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Maxillary sinus segmentation plays an important role in the choice of therapeutic strategies for nasal disease and treatment
monitoring. Difficulties in traditional approaches deal with extremely heterogeneous intensity caused by lesions, abnormal
anatomy structures, and blurring boundaries of cavity. 2D and 3D deep convolutional neural networks have grown popular in
medical image segmentation due to utilization of large labeled datasets to learn discriminative features. However, for 3D
segmentation in medical images, 2D networks are not competent in extracting more significant spacial features, and 3D ones
suffer from unbearable burden of computation, which results in great challenges to maxillary sinus segmentation. In this paper, we
propose a deep neural network with an end-to-endmanner to generalize a fully automatic 3D segmentation. At first, our proposed
model serves a symmetrical encoder-decoder architecture for multitask of bounding box estimation and in-region 3D seg-
mentation, which cannot reduce excessive computation requirements but eliminate false positives remarkably, promoting 3D
segmentation applied in 3D convolutional neural networks. In addition, an overestimation strategy is presented to avoid
overfitting phenomena in conventional multitask networks. Meanwhile, we introduce residual dense blocks to increase the depth
of the proposed network and attention excitation mechanism to improve the performance of bounding box estimation, both of
which bring little influence to computation cost. Especially, the structure of multilevel feature fusion in the pyramid network
strengthens the ability of identification to global and local discriminative features in foreground and background achieving more
advanced segmentation results. At last, to address problems of blurring boundary and class imbalance in medical images, a hybrid
loss function is designed for multiple tasks. To illustrate the strength of our proposed model, we evaluated it against the state-of-
the-art methods. Our model performed better significantly with an average Dice 0.947 ± 0.031, VOE 10.23 ± 5.29, and ASD
2.86 ± 2.11, respectively, which denotes a promising technique with strong robust in practice.

1. Introduction

Maxillary sinus is an important part of the body which has
multiple functions including olfaction, filtering, heating, and
humidifying the inhaled air. People who suffer from nasal
function impairment may have a reduced quality of life [1].
In the last few years, functional endoscopic sinus surgery
(FESS) has been established as the state-of-the-art technique
for the treatment of endonasal pathologies. Recently, robot-
assisted FESS replaces the traditional one that grows in-
convenient for the surgeon. To exactly define the workspace,
the knowledge about the anatomical structure of maxillary
sinus is required. Manual segmentation costs about 900

minutes for one patient’s CT scans which become infeasible
for daily practice [2]. Consequently, automatic segmentation
approaches with high accuracy should be imperative.
However, there are some difficulties in practice. At first, the
high rate of structure variations exists in maxillary sinus like
location, size, and shape. In addition, plenty of lesions
frequently appear in the cavity with different intensities,
scales, and positions, which lead to extremely heterogeneous
textures in volume of interests (VoI). Figure 1 illustrates
some distinct cases indicating a general segmentation
method encountering more challenges.

Medical image analysis has played a crucial role in
clinical practice for a long period, and related techniques

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 5689301, 16 pages
https://doi.org/10.1155/2020/5689301

mailto:dengzf@swc.neu.edu.cn
https://orcid.org/0000-0002-8843-3702
https://orcid.org/0000-0002-6193-7361
https://orcid.org/0000-0003-3450-1711
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5689301


including partial differential equation (PDE), machine
learning, and deep learning models have achieved rapid and
efficient development to promote computer-aided applica-
tion in clinics. For example, Wei et al. [3] proposed an
adaptive variational PDE model for image reconstruction.
Compared with the state-of-the-art models, their work could
obtain more accurate reconstruction results and increase the
probability of the doctor’s diagnosis being correct avoiding
future follow-on examinations. Since large scale and com-
plexity of magnetic resonance imaging (MRI) data require
effective preprocessing approaches, Ke et al. [4] presented an
adaptive independent subspace analysis (AISA) method to
discover meaningful electroencephalogram activity in MRI
scans for supporting diagnostics. In experiments, their
proposed model achieved 94.7% of accuracy and 0.9356 of
f-score from the real autism spectrum disorder dataset.
Połap and Woźniak [5] proposed a model of bacteria rec-
ognition based on a composition of region covariance with

convolutional neural networks.*e process of recognition is
divided into two stages. In the first stage, an input mi-
croscopy image is segmented by the use of the region co-
variance model.*en, these segments are forwarded to CNN
for recognition of visible bacteria strains. Experimental
results show high potential of the proposed methodology.
Połap Woźniak [6] gave a segmentation technique based on
medical image processing methods and swarm algorithm for
lung segmentation on X-ray images for the subsequent
diagnosis. *e swarm methodology was used for extraction
of interested portions with the convolutional neural network
as a detector. Khan et al. [7] proposed a novel deep learning
framework for the detection and classification of breast
cancer in breast cytology images using the concept of
transfer learning. *is technique facilitates detection and
classification of breast cancer in the early stages of its de-
velopment that may allow patients to have proper treatment.
With benefits from related progress of computer-aided
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Figure 1: Inhomogeneous context of maxillary sinus reflects great challenges in research of segmentation. (a) Pair of healthy sinuses, (b)–(d)
filled with lesions with disparate scales, locations, and shapes, and (e)–(h) average of the normalized intensity histograms of the cor-
responding CT scans above.
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skills, people enjoy more and more efficient health services
and protections to improve the quality of lives as far as
possible.

Specifically, medical image segmentation has become an
essential component that gives more contributions to region
of interest (ROI) [8], lesion measurement [9, 10], 3D vi-
sualization reconstruction [11, 12], medical data compres-
sion, and transmission [13, 14]. Many fully automatic
segmentation methods have been proposed over the last
decades, including intensity thresholding, region growing,
and deformable models. *ese methods, however, rely on
hand-crafted features with the limited feature learning ca-
pability. For example, level set models [15–17] are sensitive
to noises like lesions in sinus leading to unexpected results.
Recently, fully convolutional neural networks (FCNs) have
achieved great success on a broad array of segmentation
problems in medical images [18–30]. *e literature can be
classified into two categories broadly. One is based on 2D
FCNs depending on multiscale feature map fusion
[18, 19, 23]. *e other category involves 3D FCNs, where 2D
convolutions are replaced by 3D kernels with the volumetric
data input [21, 22, 27].

