
Be Kind, Rewind Checkpoint & Restore Capability for Improving Reliability of large-scale Semiconductor Design
Igor Ljubuncic

Intel Corporation, Israel
igor.ljubuncic@intel.com

Avikam Rozenfeld
Intel Corporation, Israel

avikam.rozenfeld@intel.com

Andrew Goldis
Intel Corporation, Israel

andrew.goldis@intel.com

Ravi Giri
Intel Corporation, India
ravi.a.giri@intel.com

Abstract—Intel’s chip design run in a large-scale globally
distributed environment with 600,000 cores. In the current
semiconductor market scenario, a combination of factors such as
time to market pressure, explosive growth in the mobile market
segment and upcoming new markets has led to a significant
increase in the demand for and reliability of computing
resources. Checkpointing is a capability that can make a
significant improvement in improving reliability, however, there
is no mature solution that allows periodic snapshots of running
compute jobs for replay them at a later time in a consistent
manner in a large scale environment.

Intel IT has partnered with the Northeastern University (NEU)
Distributed Multi-Threaded Checkpointing (DMTCP) team to
improve their checkpoint & restore solution for the design
computing environment. This paper elaborates on the innovative
technological breakthroughs, industry-academy partnership as
well as the open-source contribution.

Keywords—Intel; Information Technology; Engineering
Computing; Checkpoint & Restore; Checkpointing; Distributed
MultiThreaded Checkpointing; DMTCP; CPU design

I. Introduction
Silicon design industry is one of the large consumers of high
performance computing systems driven by the large scale
simulations required to address the growth in complexity due
to Moore’s Law. More recently, the explosive growth in
mobile devices which are seeing very complex integration of
digital and analog capabilities into an SoC (system on chip)
and the expected explosion of volume from the ‘Internet of
Things’ that will bring silicon to everyday objects are driving
higher demand for computation. Finally, the competitive
market scenario is ensuring that ‘Time to Market’ pressure on
all companies, which drives a need for high levels of
availability and reliability of the computing environment.

Intel, being the largest semiconductor company, is generally
affected by these trends to a greater extent and earlier than
most others in the industry. Intel’s state-of-the-art processor
design takes place in a large, global setup with >600,000 cores
running >40 million jobs every month. Some of these jobs are
mission-critical, time-consuming processes that must
successfully complete. If they are interrupted for any reason,

subsequent reruns must be executed from the start, resulting in
a significant delays and waste of project resources. This is
particularly true when the results of certain jobs are part of a
project’s critical path and when other jobs depend on them.
These critical tasks then become a bottleneck for the overall
execution throughput; failures of any one of these jobs may
delay the entire project, and even impact TTM (Time to
Market).

In the current technological reality, the execution of tasks in
this environment is basically an all-or-nothing approach.
Flows that experience irrecoverable errors will crash, and they
will have to be executed from the start, wasting precious
compute time.

With approximately 600,000 cores, 5 PB of memory, and 24
PB of distributed storage, the Intel IT environment supports
roughly a million concurrent regression jobs in a global batch
setup across 40 sites daily. The potential for wastage, or
conversely, savings is immense.

One approach towards improving reliability and availability is
to harden the computing environment by increasing
redundancy and investing failover capable systems – most
such solutions are proprietary and are for the most part, only
able to take care of issues affecting individual compute nodes
and not issues that may be affecting the computing
environment at large.

Design teams should ideally be able to periodically take
snapshots of the jobs, and replay them at a later time, thus
improving their ability to debug, branch or replay critical-path
executions. Unfortunately, the existing solutions do not
possess a robust and generic capability allowing varied
applications to stop and resume execution in an opportunistic
manner. However, there are several potential technologies that
could be developed to allow this mode of work.

Virtualization is one possible solution. It is generic, and
usually operating system and application agnostic, however
licensing support can be very costly, and there is an additional
layer of complexity involved, not to mention performance
impact. Furthermore, there are scalability issues since it might
be necessary to spawn an instance of a virtual machine for
every specific job in order to be suspend and restore them
independently. This has also been tested and implemented in

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

specific use cases and scenarios where performance is not as
crucial and it has been able to mitigate the risk of single point
failure very effectively [1].

