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ABSTRACT

Summary: High-throughput data can be used in conjunction with
clinical information to develop predictive models. Automating the
process of developing, evaluating and testing such predictive models
on different datasets would minimize operator errors and facilitate the
comparison of different modeling approaches on the same dataset.
Complete automation would also yield unambiguous documentation
of the process followed to develop each model. We present the
BDVal suite of programs that fully automate the construction of
predictive classification models from high-throughput data and
generate detailed reports about the model construction process.
We have used BDVal to construct models from microarray and
proteomics data, as well as from DNA-methylation datasets. The
programs are designed for scalability and support the construction of
thousands of alternative models from a given dataset and prediction
task.
Availability and Implementation: The BDVal programs are
implemented in Java, provided under the GNU General Public
License and freely available at http://bdval.campagnelab.org
Contact: fac2003@med.cornell.edu

Received on May 25, 2010; revised on August 5, 2010; accepted on
August 6, 2010

1 INTRODUCTION
The technical ability to assay levels of molecules in biological
material has evolved dramatically in the last decade. Various
technologies now make it possible to assay a large number of
features in individual patients. These data can be used to train
models to predict information of clinical interest (such as the
response of a patient to a given treatment), or a specific biological
attribute of a sample. Since it is not clear a priori which modeling
approach will yield a competitive model for a given problem, several
modeling approaches are often compared on the same dataset to
yield estimates of future performance for each model that they
produce. Performance estimation and model selection is often done
with cross-validation (Stone, 1974). Several authors have noted
that complete cross-validation must be used to avoid optimistically
biasing the estimates of performance that result from the evaluation
(Quackenbush, 2004). In complete cross-validation, the feature
selection approach is used within each fold of cross-validation
to select features used to train the model. Performance estimates
can also be biased when choosing a model with the parameters
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that maximize performance estimated from the training set (Varma,
and Simon, 2006). Tibshirani and Tibshirani (2009) have recently
described a practical and scalable approach to estimate such a
parameter selection bias.

In this application note, we present the BDVal suite of programs,
a set of software tools designed to automate the process of
developing and evaluating the performance of predictive classifi-
cation models in high-throughput datasets. BDVal supports several
modeling approaches, complete cross-validation and can estimate
the Tibshirani and Tibshirani (2009) parameter selection bias.

2 METHODS
Abstractions: BDVal provides useful abstractions to help organize the process
of developing models from high-throughput data. These include configurable
assay platforms, dataset and endpoint abstractions, as well as reproducible
validation plans. The online user manual provides a detailed introduction to
these concepts. We provide a brief overview here.

Dataset configuration: the platform abstraction maps assay identifiers
(such as probeset identifiers for microarray data) to gene identifiers. Several
classification problems (or classification endpoints) can be defined for the
same dataset. BDVal can be configured to develop models with a consistent
set of approaches across different datasets and endpoints.

Reproducible validation plans: the split plan abstraction makes it possible
to reproducibly split a dataset into consistent subsets of samples. Each split
is given an identifier, a split index and repeat index. The identifier describes
how the samples in the split will be used. For instance, calling a split ‘training’
indicates that the samples are to be used to train a classifier. The split index
ranges from 1 to the number of splits of the training set (10-fold cross-
validation will result in 10 splits). The repeat index indicates which splits
belong to specific random repeats in an evaluation plan (50 repeats of 10-fold
cross-validation will result in 500 splits, with repeat indices from 1 to 50).

Feature aggregation: the program supports aggregating a subset of
features. Averaging and projection to principal components are supported
for arbitrary subsets of features.

Feature pre-filtering: features can be pre-filtered by providing a gene list.
The gene list format requires either assay identifiers or gene identifiers. Pre-
filtering a dataset with a gene lists eliminates the features that do not map
to the genes or assay identifiers in the gene list without having to create and
configure a different version of the dataset. This feature works seamlessly
with feature aggregation schemes so that it is possible to filter with aggregated
feature identifiers.