3D convolutional kernel reflects competitiveness at
extracting discriminative features along X, Y, and Z direc-
tions for 3D classification, detection, and segmentation.
However, 3D FCNs, in general, produce an explosion of
investment into training parameters and related computa-
tional resources. Previous works discuss technical limita-
tions when employing a 3D CNN on medical imaging data
[31–33]. In order to incorporate 3D contextual information,
multiple works optimize FCN baseline with 2D [18], 2.5D
[20, 33], or small 3D patches [34, 35]. Although alleviating
the pressure by 3D kernels, these methods pay more at-
tention on irrelevant backgrounds, waste lots of computa-
tion resources, and cause a large number of
undersegmentations or oversegmentations. To resolve above
problems, region of interest (RoI) localization modules are
individually designed as a discrete part of the workflow, such
as image registration based on atlas with prior knowledge
[36, 37]. However, in cases of maxillary sinus segmentation,
because of inhomogeneous intensity distribution, their
registration performances are poor with a slow speed
workflow.*en, RoI detection based on deep learning shows
great potentials [25, 38–42]. Some works [38, 39, 42] extract
region proposals using external modules like selective search
strategy or multiscale combinatorial grouping (MCG) [43],
drawbacks of which include time-consuming process of
searching the best candidates with limited features con-
sidered. Later works introduce an additional well-trained
segmentation model in low dimension for RoI localization
slice by slice [25, 44]. Although the approaches reduce
computation costs dramatically, they have limitations on
extracting features between adjacent slices and tend to
provide more false positives in localization of the 3D
objective.

Multitask models combining bounding box (bbox) lo-
calization and segmentation emerge as promising devel-
opment, such as Mask R-CNN [34] and Multitask Cascaded
Convolutional Networks (MTCNN) [45]. Related methods

can analyze significant features within bbox and save
computation resources to achieve better speed and accuracy.
For accurate localization, the region proposal network
(RPN) and RoIAlign are introduced to detect and refine
bbox localization. *en, multitask networks can manage
classification or segmentation work within the bbox to
obtain advanced outcomes. In the state-of-the-art, feature
pyramid network (FPN) [46] holds competitiveness in
multilevel object detection by fusing different levels of
feature maps to preserve better details. In this work, authors
extend FPN on the Mask R-CNN model. By extracting ROI
on each level feature map with RPN, the evaluation of
segmentation with intra-RoI FCN acquires more accurate
results. However, extending Mask R-CNN with FPN to the
3D mode directly encounters some difficulties. At first, 3D
FPN that has symmetric encoder-decoder construction
serves excessive GPU memory especially for the high-res-
olution dataset. Meanwhile, the 3D RPN network produces
many 3D anchors of different sizes that also cause a great
cost of computation resources. In addition, the distributions
of ground truth and background are always imbalanced in
medical images. Plenty of different 3D anchors overfit the
object so that the 3D bbox cannot have stable localization
estimation. Moreover, in Mask R-CNN, the RoIAlign
module for localization of RoIs runs bilinear interpolation to
resample feature tensors in the anchors to fixed dimensions.
Such mechanism results in losing features of details, giving
challenges to medical images with the low-level resolution.

To address these issues and inspired by theMask R-CNN
with ResNet-FPN [34] and residual attention network
(RAN) [47], we propose a novel multitask framework for
segmentation with 3D bounding box estimation, named as
3D bounding box estimation feature pyramid network (BE-
FNet), which is designed to effectively extract 3D volumetric
maxillary sinus from CT scans in an end-to-end manner.
Compared with traditional 3D segmentation models, our
proposed model serves more advanced accuracy and com-
putation efficiency as a result of crucial components in deep
convolutional neural network architecture. Sufficient abla-
tion studies on collected 50 CT scans demonstrated the
superiority of our proposed model with the following main
contributions:

(1) We propose a deep neural network with multitask of
3D bounding box estimation and in-region seg-
mentation branches. BE-FNet holds symmetric en-
coder-decoder architecture with shared parameters.
Image encoder is responsible for bounding box es-
timation and decoder for in-region 3D segmentation
similar with U-net. As a result of exploring the target
in more significant shrunk space, our proposed
model can reduce the computation cost remarkably
compared with traditional 3D semantic segmenta-
tion neural networks.

(2) To avoid overfitting problems in the state-of-the-art
multitask models, we design an overestimation
strategy to generate a reasonable 3D bounding box
that cannot cause any redundant memory cost. In
addition, to increase the depth of the network, we
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introduce residual dense blocks as the backbone to
enhance the flow of residuals, substantially in-
creasing the depth of the neural network. Moreover,
we design a mechanism of attention excitation to
improve salient detection applied in bounding box
estimation process, which does not give any com-
putation burden for 3D deep neural networks. Es-
pecially, the structure of multilevel feature fusion in
the pyramid network strengthens the ability of
identification to global and local discriminative
features in foreground and background, achieving
more advanced segmentation results in space.

(3) To resolve the problems of class imbalance and
blurring boundary of sinus cavity for segmentation,
we define a hybrid loss function of Dice and contour-
aware loss. Besides, a multiresolution model en-
semble strategy has been introduced to boost seg-
mentation robustness, generating more reliable
results and suppressing false positives.

(4) Ourmodel does not depend on any pretrainedmodel
or commonly used postprocessing techniques such
as 3D conditional random field (CRF). *e gener-
alization of the proposed approach is demonstrated
through testing on extensive experiments. Not only
does our model extract accurate maxillary sinus
volume but also achieve competitive performances in
related research areas compared with the state-of-
the-art methods, which can be generalized in other
applications and proved a great promising technique
in future.

To the best of our knowledge, this is the first use of
attention excitation mechanism to locate and estimate the
3D bounding box for maxillary sinus segmentation with a
remarkable performance using the multitask neural net-
work, resulting in a generalized segmentation solution than
methods available to date. *e entire model is built up based
on the backbone of FPN with residual dense blocks
depending on different hierarchical feature fusions. *ese
innovations make sure that our model pays attentions on
more significant VoI reducing massive computing resource
costs and providing more advanced segmentation results.

Our paper is organized as follows. In Section 2, we
describe our model in detail and report the experimental
results compared with the state-of-the-art methods in
Section 3. Section 4 further discusses some insight as well as
issues of the proposedmethod.*e conclusions are drawn in
Section 5.

2. Materials and Methods

2.1. Overview of Our Proposed Architecture. Our multitask
neural network architecture for segmentation is depicted in
Figure 2. *e proposed architecture consists of three main
stages which are responsible for preprocessing, bounding
box estimation, and in-region segmentation, respectively. At
first, in order to reduce computational cost on redundant
information of CT image backgrounds, we adopt the Otsu
segmentation algorithm to extract RoIs coarsely based on

connectivity analysis [48] in each slice. Besides, the back-
bone of the network is divided into image encoder and
decoder branches. Image encoder focuses on salient de-
tection to estimate the 3D bounding box with a fixed size.
*rough cropping feature fusions between the encoder and
the decoder, the image decoder branch employs in-region
segmentation for maxillary segmentation in an end-to-end
manner.

2.2. Data Preprocessing. For a medical image, Hounsfield
units (HU) are a measurement of relative densities deter-
mined by CT. Normally, the HU values range from − 1000 to
1000. Any smoothing method is not adopted in our work.
Since inhomogeneous texture in the maxillary sinus cavity
with lesions provides the significant character in 3D seg-
mentation, noise management is not necessary and destroys
potential rules for effective segmentation. Especially, deep
neural networks have the capability of learning discrimi-
native features in background or foreground of original
medical images, serving great adaptiveness in complicated
condition. *erefore, for generalization of our proposed
model, we kept the original range of intensity without any
preprocessing methods to avoid possible artifacts from
image resampling, preserving original details for segmen-
tation. To CT scans, some contents of the image that belong
to background waste too much computation resources and
are possible to ignore. *erefore, we use Otsu segmentation
to quickly extract foreground and its coarse bounding box
with connectivity analysis. *en, these cropped images are
fed into the BE-FNet and performed data augmentation like
scaling, flipping, intensity jittering, and translation. A few
examples of the comparison between original and cropped
images are illustrated in Figure 3.