Application checkpointing is another alternative, with low to
no performance impact but with relatively lower maturity in
the industry today. There are two basic approaches that can be
used for application checkpointing: in kernel space and in user
space. Initially, the Linux community sought to integrate
checkpointing into the mainline kernel. However, after the
kernel checkpoint/restore was rejected by the KSUMMIT
2010 due to significant complexity involved [2] [3], the
development switched to the user space implementation, with
Checkpoint/Restore in Userspace (CRIU) [4], as the notable
candidate technology. It is currently under development, and
available for testing in kernels 3.11 and above. In most data
centers and industry environments, the practical implications
of this requirement is that very few enterprise-ready operating
systems can support CRIU, due to legacy constraints and
relatively older kernel versions in use.

Outside the mainline kernel development, third–party software
projects have adopted both methods. Notable technologies
include Berkeley Lab Checkpoint/Restart (BLCR) [5] and
Distributed MultiThreaded CheckPointing (DMTCP) [6],
developed by the Northeastern University, MA. The former
uses a hybrid kernel/user implementation. A special kernel
module is loaded into memory, and it is used to intercept the
application system calls. On the other hand, DMTCP does not
modify the user’s program or the operating system, and
resides in the user space only.

A third way to accomplish some checkpoint & restart
capability is through custom application-specific solutions
[7].However, these are normally not scalable beyond specific
applications and require a higher effort to develop and use.

A comparison between the solutions is listed in Table I below:

TABLE I. CHECKPOINTING TECHNOLOGY LANDSCAPE

 Virtualization Application
checkpointing

Application
specific

Platform
independence

Yes Yes1 Yes

Licensing
support

Yes No No

Cost High Low Low
Scalability No Yes Yes
Complexity High Medium Low
Performance Medium High High
Maturity High Low Medium

After a thorough analysis of the present technologies and their
relative advantages [8], Intel IT opted to further explore the
application checkpointing solutions as a proof of concept for
the design community.

Several technologies were examined, including BLCR and
DMTCP. An overview of capabilities and comparison
between the two technologies in available in Table II (fully

1 Some kernel version restrictions

implemented feature scores 1, partially implemented with
limitation scores 0.5, non-implemented / unavailable features
scores 0).

TABLE II. COMPARISON BETWEEN DMTCP AND BLCR SOLUTIONS

Feature DMTCP BLCR
Workload Agnostic 0.5 1
Support for perl
scripts

1

0

Support for
interactive sessions
(ttys, vnc)

1

0

Support for process
groups and sessions

1

0

IPC (pipes) support 1 0
Support for network
resource usage

1

0

Support for device
files and /proc use

1

0.5

Support for multi-
threaded processes

1

1

Support for
distributed processes

1

0.5

Non-kernel dependent
(User Space)

1

0

Process ID
Virtualization

1

0

Checkpoint Image
Compression

1

0

Extensibility - ability
to write extensions

1

1

Final score 12.5 4

Eventually, DMTCP was selected as the primary candidate,
due to faster and more active development, reduced
deployment complexity and a great feature set. BLCR requires
a kernel module to be loaded and recompiled following each
kernel change [5] – that increases the complexity of
deployment and maintaining the tool in a large IT
environment.

II. Checkpoint & Restore
technology

Checkpointing is essentially the ability to save the state of a
workload during execution and restart it, either on the same
machine or another machine. A task is executed through a
wrapper that maintains persistency of its memory state and
periodically saves the contents to disk, allowing the task to be
restarted at a later time, with minimal loss of context [5].

Checkpoint & restore can be used to resolve a range of critical
business needs in the design community.

• It can be used for troubleshooting failed simulations /
jobs – checkpoints are created periodically, after a
job fails the latest checkpoint is used to replay the job
and thus improving troubleshooting efficiency and
saving computation time.

• It can be used for speculative execution – when
multiple simulations/jobs have identical initialization
stage, the initialization may be processed once and
saved as a checkpoint, while each particular job start

its execution restoring the chec
executing its unique content.

• Another option is periodic checkpo
to improve environment reliability,
scenarios like hardware failures, ma
migration of resources, etc.

Fig. 1. Typical use cases of checkpoint & restore tec
execution for troubleshootng b) speculative execu
reliability

III. Partnership & Mile
Until last year, DMTCP lacked a lot of func
to support the huge, complex, demanding e
Intel.

We engaged the university team with the cle
DMTCP enterprise ready. The joint work of
in late 2013, and since we have made some
and great milestones.

The DMTCP partnership currently consis
project milestones.

