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Abstract—Intel’s chip design run in a large-scale globally 
distributed environment with 600,000 cores. In the current 
semiconductor market scenario, a combination of factors such as 
time to market pressure, explosive growth in the mobile market 
segment and upcoming new markets has led to a significant 
increase in the demand for and reliability of computing 
resources. Checkpointing is a capability that can make a 
significant improvement in improving reliability, however, there 
is no mature solution that allows periodic snapshots of running 
compute jobs for replay them at a later time in a consistent 
manner in a large scale environment. 

Intel IT has partnered with the Northeastern University (NEU) 
Distributed Multi-Threaded Checkpointing (DMTCP) team to 
improve their checkpoint & restore solution for the design 
computing environment. This paper elaborates on the innovative 
technological breakthroughs, industry-academy partnership as 
well as the open-source contribution. 
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I.  Introduction 
Silicon design industry is one of the large consumers of high 
performance computing systems driven by the large scale 
simulations required to address the growth in complexity due 
to Moore’s Law. More recently, the explosive growth in 
mobile devices which are seeing very complex integration of 
digital and analog capabilities into an SoC (system on chip) 
and the expected explosion of volume from the ‘Internet of 
Things’ that will bring silicon to everyday objects are driving 
higher demand for computation. Finally, the competitive 
market scenario is ensuring that ‘Time to Market’ pressure on 
all companies, which drives a need for high levels of 
availability and reliability of the computing environment. 

Intel, being the largest semiconductor company, is generally 
affected by these trends to a greater extent and earlier than 
most others in the industry. Intel’s state-of-the-art processor 
design takes place in a large, global setup with >600,000 cores 
running >40 million jobs every month. Some of these jobs are 
mission-critical, time-consuming processes that must 
successfully complete. If they are interrupted for any reason, 

subsequent reruns must be executed from the start, resulting in 
a significant delays and waste of project resources. This is 
particularly true when the results of certain jobs are part of a 
project’s critical path and when other jobs depend on them. 
These critical tasks then become a bottleneck for the overall 
execution throughput; failures of any one of these jobs may 
delay the entire project, and even impact TTM (Time to 
Market). 

In the current technological reality, the execution of tasks in 
this environment is basically an all-or-nothing approach. 
Flows that experience irrecoverable errors will crash, and they 
will have to be executed from the start, wasting precious 
compute time.  

With approximately 600,000 cores, 5 PB of memory, and 24 
PB of distributed storage, the Intel IT environment supports 
roughly a million concurrent regression jobs in a global batch 
setup across 40 sites daily. The potential for wastage, or 
conversely, savings is immense. 

One approach towards improving reliability and availability is 
to harden the computing environment by increasing 
redundancy and investing failover capable systems – most 
such solutions are proprietary and are for the most part, only 
able to take care of issues affecting individual compute nodes 
and not issues that may be affecting the computing 
environment at large. 

Design teams should ideally be able to periodically take 
snapshots of the jobs, and replay them at a later time, thus 
improving their ability to debug, branch or replay critical-path 
executions. Unfortunately, the existing solutions do not 
possess a robust and generic capability allowing varied 
applications to stop and resume execution in an opportunistic 
manner. However, there are several potential technologies that 
could be developed to allow this mode of work. 

Virtualization is one possible solution. It is generic, and 
usually operating system and application agnostic, however 
licensing support can be very costly, and there is an additional 
layer of complexity involved, not to mention performance 
impact. Furthermore, there are scalability issues since it might 
be necessary to spawn an instance of a virtual machine for 
every specific job in order to be suspend and restore them 
independently. This has also been tested and implemented in 
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specific use cases and scenarios where performance is not as 
crucial and it has been able to mitigate the risk of single point 
failure very effectively [1]. 