2.3. BE-FNet Architecture-Building Deeper Network. To
implement fully automatic segmentation for maxillary sinus
in CT scans, we design a hybrid neural network unifying 3D
bounding box estimation and in-region segmentation with
shared features and weights over different tasks.*e baseline
of BE-FNet borrows spirits from FPN [46], where different
level feature maps are fused to promote discriminative
feature extraction. Image encoder branch is responsible for
exploring the attention of objective to estimate the 3D
bounding box. With the decoder in significant VoI, in-re-
gion segmentation for maxillary sinus grows benefited from
shared features from different levels in the pyramid network.
Deeper networks have greater discriminative power due to
the additional nonlinearities and better quality of local
optima [49]. However, convolutions with 3D kernels are
computationally expensive in comparison to the 2D variants,
which hamper the addition of more layers. Moreover, 3D
architectures have a large number of more trainable pa-
rameters, with each layer adding ClCl− 1􏽑i� x,y,z{ }k

(i)
l weights

to the model. Cl is the number of feature maps in layer l, and

k
x,y,z{ }
l is the size of its kernel in the respective spatial di-

mension. Overall this makes the network increasingly prone
to overfitting, which increases GPU memory dramatically.
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In order to set up a deeper 3D architecture, we adopt the
sole use of small 33 kernels that are faster to convolve with
and contain less parameters. *is design approach was
previously found beneficial for classification of natural
images but its effect is even more drastic on 3D networks
[22]. When compared to other size choices such as 53, the 33

kernels reduce the element-wise operations and regarding
trainable parameters in a large scale. *erefore, 3D deeper
network that use smaller kernels are more efficient to deal
with 3D medical image segmentation maintaining accept-
able accuracy. However, deeper networks are more difficult
to train, where the forward or backwards propagated signal

may explode or vanish if care is not given to retain its
variance [50].*is phenomenon especially appears in the 3D
neural network. Consequently, we introduce a variant of the
residual dense block [51] to build the backbone of BE-FNet
for 3D image encoder-decoder extracting significant feature
maps. *e residual dense block holds more depth concat-
enations and fewer parameters, which serves great dis-
criminative capability and more efficient end-to-end
training process. Besides, to avoid the problem of “internal
covariate shift” [52], more seriously in the 3D network, we
adopt Batch Normalization (BN) technique to all hidden
layers [52], which allows normalization of the FM

3D encoder: downsampling + residual dense block

3D decoder: image upsampling + residual dense block

Cropping fusion

Bbox estimation

Attention excitation

Attention excitation

Attention excitation

Attention excitation

Image encoder Image decoder
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Figure 2: Overview of the proposedmultitask network for maxillary sinus segmentation.*e network consists of three parts: preprocessing,
image encoder for bounding box estimation, and decoder for in-region segmentation. Preprocessing extracts coarse RoIs that are passed to
the image encoder to estimate the 3D bounding box attributes.*en, cropped bounding boxes are fused to the image decoder following FPN
architecture for sinus segmentation with softmax function at the end.

(a) (b) (c) (d)

Figure 3: (a and c) Original images. (b and d) Cropped images. Cropped images reduce the GPU memory cost.
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activations at every optimization step in order to better
preserve the training signal. *e structure of the residual
dense block is described in Figure 4.

2.4. 3D Bounding Box Estimation. *is strategy includes
salient object detection and the size estimation of the 3D
bounding box within the image encoder branch. In se-
mantic segmentation, Share-net is used to set up an at-
tention probability map assisting evaluation to
foreground, achieving an excellent performance [53].
More recently, in medical image analysis, many works
adopt this idea to localize the objective effectively [54, 55].
Residual attention network (RAN) integrates the residual
blocks into architecture of attention branch to enhance the
saliency in backgrounds [47]. However, converting RAN
to 3D version directly costs massive computation resource
in soft mask branch (SMB). Inspired by SE-Net [56], in-
stead of element-wise operations between SMB and trunk
branch (TB), we apply the block of attention excitation
(AE) for strengthening significant 3D feature expression
that forms the attention probability map for 3D bounding
box localization.

Figure 5 describes the structure of the AE block in
details using attention excitation strategy. At the begin-
ning, the AE block receives the output z × h × w × c of the
residual dense block. In the upper branch, the 3D feature
maps are squeezed to z × c numbers with global pooling.
For example, feature maps with z × h × w × produce z×
values to concatenate a vector feeding one fully connection
network, where hidden layers first squeeze the input size to
(1/8) × z and the output layer restore it to z. *e last
sigmoid function makes sure the final trainable weights to
fall in [0, 1]. At the end of both branches, feature fusion
happens relying on element-wise multiplication. With the
AE block, the trainable attention weights enhance the
salient features of the foreground, which facilitates the
effective localization of the 3D bounding box eliminating
false positives remarkably on maxillary sinus
segmentation.

Traditional methods on size estimation, such as RPN,
generally set up a trainable regression network to predict the
geometric attributes of the bounding box. However, this
approach leads to overwhelming computing resource cost
for automatic anchor generations and overfitting, which
brings unacceptable issues in the deeper 3D neural network.
In this paper, we extract the largest salient area with con-
nection analysis. Based on prior knowledge to maxillary
sinus volume, we estimate a fixed and overdesigned size d ×
h × w such as 100 × 150 × 150 in the original cube. In other
layers of the image encoder, the corresponding sizes are
calculated easily according to the up or down sampling
ratios. *e image encoder branch takes over the entire
training process for salient object detection, and to over-
come the class imbalance problem in medical images, we
introduce Dice loss and weighted crossentropy loss over
pixels for RoI attention. Its advantages include free hyper-
parameter and weak saliency detection. *e Dice loss is
defined as follows:

Loss(P, G) � 1 − 2 ×
􏽐Ni�1pigi + ε􏽐Ni�1pi + 􏽐Ni�1gi + ε, (1)

where p and g represent predicted mask and ground truth,
respectively.*e sums are computed over theN voxels of the
predicted volume. ϵ is a smoothness term which prevents
from devision by 0. In the optimization stage, the Dice loss is
minimized by gradient descend using the following derivate
equation (2). Equation (3) gives the hybrid loss for 3D salient
detection, where Lwce denotes the weighted crossentropy loss
and Ld the Dice loss. ‖W‖22 is the sum of squares of two
norms in subnetwork and λ1, λ2, and λ3 weight three terms
in Lroi:

zLoss(P, G))

zpk
� − 2 ×

􏽐Ni�1pigi − gk􏽐Ni�1 pi + gi( 􏼁
􏽐Ni�1 pi + gi( 􏼁􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌2 , (2)

Lroi � λ1Lwce Pr, Gr( 􏼁 + λ2Ld Pc, Gc( 􏼁 + λ3‖W‖22.
(3)

2.5. Cropping Fusion Layer. Feature fusion with the skip
connection in different levels has promoted the convolu-
tional neural network to acquire more advanced learning
ability [18, 46, 57]. For better 3D maxillary sinus segmen-
tation, we set up the network designing multilevel feature
fusion layers such as FPN, where the estimated bounding
box is cropped directly without any resampling and fused
into the decoder branch. In every fusion node, the higher
level features are convolved up two times by the residual
dense block to concatenate the cropped one of the low level.
Related details are illustrated in Figure 2. *is mechanism
reduces the size of fed data improving efficacy of training
and inference in BE-FNet, getting rid of limitations of
computing resources to the 3D deeper neural network.