The first one was the establishment of a
Bugzilla system, which allows any Intel engi
space to submit privileged bug reports
requests to the DMTCP team. In the past
mechanism has been successfully used to esc
key problems in the DMTCP functionality, m
been resolved very quickly following the rep

The second milestone was the development
mature enterprise-ready release of DMTCP,
by design engineers in the Intel environment
covers a large number of showstopper issue
prevented the business groups from using
restore technology in their flows. Most nota
issues have been resolved:

ckpoint and then

oint & restore used
, resolving outage
achine end-of-life,

chnology: a) repetitive
ution c) environment

estones
ctionality required
nvironment inside

ear goal of making
fficially kicked off
e notable progress

sts of five major

secure, encrypted
ineer in the design
and enhancement
t six months, the
calate a number of
most of which has

port.

of the first stable,
which can be used

t. This first version
es that have so far
the checkpoint &

ably, the following

• Restart with different
saved task with the
from the one that c
particularly importan
many users have acces

• File descriptor referri
big issue during the r
jobs were restarted un
they were saved, pro
because the files need
the exact location as d
Milestone 1.0 resolve
paths for files and dire
only their absolute pat
be moved between
improving portability.

• Mixed 32- and 64-b
DMTCP could be com
64-bit applications, b
However, many com
the use of multiple
where some may be c
and others may contin
format of 32-bit
applications may call
versa. DMTCP now c
of processes within a
may represent a mixtu

• Performance improve
is now well withi
specification of 10%
is the native perform
performance of m
indistinguishable whe
which is critical for us
teams. Due to the join
the previous issue o
tracked down to Inte
malloc-intensive (freq
solution employed wa
into an optional
plugin. The plugin is
default continues to
operation. The malloc
now disable this plug
overhead.

• Numerous bugs wer
leading to improveme

• We also filed sever
example, it is possible
checkpoints to be sav
reconfigure the applic
to be able to save on
them, the former bei
taking precious disk sp

Future milestones include DM
3.0, which will be released la

user ID – DMTCP can restore a
credentials of a different user

checkpointed the task. This is
nt for debug in groups where
ss to the same project resources.

ng to a relative path – Another
restore process was that unless
nder the exact same conditions

ocess would likely fail to start,
ded for the jobs had to exist at
during the original run. DMTCP
es this issue by saving relative
ectories used by the job and not
th, meaning the applications can
directories and mount points,

bit applications – Previously,
mpiled to support either 32- or

but not both at the same time.
mmon design workflow involve

executables, libraries or tools,
compiled as 64-bit applications,
nue to be compiled in the older

applications. Thus, 64-bit
l 32-bit applications, and vice
correctly checkpoints the full set
a computation, even though it

ure of 32- and 64-bit processes.

ements – DMTCP performance
in the required performance
above baseline, where baseline
mance without DMTCP. The
most applications is now
en run with or without DMTCP,
se and acceptance by the design
nt work between Intel and NEU,
of performance overhead was
l applications that were highly

quent memory allocations). The
as to move the wrapper function
DMTCP memory allocation
loaded by default, so that the
always ensure deadlock-free

c-intensive Intel applications can
gin to achieve essentially zero

re discovered and submitted,
nts in the DMTCP software.

ral enhancement requests. For
e to configure the number of last
ved, whereas till now we had to
cation in the compilation stage,
nly the last checkpoint or all of
ng insufficient and the second
pace.

MTCP internal versions 2.0 and
ater in 2014. There is a strong

demand for the ability to checkpoint graphi
well as improved network awareness. A
design tools have strong network depend
remote filesystem access, communication w
and the lease of software licenses. All of
resolved in order to make DMTCP fully en
the strict design needs.

Indeed, the upcoming milestone will support
and licenses. Milestone 3.0 will improve th
same time, Intel IT will work on developing
expertise to be able to independently suppor
the chip design teams. Last but not the least
will be publicly released as open
demonstrating Intel’s contribution and posit
external community.

However, the most important step in th
integration of the DMTCP technology as a
the EC distributed computing manager
controls the Intel IT batch environment.
utilized by Intel’s design groups, and there is
embedding DMTCP as part of this
checkpointing capabilities in place, it will be
for far more efficient and manageable reso
and create stable and failure-proof batch-b
and execution flows.