Feature scaling: scaling transforms each feature independently of the
others to make its scale comparable to that of other features. BDVal
implements several scaling schemes. Statistics needed to scale each feature
are determined by observing the training samples and recorded in models
written to disk to make it possible to scale the test samples consistently.

Feature selection: BDVal implements several feature selection methods.
Univariate feature selection methods include fold-change, two-tailed t-test
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and ranking features by Kendall’s tau statistic. Multivariate methods include
selection of features by decreasing feature weight of a trained linear support
vector machine (SVM-weight method), an implementation of recursive
feature elimination (Guyon et al., 2002) and selection by genetic algorithm
optimization of a cross-validated performance measure (Xiong et al., 2001).

Classification: BDVal can train Support Vector Machine classifiers with
libSVM, or arbitrary Weka classifiers. Weka classifiers that we have tested
include Random Forest, LogitBoost, Logistic Regression or the Naïve Bayes
classifier.

Self-contained models: models produced by BDVal are saved to disk
in a zip file, with all the information required to apply the model to
new data samples. BDVal prediction results include both a decision value
(numerical score produced by the classifier, such as the probability that the
predicted label is correct) and a human readable unambiguous label. The
model also includes the threshold of the decision function. Self-contained
models eliminate many sources of possible human errors that can occur
when trained models are applied to new data (e.g. label swaps, incorrect
prediction threshold, inconsistent scaling parameters). Furthermore, BDVal
will produce an error condition when a new sample is missing features that
the model was trained with. This situation can arise when the training and
validation sets were assayed with platforms that are mostly compatible, but
distinct (i.e. different versions of the same microarray chip may have more
or less probesets).

Sequence programs: the BDVal sequence files define small programs
written in a script-like computer language. Sequence programs make it
possible to execute a sequence of operations on a dataset. When BDVal
executes a validation plan, the sequence program is repetitively run for each
unique combination of split and random repeat indices defined in a split plan.
Typical sequences perform feature selection, subsequently train the model
with the subset of features (writing the model to disk), and reload the model
to predict samples in the test set. Test set predictions are written to disk and
associated with split index, repeat index, split identifier and model identifier.
Sequence programs implement reproducible model development protocols.

Model identifiers: models are assigned a unique identifier derived from
hashing a subset of the command line arguments provided to the sequence
program that produced the model. The identifier is a six-letter code that is
used to track individual models during development and validation. The code
is written to prediction files and statistics output files to make it possible to
join tables of information at the model level.

Performance Measures: BDVal supports the following performance
measures: Matthews Correlation Coefficients, Area under the ROC
curve, Sensitivity, Specificity, Accuracy and their associated standard
deviations. When scanning series of parameters for a given classification
algorithm, BDVal estimates the Tibshirani and Tibshirani parameter
selection bias adjustment. Performance measures can be estimated from
test-set prediction files recorded during cross-validation. This decouples
performance estimation from the computationally intensive cross-validation
model development steps. Performance can also be estimated from prediction
files that result from predicting sample labels in datasets other than those used
for training. In this case, BDVal supports estimating standard deviation of
the performance measures by sampling the validation set with replacement.

Parallel processing: BDVal can run in parallel on a multi-core shared
memory computer. In this case, each split of a validation plan is run in

parallel, up to the number of threads available. This technique scales for
small to medium scale projects (approximately building up to 1000 models).
For large-scale projects, we have developed Sun/Oracle Grid Engine scripts
to dispatch model evaluation jobs to a grid of computers and collate the
results.

3 CONCLUSIONS
The BDVal suite of programs makes it possible to automate most
steps of the model development and performance evaluation process,
extending the recommendations of Kostka and Spang (2008) from
pre-processing steps to the entire model-development process. Such
automation helps ensure reproducibility of model development
efforts and produces detailed model documentation. We have
extensively tested BDVal while developing tens of thousands of
predictive models in the MAQC-II high-throughput clinical datasets
(MAQC 2010). We anticipate that the BDVal programs and process
abstractions implemented in these tools can be helpful when
developing predictive models from various types of bioinformatics
datasets.
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