2.6. In-Region Segmentation with Hybrid Loss. Relying on
significant 3D bounding box estimation and shared features
fusion, the decoder branch is constructed for in-region
segmentation with two trainable tasks. One is responsible for
evaluation on the performance of entire segmentation. *e
other pays more attention on identifying the blurring
boundary. Consequently, at the end of BE-FNet, a hybrid
loss function is designed increasing more constraints to the
network, followed by

Lseg � λ1Ld Pr, Gr( 􏼁 + λ2Lc Pc, Gc( 􏼁 + λ3‖W‖22, (4)

where Ld and Lc denote Dice loss and contour-aware loss. λ1,
λ2, and λ3 are weighted coefficients and ‖W‖22 belongs to the
regularization term of equation (4). *e Dice loss discussed
before ensures the performance even though the foreground
accounts for a relatively smaller portion in the background.
In addition, the object boundary plays a critical role in
segmentation task. Especially, in maxillary sinus cavity, as a
result of interference caused by lesions, some parts of the
sinus boundary are ambiguous and lacks necessary infor-
mation for feature extraction. Some examples are illustrated
in Figure 6. To address this problem, we adopt the recently
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proposed strategy contour-aware loss of the deep contour-
aware network (DCAN) to learn and predict the blurring
boundary in medical images [26]. Both of the tasks are
trained in a parallel and end-to-end way together.

2.7. Multiscale Pathway. *e final version of the proposed
network BE-FNet is built by extending the primary model
with multiple resolution pathways that are identical with the
architecture completely, which includes high, normal, and
low resolution branches, named H-BE-FNet, N-BE-FNet,
and L-BE-FNet, respectively. At the end of each network, we
resample the 3D images to original resolution rate and vote

the final segmentation based on three predicted proba-
bility maps. *e spacing between pixels along z, y, and x
axes of acquired CT scans fall from 0.5 × 0.35 × 0.35mm
to 0.625 × 0.39 × 0.39mm in our dataset. *en, we
resample the input images spacing ranging from the
original to 1.0 × 1.0 × 1.0mm, 1.5 × 1.5 × 1.5mm, and
2.0 × 2.0 × 2.0mm for H-BE-FNet, N-BE-FNet, and
L-BE-FNet, respectively.

2.8. Implementation Details. *e BE-FNet architecture was
implemented using Pytorch [58] and Tensorflow [59] li-
braries. All the models were trained from scratches. *e
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Figure 4: Example of the residual dense block as the building module for our proposed network, which holds the obvious characteristics of
residual and dense blocks.
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Figure 6: (a–d) Examples of maxillary sinuses images with ambiguous boundaries, which are caused by cavity lesions resulting in troubles
for segmentation.

Mathematical Problems in Engineering 7



parameters of the network were initialized with random
values and trained with backpropagation based on Adam
[60], using an initial learning rate (LR) of 0.001, β1 � 0.9, and
β2 � 0.999. *e learning rate would be reduced by 0.1 if the
network went to plateau after 20 epochs. Five-fold cross-
validation was conducted on 50 scans. *e detailed archi-
tecture of the BE-FNet network is shown in Table 1. In
general, based on prior experience to maxillary sinus ana-
tomical structure, we preferred 3 × 3 × 3 and 1/2 × 1/2 × 1/2
for 3D convolution kernel andmax pooling. Preprocessing is
responsible for extracting coarse VoI and dropping re-
dundant backgrounds. With the prediction of well-trained
LocR, we localized the objective and estimated an over-
designed 3D bounding box in the RDBlock4 layer. To the
bounding box sizes in RDBlock3 and RDBlock2, we up
sampled them along x, y, and z axes by two or four times with
trilinear interpolation in order to match the dimensions of
different level pyramids for feature fusions. SegR and SegC
represent two different tasks with hybrid loss. *e AE block
denotes a mechanism to excite the object’s attention in
maximum that does not change the scales of the feature
maps. In this multitask network, we first train the LocR
branch for 3D bounding box estimation, and then SegR and
SegC branches for maxillary sinus segmentation in a parallel
way.

3. Results

3.1. Dataset. In our study, approved by an institutional
review board for restricted domain in our project, we used 50
CT volume scans (12.13GB) by SOMATOM Definition
AS + SIEMENS containing maxillary sinus to evaluate the
proposed multitask network BE-FNet. All of them have the
same 512 × 512 in-plane resolution but with different
number of axial slices. *e spacing between pixels along z, y,
and x axes of the acquired dataset falls within from
0.5 × 0.35 × 0.35mm to 0.625 × 0.39 × 0.39mm. *e cor-
responding ground truth is provided by two experienced
radiologists manually. *e training and inference of our
proposed model are run with two NVIDIA GTX1080 Ti
11GB GPUs, 32G RAM and Intel i7-7700K CPU with 8
cores 4.20GHz. Especially, we did not adopt any pre-
processing of noise management for our dataset in order to
preserve original details and avoid possible artifacts for
training and inference process.

3.2. Evaluation Metrics. Our segmentation method was
evaluated using four quantitative metrics, including Dice
Similarity Coefficient (Dice) [61], Volumetric Overlap Error
(VOE), Average Symmetric Surface Distance (ASD), and
Inference time cost on GPU. In such case, we assume the
maxillary sinus as the foreground and the others as the
background. *e ground truth and predicted region of a
maxillary sinus is denoted as A and B, respectively. *e Dice
is used for precise evaluation of the segmentation results,
with a higher number indicating a better result, which is an
important indicator for the evaluation of segmentation.
Dice ∈ [0, 1]. As for perfect segmentation, Dice � 1:

Dice(A, B) �
2|A∩B|
|A| +|B|

. (5)

*e VOE is the nonoverlapping ratio of the segmenta-
tion result and ground truth data. It is also used to evaluate
the precision of the results, with a lower number indicating a
better result, as shown in the following equation:

VOE(A, B) � 1 −
|A∩B|
|A∪B|. (6)

ASD (in millimeters) evaluates the distance of the border
voxels of segmentation and ground truth. For ASD, a lower
value denotes a better segmentation. Related metric is de-
fined as follows:

ASD(A, B) �
1

|S(A)| + |S(B)|
􏽘

sA∈S(A)
d sA, S(B)( 􏼁⎛⎝

+ 􏽘
sB∈S(B)

d sB, S(A)( 􏼁⎞⎠.
(7)

ASD is calculated based on the surface voxels. S(A) denotes
the set of surface voxels.*e shortest distance from a voxel v to
the set S(A) is defined as d(v, S(A)) � minsA∈S(A)‖v − sA‖,

where ‖·‖ is the Euclidean norm. As for perfect segmentation,
this quantity is zero. Inference time is used to evaluate the cost
of computational resource and complexity of the BE-FNet
model in the inference process.