IV. Case study – Check
Restore for Intel’s Arch

and Strategic Plannin
Intel Architecture and Strategic Planning Te
for leading the architectural definition
generation products, performing perform
systems and their components. The perform
done during various stages of a product de
using Intel-proprietary software tools that
behavior while processing billions of instruct

In order to satisfy the high demand for com
execution of processor design, Intel’s
Computing division provides an internal b
distributed computing managing service to d
batch environment is the main horsepower
core capacity at different geo-locations, a
scheduling and processing of workloads
associative services management. The batch
include CLI, API, and GUI elements, al
implement complex execution flows th
different types of tools and ensure a smooth
global distributed environment.

Intel Architecture and Strategic Planning Te
environment for distributive processing o
running 400k+ weekly jobs. The processi
varies and may last up to 18 hours, dependi
of instructions being submitted for proce
required to reproduce specific job condit
perform a deeper analysis of performance b
examine a failed simulation. In order to ensu

ical EDA tools as
large number of

dencies, including
with other servers
these have to be

nterprise-ready for

t GUI applications
his support. At the
g internal DMTCP
rt the tool use with
t, all of joint work
n-source, further
tive impact on the

he project is the
part of Netbatch,
software, which

. It is massively
s a great benefit in
ecosystem. With

e possible to allow
ources utilization,

based design tools

kpoint &
hitecture
g Team
eam is responsible

of Intel’s next
mance analysis of

mance analysis is
evelopment cycle,
simulate systems

tions.

mpute power in the
IT Engineering

atch-like platform
design teams. The
driving the 80K+

allowing effective
s, resources and

h interfaces, which
llow engineers to
hat may involve
h execution in the

eam uses the batch
f its simulations,
ing time for jobs
ing on the number
essing. It is often
tions in order to
benchmarks, or to

ure that reproduced

simulation is completely identi
engineers need to rerun the w
execution states and applying
which may extend the runtime

Implementing a checkpoint & r
situation provides obvious ben
compute power required t
additionally, boosting the pro
capability of architecture engin

DMTCP was successfully emb
of Intel Architecture Team
performance penalty incurred
not all simulations are auto
DMTCP container. As soon
statistical analysis tools are app
simulations that are likely to h
issue and selectively picking th
to be examined by an engineer.

The chosen simulations are
environment, which executes th
in the distributed environmen
enabled simulation finishes, th
for running the simulation clos
Fig. 2. General flow of using DMTC
the execution of the Intel Architecture

In order to allow for
manageability of the flow, all
process is stored as part of bat
related details, DMTCP
checkpoints, number of restore
demonstrate the management
engineers.

ical to a failed one, architecture
whole simulation, while tracing
debugging and analysis tools –
of a simulation even further.

restore solution in the described
efits both in terms of saving the
to rerun a simulation and,
oductivity and troubleshooting

neers.

bedded into the execution flow
simulations. Due to a small
when running inside DMTCP,

omatically wrapped inside the
a bulk of simulations ends,

plied on the results, eliminating
have common root cause for an
he simulations that are expected
.

then resubmitted to the batch
hem within a DMTCP container
nt. As soon as the DMTCP-

here are restore points available
est to the point of interest.
CP checkpoint & restore technology in
Team simulations

a transparent execution and

l the information related to the
tch entity, including simulation-

settings (interval between
e points to keep, etc). Here we

interface used by the design

Fig. 3. Screenshot of DMTCP Checkpoint Sessions Manager implemented
for Intel’s Arch team.

After completion, a user can launch the CPU simulator from
any of the created restore points.
Fig. 4. Restore points selection and running – screenshot of DMTCP
Checkpoint Sessions Manager.

Until recently, the architecture engineers had to rerun entire
flows interactively, with a high risk of missing the failure
point and starting the run all over again. With automated
DMTCP capabilities, the debugging process is being executed
in the batch environment - architecture engineers may start
debugging a simulated CPU model from the most recent
restore point in effective and productive manner, saving
significant amounts of time and computing capacity.

V. Results
Our achievements can probably be broken down into two main
buckets. One on hand, we managed to kickstart a cooperation
project with the academy and bridge the constraints and
bureaucracy gaps while under tight budget. On the other, we
have gained some impressive technological results along the
way.

As mentioned before, DMTCP is being piloted by Intel’s
Architecture and Strategic Planning team to greatly improve
the debugging efficiency of the CPU simulator – the major
tool used for performance simulations of the CPU architecture.
With periodic checkpoints every 15 minutes and a robust
restore capability, the design engineers are able to skip
rerunning the successful part of their 18-hour simulation and
launch a restore point that occurs close to a failure. This
approach eliminates the need for resources required for the
rerun, and improves the debugging efficiency by allowing a
repeatable replay of code in the restored sessions.

