-v2018/trace 2018.md.

[50] “Joost,” http://www.joost.com/.

[51] “Ppstream,” http://www.ppstream.com/.

[52] “Uusee,” http://www.uusee.com/.

[53] “Oceanstore,” http://oceanstore.cs.berkeley.edu/.

[54] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “Opendht: a public dht service and its uses,” in ACM

SIGCOMM, vol. 35, 2005, pp. 73–84.

[55] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-NG: A
scalable blockchain protocol,” in NSDI, 2016.

[56] C. Chen, Y. Tock, and S. Girdzijauskas, “Beaconvey: Co-design of
overlay and routing for topic-based publish/subscribe on small-world
networks,” in Proceedings of the 12th ACM International Conference

on Distributed and Event-based Systems. ACM, 2018, pp. 64–75.

[57] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59–69, 2011.

[58] A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat, “Using random
subsets to build scalable network services,” in USITS, 2003, pp. 19–19.

[59] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP
(DCTCP),” in ACM SIGCOMM, 2010, pp. 63–74.

[60] C. Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” 2012, pp. 127–138.

[61] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, and N. Yadav, “CONGA:
distributed congestion-aware load balancing for datacenters,” in ACM

SIGCOMM, 2014, pp. 503–514.

[62] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion Control for Large-
Scale RDMA Deployments,” ACM SIGCOMM, vol. 45, no. 5, pp. 523–
536, 2015.

[63] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” in ACM SIGCOMM, 2015, pp.
537–550.

[64] I. Cho, K. H. Jang, and D. Han, “Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters,” in ACM SIGCOMM, 2017, pp. 239–
252.

[65] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
Datacenter Load Balancing in the Wild,” in ACM SIGCOMM, 2017, pp.
253–266.

[66] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and S. Katti,
“Numfabric: Fast and flexible bandwidth allocation in datacenters,” in
ACM SIGCOMM, 2016, pp. 188–201.

[67] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh,
H. Balakrishnan, G. Varghese, N. McKeown, and S. Licking, “Packet
transactions: High-level programming for line-rate switches,” in ACM

SIGCOMM, 2016, pp. 15–28.

[68] Chowdhury, MosharafStoica, and I. Eecs, “Coflow: An Application Layer
Abstraction for Cluster Networking,” Hotnets, 2012.

[69] H. Zhang, L. Chen, B. Yi, K. Chen, Y. Geng, and Y. Geng, “CODA:
Toward Automatically Identifying and Scheduling Coflows in the Dark,”
in ACM SIGCOMM, 2016, pp. 160–173.

[70] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in google
compute clusters,” in SoCC. ACM, 2011, p. 3.

[71] J. Wilkes, “More google cluster data,” http://googleresearch.blogspot.
com/2011/11/, 2011.

[72] Q. Zhang, J. L. Hellerstein, and R. Boutaba, “Characterizing task usage
shapes in google’s compute clusters,” in LADIS, 2011.

[73] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
vol. 17, no. 2, pp. 30–32, 2009.

[74] OpenFlow, “Openflow specification,” http://archive.openflow.org/wp/
documents.

[75] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM, vol. 38, no. 2, pp. 69–74, 2008.

[76] M. Noormohammadpour, C. S. Raghavendra, S. Rao, and S. Kandula,
“Dccast: Efficient point to multipoint transfers across datacenters,” in 9th

{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 17),
2017.

[77] M. Noormohammadpour, C. S. Raghavendra, S. Kandula, and S. Rao,
“Quickcast: Fast and efficient inter-datacenter transfers using forwarding
tree cohorts,” in IEEE INFOCOM 2018-IEEE Conference on Computer

Communications. IEEE, 2018, pp. 225–233.

[78] L. Luo, K.-T. Foerster, S. Schmid, and H. Yu, “Dartree: deadline-aware
multicast transfers in reconfigurable wide-area networks,” in Proceedings

of the International Symposium on Quality of Service. ACM, 2019,
p. 28.

[79] L. Luo, Y. Kong, M. Noormohammadpour, Z. Ye, G. Sun, H. Yu,
and B. Li, “Deadline-aware fast one-to-many bulk transfers over inter-
datacenter networks,” IEEE Transactions on Cloud Computing, 2019.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.tandfonline.com/doi/abs/10.1080/00031305.1994.10476030
https://github.com/dtolpin/bocd
https://golang.org
https://cn.mathworks.com/help/optim/ug/linprog.html?s_tid=srchtitle
https://cn.mathworks.com/help/optim/ug/linprog.html?s_tid=srchtitle
https://github.com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018/trace_2018.md
http://www.joost.com/
http://www.ppstream.com/
http://www.uusee.com/
http://oceanstore.cs.berkeley.edu/
http://googleresearch.blogspot.com/2011/11/
http://googleresearch.blogspot.com/2011/11/
http://archive.openflow.org/wp/documents
http://archive.openflow.org/wp/documents

16

[80] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy,
A. Tumanov, J. Yaniv, R. Mavlyutov, Í. Goiri, S. Krishnan, J. Kulkarni
et al., “Morpheus: Towards automated slos for enterprise clusters,”
in 12th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 16), 2016, pp. 117–134.
[81] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and

S. Rao, “Reservation-based scheduling: If you’re late don’t blame us!” in
Proceedings of the ACM Symposium on Cloud Computing. ACM, 2014,
pp. 1–14.

[82] Z. Hu, B. Li, C. Chen, and X. Ke, “Flowtime: Dynamic scheduling
of deadline-aware workflows and ad-hoc jobs,” in 2018 IEEE 38th

International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2018, pp. 929–938.