3.3.Ablation Studies. *e challenges regarding the maxillary
sinus segmentation fully automatic process include (1) ab-
normal and ambiguous anatomy structure of maxillary sinus
in CT scans, (2) ubiquitous lesions resulting in interferences
to accurate segmentation, and (3) the relationship of
overwhelming scale of data with the 3D deeper neural
network. In experiments, we have evaluated our proposed
model for comparison with other state-of-the-art methods
on the performances of maxillary sinus segmentation. Ex-
amples of predicted vs. ground truth of comparisonmethods
are shown in Figure 7. Eight volume predictions are illus-
trated in Figure 8.

Our proposed BE-FNet multitask network is divided
into two subnetworks bounding box estimation and in-re-
gion segmentation. By bounding box estimation, the
backbone of the entire network enjoys the acceleration based
on the effective VOI eliminating false positives notably. To
stick out our proposed model for improved segmentation on
speed and quality, we compared our proposed model with
the state-of-the-art methods 3DU-Net [21], V-Net [29], HL-
FCN [62], 3D CNN+CRF [22], 2D FCN+RNN [63], 3D
CNN+Level Set [64], and 3D Deep Nested Level Set [65] to
demonstrate the predominance of BE-FNet with the efficient
bounding box estimation and in-region segmentation
strategy. For the sake of fairness, all models were evaluated
on the same receptive field of 92 × 92 × 92. Specifically, in
the design of 3D U-Net or 3D FCN, the baseline of the image
encoder and decoder was built according to BE-FNet’s
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Figure 2 and all hyperparameters kept consistent. Mean-
while, in this section we set BE-FNet with Dice loss only
instead of hybrid loss, which emphasizes the strength of the
bounding box estimation in the neural network including
performance and efficient computing speed. Statistical re-
sults are listed in Table 2.

3D U-Net [21] is the 3D version of 2D U-Net with
multilevel feature maps concatenation. In experiments, we
evaluated the 3D U-Net model with different resolutions on
Dice loss over pixels. Without the significant VoI, the en-
coder-decoder branches suffered from more false positives
in the same receptive field and acquired relatively lower Dice
0.816 ± 0.084 of three resolutions ensemble strategy. V-net
[29] optimizes 3DU-Net using Dice loss and a novel training
set augmentation strategy with random nonlinear trans-
formations and histogram matching. Consequently, it gave
an obvious improvement Dice 0.883 ± 0.053, VOE
13.87 ± 8.06, and ASD 3.95 ± 3.73. HL-FCN [62] presents
the hybrid loss function that is designed under a multitask
learning framework to tackle the class imbalance issue and
improve the discrimination capability, providing a re-
markable Dice of 0.905 ± 0.059. 3D CNN+CRF [22] pays
more attention on how to facilitate 3D segmentation model
efficiently on CTscans with a small 3D convolutional kernel.
Meanwhile, the CRFmethod is selected to join the end of the
network for optimization for outputs. 2D FCN+RNN [63]
is derived from the 2D model and adopts RNN to extract
features between slices. Both of the methods lack insufficient
context utilization, resulting in the excessive over-
segmentation phenomenon with Dice 0.828 ± 0.087 and

0.835 ± 0.073, respectively. *e level set model relies on
curve evolution that runs competent in complicated shape of
object segmentation but sensitive to noise independently. To
address the problem, 3D CNN+Level Set [64] tries to
predict subgrid areas on the probabilities of foreground or
background with the deep learning network and allocates
weights to the energy, which prevent the level set functional
from being trapped into local minima. 3DDeepNested Level
Set [65] lies on 3D CNN to generate proper initial contours
to guarantee evolutions happening in target regions.
However, the lesions in maxillary sinus cavity appear sto-
chastic to locations and the outside is filled with organs with
different densities. Both of models cannot fit these com-
plicated conditions showing lower Dice 0.719 ± 0.140 and
0.783 ± 0.106. In contrast, our proposed model is qualified
the ability of advanced bounding box estimation and more
accurate in-region segmentation with remarkable results
Dice 0.929 ± 0.035, VOE 10.89 ± 5.67, and ASD 3.04 ± 2.48
over five-fold crossvalidations on average. Specifically, with
the same baseline of encoder-decoder based on FCN or
U-Net, BE-FNet reflects obvious predominance that could
be generalized in related research fields.

In addition, we also evaluated BE-FNet in comparisons
of the aforementioned methods on inference costs to discuss
the time complexity of our proposed model. 3D
CNN+Level Set and 3D Deep Nested Level Set were not
included since they belong to semiautomatic algorithms
interacted by users and related achievements were not
satisfied enough. Based on the same configuration of
training, V-Net and HL-FCN are fundamentally derived

Table 1: Architecture of the proposed BE-FNet, consisting of preprocessing, 3D image encoder and decoder, bounding box estimation,
cropping fusion, and logits parts.*e symbol denotes no information about this item.*e first and second columns indicate the descriptions
of modules and their sublayers, respectively. *e forth and fifth columns tell the size of kernels and their output channels, respectively.

Module name Layer name Input layer (s) Kernel Out channel (s) Receptive field

Preprocessing
Coarse RoI extraction Image — — —

RDBlock1 Coarse RoI extraction 3 × 3 × 3 32 7 × 7 × 7

Image encoder

RDBlock2 RDBlock1 3 × 3 × 3 32 13 × 13 × 13
AEBlock1 RDBlock2 — 32 —

MaxPooling1 AEBlock1 1/2 × 1/2 × 1/2 32 14 × 14 × 14
RDBlock3 MaxPooling1 3 × 3 × 3 64 26 × 26 × 26
AEBlock2 RDBlock3 — 64 —

MaxPooling2 AEBlock2 1/2 × 1/2 × 1/2 64 28 × 28 × 28
RDBlock4 MaxPooling2 3 × 3 × 3 64 52 × 52 × 52
AEBlock3 MaxPooling3 — 64 —

MaxPooling3 RDBlock4 1/2 × 1/2 × 1/2 64 56 × 56 × 56
RDBlock5 MaxPooling3 1 × 1 × 1 96 56 × 56 × 56