Furthermore, the cooperation with the university has led to
significant improvements in the functionality of DMTCP,
including support for mixed 32/64-bit executables and
libraries, ability to restart (restore) with a different UID than
the one that originally ran the program and created a
checkpoint, and ability to use file descriptors referring to a
relative path. Most importantly, the co-Intel-developed
DMTCP milestone version has a significance reduction in the
performance penalty, and it is in line with the Intel IT
requirements. Our baseline is less than 10% degradation
compared to standard flows, whereas before our involvement,
many applications suffered from 20-30% degradation. Table
III summarizes the runtime results for a standard debug run
and those with DMTCP checkpoints.

TABLE III. WITH DMTCP CHECKPOINTING EVERY 15 MINUTES, THE
REPLAY OF A DEBUG RUN IS RESTRICTED TO JUST THE LAST CHECKPOINT

RATHER THAN THE WHOLE 18-HOUR RUN

Without DMTCP With DMTCP

CPU flow simulation runtime (h) > 18 < 0.25

VI. The future
Within Intel IT, we will focus on the development and
enhancement of the DMTCP technology for use with
graphical EDA tools, with strong network dependencies.
Moreover, we will work on integrating the software into
Netbatch, which will then expose the checkpoint & restore
capabilities across the entire global batch setup.

There is also additional engagement with third-party vendors
to include native DMTCP support in their tools, as well as
engagement with super-computing development teams on
enabling DMTCP for the Xeon Phi [9] family of products.

VII. Conclusion
Checkpoint & Restore technology has significant merits and
business ROI in large compute environments like the Intel
IT’s global setup. We see a strong demand for this kind of
capability with the design teams. The use case with Intel’s

Architecture and Strategic Planning team is an important
milestone in the overall enablement of the DMTCP software
within Intel. Most importantly, our project has led to a number
of significant improvements in the core functionality of the
technology, which can only be fully realized when coupled
with a complex ecosystem like Intel’s chip design
environment, due to its unique scope and size. Exciting future
milestones will include checkpointing for EDA tools, and a
complete integration with Intel’s batch-like distributed
management solutions.

Our partnership with the DMTCP team clearly demonstrates
academy-industry cooperation. We hope it will serve as a
precedent for future endeavors of similar nature. From the
technical perspective, enabling a complete flexible and robust
checkpoint & restore solution for the development teams is a
revolutionary achievement, creating a new reality for the fast-
paced SoC transition happening across Intel. From the
strategic point of view, we have exercised significant industry
leadership and impact, and managed to work around the tight
restrictions that persist in the company today, showing that
innovation coupled with real customer needs still define the
core of our business.

Acknowledgment
We would like to thank Professor Gene Cooperman and his
team at Northeastern University for the close cooperation and
partnership in this project.

References

[1] V. Kamath, R. Giri and R. Muralidhar, "Experiences with a Private
Enterprise Cloud: Providing Fault Tolerance and High Availability for
Interactive EDA Application," in 2013 IEEE Sixth International
Conference on Cloud Computing, Santa Clara, 2013.

[2] J. Corbet, "Linux info from the source," 2 November 2010. [Online].
Available: http://lwn.net/Articles/412749/.

[3] J. Corbet, "Linux info from the source," 19 July 2011. [Online]. Available:
http://lwn.net/Articles/452184/.

[4] Parallels; OpenVZ, "Checkpoint/Restore In Userspace," Open Source
Software Community, [Online]. Available: http://criu.org/.

[5] P. H. Hargrove and J. C. Duell, "Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters," Journal of Physics , vol. 46, no. Conference
Series, pp. 494-499, 2006.

[6] J. Ansel, K. Arya and G. Cooperman, "DMTCP: Transparent
Checkpointing for Cluster Computations and the Desktop," Rome, 2009.

[7] C. V. Walters J, "Application-level checkpointing techniques for parallel
programs.," in 3rd ICDCIT pp 221–234, 2006.

[8] K. Byoung-Jip, "Comparison of the Existing Checkpoint Systems,"
Watson/IBM, 2005.

[9] Intel Corporation, "Intel® Xeon Phi™ Product Family," Intel Corporation,
2014. [Online]. Available:
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-
detail.html.