10 APPENDIX

Suppose we want to send N data blocks to m destination DCs.

Without loss of generality, we consider two cases:

• A (Balanced): Each of the N blocks has k duplicas;

• B (Imbalanced): Half blocks have k1 duplicas each, and the

other half have k2 duplicas each, and k1 < k2,(k1 + k2)/2 = k.

Note that m> k, since otherwise, the multicast is already complete.

Next, we prove that in a simplified setting, BDS+’s completion

time in A is strictly less than B.

To simplify the calculation of BDS+’s completion time, we

now make a few assumptions (which are not critical to our

conclusion): (1) all servers have the same upload (resp. download)

bandwidth Rup (resp. Rdown), (2) no two duplicas share the same

source (resp. destination) server, so the upload (resp. download)

bandwidth of each block is Rup (resp. Rdown). Now we can write

the completion time in the two cases as following:

tA =
V

min{c(l),
kRup

m−k
, kRdown

m−k
}

tB =
V

min{c(l),
k1Rup

m−k1
,

k2Rup

m−k2
, k1Rdown

m−k1
, k2Rdown

m−k2
}

(6)

where V denotes the total size of the untransmitted blocks,

V = N(m − k)ρ(b) = N
2
(m − k1)ρ(b) +

N
2
(m − k2)ρ(b). In the

production system of Baidu, the inter-DC link capacity c(l)
is several orders of magnitudes higher than upload/download

capacity of a single server, so we can safely exclude c(l)
from the denominator in the equations. Finally, if we denote

min{Rup,Rdown}= R, then tA = (m−k)V
kR

and tB = (m−k1)V
k1R

.

We can show that
(m−k)V

kR
is a monotonically decreasing

function of k:

d

dk

(m− k)V

kR
=

d

dk

(m− k)2Nρ(b)

kR
=

Nρ(b)

R
(1−

m2

k2
)< 0 (7)

Now, since k > k1, we have tA < tB.

Yuchao Zhang received her PhD degree from
Computer Science Department at Tsinghua Uni-
versity in 2017. Before that, she received B.S.
degree in Computer Science and Technology at
Jilin University in 2012. Her research interests
include large scale datacenter network (DCN),
content delivery network (CDN), data-driven net-
work (DDN) and edge computing (EC). She is
currently an Associate Professor in the Beijing
University of Posts and Telecommunications.

Xiaohui Nie received B.S. from Computer Sci-
ence Department, Jilin University, ChangChun,
China, in 2013, and received PHD degree from
Computer Science Department at Tsinghua Uni-
versity in 2019. His current research interests in-
clude AIOps, intelligent TCP, service monitoring
and management. He is currently a postdoc in
Tsinghua University.

Junchen Jiang received his PhD degree from
Computer Science Department at Carnegie Mel-
lon University in 2017. Before that, he received
Bachelor degree in Computer Science from Yao
Class at Tsinghua in 2011. He is currently an
Assistant Professor in the University of Chicago.

Wendong Wang (M’05) received his B.E. and
M.E. degrees both from the Beijing University of
Posts and Telecommunications, China, in 1985
and 1991, respectively, where he is currently
a Full Professor in State Key Laboratory of
Networking and Switching Technology. He has
published over 200 of papers in various jour-
nals and conference proceedings. His current
research interests are the next generation net-
work architecture, network resources manage-
ment and QoS, and mobile Internet. He is a

member of IEEE.

Ke Xu (M’02-SM’09) received his Ph.D. from
the Department of Computer Science and Tech-
nology of Tsinghua University, where he serves
as full professor. He serves as Associate Editor
of IEEE Internet of Things Journal and has
guest edited several special issues in IEEE and
Springer Journals. His research interests include
next generation Internet, P2P systems, Internet
of Things, network virtualization, and network
economics. He is a member of ACM.

17

Youjian Zhao received the B.S. degree from
Tsinghua University in 1991, the M.S. degree
from the Shenyang Institute of Computing
Technology, Chinese Academy of Sciences, in
1995, and the Ph.D. degree in computer science
from Northeastern University, China, in 1999. He
is currently a Professor with the CS Department,
Tsinghua University. His research mainly
focuses on high-speed Internet architecture,
switching and routing, and high-speed network
equipment.

Martin J. Reed is a Senior Lecturer in the
School of Computer Science and Electronic En-
gineering at the University of Essex, Colchester,
UK. His main research interests are the fields
of Computer Networks, Network Control, Multi-
media transmission over networks and Network
Security. His teaching duties are also in these
areas.

Kai Chen received the Ph.D. degree in computer
science from Northwestern University, Evanston,
IL, USA, in 2012. He is an Associate Professor
with the Department of Computer Science and
Engineering, The Hong Kong University of Sci-
ence and Technology, Hong Kong. His research
interest includes networked systems design and
implementation, data center networks, and cloud
computing.

Haiyang Wang is an Associate professor in the
Department of Computer Science at the Univer-
sity of Minnesota Duluth, MN, USA. He received
his Master’s degree from Tsinghua University
and Tongji University in 2007, and PhD from
Simon Fraser University, Canada, in 2013. His
research interests are in networking, in particu-
lar, cloud computing, big data, socialized content
sharing, multimedia communications, peer-to-
peer networks, and distributed computing.

Guang Yao is a senior R&D Engineer in Baidu .
He received his Ph. D. degree from the Depart-
ment of Computer Science, Tsinghua University,
in 2012. His main research interests include
source address verification, spoofing IP trace-
ability, and traffic control.