Cropping fusion
CroppingFusion1 AEBlock1, EB1 — 32 13 × 13 × 13
CroppingFusion2 AEBlock2, EB2 — 64 26 × 26 × 26
CroppingFusion3 AEBlock3, EB3 — 64 52 × 52 × 52

Image decoder

UpConv1 CroppingFusion3 UpConv1 2 × 2 × 2 64 —
Concat1 CroppingFusion2 Concat1 — 64 —
RDBlock6 RDBlock6 3 × 3 × 3 64 80 × 80 × 80
UpConv2 UpConv2 2 × 2 × 2 32 —
Concat2 CroppingFusion1 — 32 —
RDBlock7 Concat2 3 × 3 × 3 32 92 × 92 × 92

Logits
LocR (Softmax-Task1) RDBlock5 1 × 1 × 1 2 56 × 56 × 56
SegR (Softmax-Task2) Concat2 1 × 1 × 1 2 92 × 92 × 92
SegC (Softmax-Task2) Concat2 1 × 1 × 1 2 92 × 92 × 92
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from U-Net, and their performances of time complexity
were similar, 11.127 s, 11.173 s, and 11.125 s for inference,
respectively. As a result of superior bounding box estimation
by encoder branch, proper VoI can be extracted signifi-
cantly, which tremendously scales down the input size fed
into the segmentor and helps our proposed neural network
to restrain false positives achieving faster inference process
0.511 s and more accurate results.

3.4. Comparison to Other State-of-the-Art Multitask
Networks. Furthermore, we also compared BE-FNet to a
discrete VoI localization-based method of the multitask
network. In detail, 3DMask R-CNN [34], RA-UNet [66], 2D
FCN+3D FCN [67], and 3D+ 2D FCN [68] were considered

and results are listed in Table 3. We provide these results for
reference and emphasize benefits of our optimized 3D
bounding box estimation strategy to maxillary sinus seg-
mentation that supplies generalization in similar tasks.
Among the approaches, 3D Mask R-CNN [34] utilizes the
RPN network to produce plenty of anchors for fitting
foregrounds. In practice, the objects in medical image
backgrounds have characters of low contrast and abnormal
anatomy structure that cause RPN to generate overestimated
or underestimated 3D bounding box leading to failures of
bounding box detection and regression, 0.765 ± 0.121,
30.08 ± 12.39, and 9.39 ± 10.72 for Dice, VOE, and ASD,
respectively. 2D FCN+3D FCN [67] employs 2D FCN to
localize the possible objective on each 2D slice with the
predicted probability map, whereas 2D FCN serving as an

(g) (h) (i) (j)(f)

(g) (h) (i) (j)(f)

(b) (c) (d) (e)(a)

(b) (c) (d) (e)(a)

Figure 7: Comparisons of BE-FNet with the state-of-the-art methods. (a) Original CT image, (b) expert delineation, (c) proposedmodel BE-
FNet, (d) 3D U-Net, (e) V-Net, (f ) HL-FCN), (g) RA-UNet, (h) 3D Mask R–CNN, (i) 3D CNN+Level Set, and (j) 2D FCN+3D FCN.
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RoI locator produces more false positive candidates due to
weak ability of extracting features along z-axis. 3D + 2D
FCN [68] estimates the 3D bounding box depending on 3D
FCN. For facilitating GPU memory cost, it uses 2D FCN to
form the final result that equally cannot deal with volume
data at last. RA-UNet [66] designs a novel multitask

network for attention localization and in-region segmen-
tation. *e attention mechanism lives on the strategy of
Residual Attention Network (RAN) [47] to improve VoI
accuracy. However, their proposed RAN architecture only
focuses on 2D slices with lower relative accuracy, and
especially the probability map predicted by RAN is selected

(a) (b) (a) (b)

(b) (a) (b)

(b) (a) (b)

(b) (a) (b)(a)

(a)

(a)

Figure 8: (a) Selected 2D slices. (b) 3D segmentation results displayed with volume rendering. Green indicates true positives; red indicates
false positives; blue indicates false negatives.
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as a coarse segmentation giving the problem of under-
estimated sizes for the bounding box. In this section, BE-
FNet +HL refers to BE-FNet with hybrid loss to stress
advantages of contour-aware loss. BE-FNet +HL adopts
the AE block to explore 3D target attention effectively and
estimate an overestimated but proper size of the 3D
bounding box for preventing from more false positives. In
addition, similar with skip connection of FPN architecture,
shared features of different levels in pyramid hierarchy with
cropping fusion connections enable our proposed model to
achieve the best performance Dice 0.947 ± 0.031, VOE
10.23 ± 5.29, and ASD 2.86 ± 2.11, respectively, empha-
sizing the advantages of tasks joint training and cross-
module feature sharing. Besides, the outperformance of

BE-FNet +HL than BE-FNet indicates benefits of hybrid
loss attractively.

Besides, we compared our proposed BE-FNet with the
state-of-the-art algorithms for evaluations on time com-
plexity in order to verify our achievement of multitask.
Because of generating multiple anchors on each pixels in
feature maps, RPN had to infer proper bounding box
resulting in great cost of computation with 1.020s for 3D
Mask R-CNN+Ensemble. Although RA-UNet + Ensemble
depended on salient detection to explore candidate
bounding boxes saving plenty of time complexity, this
method lacked an effective strategy of estimation that causes
excessive false positives in prediction. 2D FCN+3D FCN
and 3D FCN+2D FCN tried 2D convolution operations to

Table 2: Comparisons of the state-of-the-art methods with different metrics. Results are represented as mean± standard deviation.

Models Dice VOE (%) ASD (mm) GPU inference time (s)

BE-FNet + ensemble 0.929 ± 0.035 10.89 ± 5.67 3.04 ± 2.48 0.511
BE-FNet (HighRes) 0.889 ± 0.048 14.11 ± 7.92 4.27 ± 3.87 0.302
BE-FNet (MidRes) 0.919 ± 0.044 12.91 ± 6.68 3.32 ± 2.96 0.138
BE-FNet (LowRes) 0.910 ± 0.048 12.96 ± 6.95 3.88 ± 3.25 0.071
3D U-Net + ensemble 0.816 ± 0.084 29.55 ± 10.11 6.91 ± 4.67 11.125
3D U-Net (HighRes) 0.772 ± 0.119 33.80 ± 14.25 9.34 ± 10.26 6.428
3D U-Net (MidRes) 0.791 ± 0.095 30.31 ± 11.67 8.18 ± 8.90 3.176
3D U-Net (LowRes) 0.803 ± 0.088 30.71 ± 10.33 7.13 ± 8.46 1.521
V-Net + Ensemble 0.883 ± 0.053 13.87 ± 8.06 3.95 ± 3.73 11.127
V-net (HighRes) 0.825 ± 0.080 24.04 ± 11.58 6.67 ± 5.16 6.429
V-net (MidRes) 0.856 ± 0.062 15.61 ± 8.83 5.38 ± 3.89 3.176
V-net (LowRes) 0.871 ± 0.069 13.79 ± 8.11 4.59 ± 4.25 1.522
HL-FCN+Ensemble 0.905 ± 0.059 12.62 ± 7.98 3.32 ± 3.49 11.173
HL-FCN (HighRes) 0.859 ± 0.071 16.36 ± 9.14 5.56 ± 3.90 6.466
HL-FCN (MidRes) 0.882 ± 0.055 14.13 ± 8.48 4.14 ± 3.87 3.182
HL-FCN (LowRes) 0.876 ± 0.060 14.82 ± 10.22 4.46 ± 4.01 1.525
3D CNN+CRF (LowRes) 0.828 ± 0.087 22.39 ± 11.99 6.74 ± 4.38 —
2D FCN+RNN (LowRes) 0.835 ± 0.073 20.27 ± 10.74 6.26 ± 3.92 —
3D CNN+Level set (LowRes) 0.719 ± 0.140 41.42 ± 20.16 10.48 ± 11.24 —
3D deep nested level set (LowRes) 0.783 ± 0.106 34.96 ± 13.65 8.72 ± 9.85 —

Table 3: Comparisons of the state-of-the-art multitask networks for VoI localization and segmentation. Results are represented as
mean± standard deviation.

Models Dice VOE (%) ASD (mm) GPU inference time (s)

3D mask R–CNN (HighRes) 0.751 ± 0.139 31.45 ± 13.34 9.84 ± 11.28 0.614
3D mask R–CNN (MidRes) 0.737 ± 0.136 33.29 ± 14.83 10.61 ± 12.11 0.277
3D mask R–CNN (LowRes) 0.726 ± 0.150 34.73 ± 16.46 12.47 ± 14.63 0.129
3D mask R–CNN+Ensemble 0.765 ± 0.121 30.08 ± 12.39 9.39 ± 10.72 1.020
RA-UNet (HighRes) 0.844 ± 0.067 19.06 ± 9.91 5.83 ± 4.41 0.298
RA-UNet (MidRes) 0.869 ± 0.058 17.24 ± 8.66 4.74 ± 3.96 0.135
RA-UNet (LowRes) 0.857 ± 0.062 17.52 ± 8.97 5.01 ± 4.15 0.063
RA-UNet + Ensemble 0.877 ± 0.059 15.83 ± 8.18 4.65 ± 3.83 0.496
2D FCN+3D FCN (LowRes) 0.829 ± 0.074 24.61 ± 11.74 6.41 ± 4.02 0.068
3D FCN+2D FCN (LowRes) 0.832 ± 0.076 21.23 ± 10.95 6.48 ± 3.77 0.067
BE-FNet (HighRes) 0.889 ± 0.048 14.11 ± 7.92 4.27 ± 3.87 0.302
BE-FNet (MidRes) 0.919 ± 0.044 12.91 ± 6.68 3.32 ± 2.96 0.138
BE-FNet (LowRes) 0.910 ± 0.048 12.96 ± 6.95 3.88 ± 3.25 0.071
BE-FNet + Ensemble 0.929 ± 0.035 10.89 ± 5.67 3.04 ± 2.48 0.511
BE-FNet +HL (HighRes) 0.898 ± 0.049 14.15 ± 7.96 4.17 ± 3.92 0.317
BE-FNet +HL (MidRes) 0.925 ± 0.041 12.87 ± 6.62 3.31 ± 2.89 0.149
BE-FNet +HL (LowRes) 0.916 ± 0.045 12.79 ± 6.83 3.82 ± 3.14 0.073
BE-FNet +HL+Ensemble 0.947 ± 0.031 10.23 ± 5.29 2.86 ± 2.11 0.539
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learn discriminative features in context that is not competent
in space and leads to unsatisfactory results, even though they
served faster speed 0.068 s and 0.067 s, respectively. Since
BE-FNet + Ensemble adopts efficient and effective mecha-
nism of bounding box estimation, they provided more
advanced result of Dice 0.929± 0.035 with time cost 0.511 s.
BE-FNet +HL+Ensemble with hybrid loss addressed issues
of class imbalance and blurring boundary and ran the best
performance of Dice 0.947± 0.031, which gave more time
complexity 0.539 s in an inference process. Statistics dem-
onstrate that our proposed BE-FNet can not only outper-
form the state-of-the-art models in segmentation accuracy
but also reflect a lower time complexity that could be fa-
cilitated in computer-aid diagnosis.

4. Discussion

For accurate and robust maxillary sinus segmentation in
clinical diagnosis, we propose a novel multitask neural
network to implement an end-to-end training and infer-
ence process. *ere are some difficulties for traditional
methods including inhomogeneous intensity, plenty of
lesions, abnormal anatomical structure, blurring boundary
of sinus cavity, and excessive computing costs in the
deeper 3D neural network. For a fully automatic seg-
mentation skill in generalization, we provide a novel
model BE-FNet adaptive to maxillary sinus in low contrast
CT scans. *e main advantages of the proposed approach
are demonstrated:

(1) To facilitate 3D segmentation of large data in CNN,
we design an efficient and effective deeper neural
network with multitask of estimating 3D bounding
box and in-region segmentation. *e 3D bounding
box estimation helps to reduce great computing cost
and eliminate false positives remarkably enhancing
capability of generalization in our proposed network.

(2) To prevent overfitting problems happened in lots of
research studies, an overestimation strategy is de-
vised to generate a proper 3D bounding box that is
able to extract the most significant space for in-re-
gion segmentation. Besides, for increasing depth of
the deep neural network, we design residual dense
blocks as the backbone of the model to improve the
capability of learning.

(3) We supply a mechanism of attention excitation to
improve salient detection applied in bounding box
estimation process, which does not give any com-
putation burden for 3D deep neural networks. Es-
pecially, the structure of multilevel feature fusion in
the pyramid network strengthens the ability of
identification to global and local discriminative
features in foreground and background achieving
more advanced segmentation results in space.

(4) To resolve the problem of blurring boundary in sinus
cavity, we design a hybrid loss function with Dice
and contour-aware loss. Moreover, a multiresolution
model ensemble strategy has been introduced to

boost segmentation robustness, generating more
reliable results and constraining false positives
tremendously.

In addition, the whole baseline of our proposed model is
fully automatic. At the beginning, we need to train the image
encoder branch for effective bounding box estimation.*en,
with the prediction, the entire network completes an end-to-
end process for in-region segmentation. *is novel auto-
matic framework combining hybrid tasks and loss functions
provides more accurate maxillary sinus segmentation es-
pecially in low contrast and noisy CT scans. To show the
generalization capability of our method in the clinical
practice, we tested our trained model on dataset with five
crossfold evaluations. First of all, we compared BE-FNet
with the state-of-the-art frameworks to stress the impor-
tance of 3D bounding box estimation. Figure 7 illustrates
that our proposed model can deal with cases in low contrast,
heterogeneous, noisy backgrounds, and outperforming
commonly used frameworks based on deep learning. As
proven, Table 2 and Figure 7 demonstrate that BE-FNet has
more accuracy and robustness regardless of possible lesions,
holding an average Dice 0.929 ± 0.035, VOE 10.89 ± 5.67,
and ASD 3.04 ± 2.48 with obvious superiority among ap-
proaches. Meanwhile, we also evaluated different models on
the inference time cost of GPU. As a result of significant VoI
extraction, the magnitude of trained data is reduced by an
exciting extent, which facilitates our research in deeper 3D
network. Furthermore, to emphasize the efficacy of our
proposed strategy on bounding box estimation, 3D Mask
R-CNN [34], RA-UNet [66], 2D FCN+3D FCN [67], and
3D+ 2D FCN [68] based on multitask networks with lo-
calization joined in comparison and BE-FNet achieved the
state-of-the-art results on maxillary sinus segmentation.
*ese findings indicate three key points. At first, AE block
mechanism benefits the accurate salient object localization.
Besides, the setting of experienced overdesigned size for the
bounding box eliminates false positives as far as possible. At
last, hybrid loss functions explore the optimized balance of
extracting blurring boundary and small object segmentation
in noisy texture. Consequently, our proposed network that
combines efficient 3D bounding box estimation and in-re-
gion segmentation tasks overcomes the aforementioned
issues of popular methods, serving a significant advanced
result.

*e presented work has some limitations. At first, for
salient detection with multiple objectives, if they are over-
lapped or close, our proposed mechanism tends to make
mistakes of identification, which influences the perfor-
mances of 3D bounding box estimations and in-region
segmentation. Consequently, we should further discuss how
to effectively estimate multiple bounding boxes and segment
multiple objects in practice. In addition, in cases, we found
that areas of salient detection account for low percentages of
ground truth, which causes the estimated center of the 3D
bounding box to deviate from excepted position away and
more false positives in segmentation. A possible solution
could incorporate dilated convolutions to enlarge local re-
ceptive fields for exploring the complete attention picture.
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5. Conclusion

In this paper, we present a multitask neural network for 3D
maxillary sinus segmentation from CTscans, which consists
of 3D bounding box estimation and in-region 3D seg-
mentation. With AE block mechanism, the proposed model
is able to detect the maxillary sinus effectively. *en, based
on geometrics, an overdesigned size of the 3D bounding box
is estimated. Compared with the state-of-the-art methods,
this strategy hinders from inappropriate VoIs resulting in
oversegmentation or undersegmentation. Moreover,
through cropping fusion layers the shared features in dif-
ferent hierarchy of the pyramid network improve the in-
region segmentation results remarkably. At last, to address
the issue of the blurring cavity boundary, the hybrid loss
function guarantees advanced extraction of candidate
boundaries and small objective segmentation in noisy
backgrounds of the medical image. Compared with the state-
of-the-art methods, our BE-FNet is benefited from bounding
box localization which saves computing resources and
improves the performance of in-region segmentation. To
further evaluate the proposed estimation mechanism, we
tested it to compete with popular models such as 3D Mask
R-CNN. After extensive experiments, the competitive results
were found, respectively. Some limitations are presented for
future work to be optimized.
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[6] D. Połap and M. Woźniak, “Lung segmentation on x-ray
images with neural validation,” in Proceedings of the 2017
IEEE Symposium Series on Computational Intelligence (SSCI),
IEEE, Honolulu, HI, USA, December 2017.

[7] S. Khan, N. Islam, Z. Jan, I. Ud Din, and J. J. P. C. Rodrigues,
“A novel deep learning based framework for the detection and
classification of breast cancer using transfer learning,” Pattern
Recognition Letters, vol. 125, pp. 1–6, 2019.

[8] Y. Yu, P. Decazes, J. Lapuyade-Lahorgue, I. Gardin, P. Vera,
and R. Su, “Semi-automatic lymphoma detection and seg-
mentation using fully conditional random fields,” Comput-
erized Medical Imaging and Graphics, vol. 70, no. 1–7, 2018.

[9] M. van Eijnatten, R. van Dijk, D. Johannes, G. Streekstra,
J. Koivisto, and J. Wolff, “Ct image segmentation methods for
bone used in medical additive manufacturing,” Medical En-
gineering & Physics, vol. 51, no. 6–16, 2018.

[10] E. Abdulhay, M. A. Mohammed, N. A. Dheyaa Ahmed
Ibrahim, and V. Venkatraman, “Computer aided solution for
automatic segmenting and measurements of blood leucocytes
using static microscope images,” Journal of Medical Systems,
vol. 42, no. 4, p. 58, 2018.

[11] E. Soodmand, D. Kluess, P. A. Varady et al., “Interlaboratory
comparison of femur surface reconstruction from ct data
compared to reference optical 3d scan,” Biomedical Engi-
neering Online, vol. 17, no. 1, p. 29, 2018.

[12] I. Mehmood, M. Sajjad, K. Muhammad et al., “An efficient
computerized decision support system for the analysis and 3d
visualization of brain tumor,” Multimedia Tools and Appli-
cations, vol. 78, no. 10, pp. 12723–12748, 2019.

[13] X. Baik, Q. Huang, S. Chang, J. He, and H. Wang, “Lossless
medical image compression using geometry-adaptive parti-
tioning and least square-based prediction,” Medical & Bio-
logical Engineering & Computing, vol. 56, no. 6, pp. 957–966,
2018.

[14] Z. Fan, L. Sun, X. Ding, Y. Huang, C. Cai, and J. Paisley, “A
segmentation-aware deep fusion network for compressed
sensing mri,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 55–70, Munich, Germany,
September 2018.

[15] C. Chunming Li, C. Chenyang Xu, C. Changfeng Gui, and
M. D. Fox, “Distance regularized level set evolution and its
application to image segmentation,” IEEE Transactions on
Image Processing, vol. 19, no. 12, pp. 3243–3254, 2010.

[16] C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and
J. C. Gore, “A level set method for image segmentation in the
presence of intensity inhomogeneities with application to
mri,” IEEE Transactions on Image Processing, vol. 20, no. 7,
pp. 2007–2016, 2011.

[17] S. Lankton and A. Tannenbaum, “Localizing region-based
active contours,” IEEE Transactions on Image Processing,
vol. 17, no. 11, pp. 2029–2039, 2008.

[18] O. Ronneberger, P. Fischer, and T. Brox,U-net: Convolutional
Networks for Biomedical Image Segmentation, Springer In-
ternational Publishing, Berlin, Germany, 2015.

[19] M. F. Stollenga, W. Byeon, L. Marcus, and J. Schmidhuber,
“Parallel multi-dimensional lstm, with application to fast
biomedical volumetric image segmentation,” in Proceedings of
the Advances in Neural Information Processing Systems,
pp. 2998–3006, Montreal, Canada, June 2015.

14 Mathematical Problems in Engineering



[20] H. R. Roth, L. Lu, A. Farag et al., “Deeporgan: multi-level deep
convolutional networks for automated pancreas segmenta-
tion,” in Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pp. 556–564, Springer, Munich, Germany, October 2015.
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