Application checkpointing is another alternative, with low to 
no performance impact but with relatively lower maturity in 
the industry today. There are two basic approaches that can be 
used for application checkpointing: in kernel space and in user 
space. Initially, the Linux community sought to integrate 
checkpointing into the mainline kernel. However, after the 
kernel checkpoint/restore was rejected by the KSUMMIT 
2010  due to significant complexity involved [2] [3], the 
development switched to the user space implementation, with 
Checkpoint/Restore in Userspace (CRIU) [4], as the notable 
candidate technology. It is currently under development, and 
available for testing in kernels 3.11 and above. In most data 
centers and industry environments, the practical implications 
of this requirement is that very few enterprise-ready operating 
systems can support CRIU, due to legacy constraints and 
relatively older kernel versions in use. 

Outside the mainline kernel development, third–party software 
projects have adopted both methods. Notable technologies 
include Berkeley Lab Checkpoint/Restart (BLCR) [5] and 
Distributed MultiThreaded CheckPointing (DMTCP) [6], 
developed by the Northeastern University, MA. The former 
uses a hybrid kernel/user implementation. A special kernel 
module is loaded into memory, and it is used to intercept the 
application system calls. On the other hand, DMTCP does not 
modify the user’s program or the operating system, and 
resides in the user space only. 

A third way to accomplish some checkpoint & restart 
capability is through custom application-specific solutions 
[7].However, these are normally not scalable beyond specific 
applications and require a higher effort to develop and use. 

A comparison between the solutions is listed in Table I below: 

TABLE I.  CHECKPOINTING TECHNOLOGY LANDSCAPE 

 Virtualization Application 
checkpointing 

Application 
specific 

 
Platform 
independence 

Yes Yes1 Yes 

Licensing 
support 

Yes No No 

Cost High Low Low 
Scalability No Yes Yes 
Complexity High Medium Low 
Performance Medium High High 
Maturity High Low Medium 

 

After a thorough analysis of the present technologies and their 
relative advantages [8], Intel IT opted to further explore the 
application checkpointing solutions as a proof of concept for 
the design community.  

Several technologies were examined, including BLCR and 
DMTCP. An overview of capabilities and comparison 
between the two technologies in available in Table II (fully 

                                                           
1 Some kernel version restrictions 

implemented feature scores 1, partially implemented with 
limitation scores 0.5, non-implemented / unavailable features 
scores 0).  

TABLE II.  COMPARISON BETWEEN DMTCP AND BLCR SOLUTIONS 

Feature DMTCP BLCR 
Workload Agnostic 0.5 1 
Support for perl 
scripts 

1 
 

0 
 

Support for 
interactive sessions 
(ttys, vnc) 

1 
 
 

0 
 
 

Support for process 
groups and sessions 

1 
 

0 
 

IPC (pipes) support 1 0 
Support for network 
resource usage 

1 
 

0 
 

Support for device 
files and /proc use 

1 
 

0.5 
 

Support for multi-
threaded processes 

1 
 

1 
 

Support for 
distributed processes 

1 
 

0.5 
 

Non-kernel dependent 
(User Space) 

1 
 

0 
 

Process ID 
Virtualization 

1 
 

0 
 

Checkpoint Image 
Compression 

1 
 

0 
 

Extensibility - ability 
to write extensions 

1 
 

1 
 

Final score 12.5 4 
 

Eventually, DMTCP was selected as the primary candidate, 
due to faster and more active development, reduced 
deployment complexity and a great feature set. BLCR requires 
a kernel module to be loaded and recompiled following each 
kernel change [5] – that increases the complexity of 
deployment and maintaining the tool in a large IT 
environment. 

II. Checkpoint & Restore 
technology 

Checkpointing is essentially the ability to save the state of a 
workload during execution and restart it, either on the same 
machine or another machine. A task is executed through a 
wrapper that maintains persistency of its memory state and 
periodically saves the contents to disk, allowing the task to be 
restarted at a later time, with minimal loss of context [5]. 

Checkpoint & restore can be used to resolve a range of critical 
business needs in the design community. 

• It can be used for troubleshooting failed simulations / 
jobs – checkpoints are created periodically, after a 
job fails the latest checkpoint is used to replay the job 
and thus improving troubleshooting efficiency and 
saving computation time.  

• It can be used for speculative execution – when 
multiple simulations/jobs have identical initialization 
stage, the initialization may be processed once and 
saved as a checkpoint, while each particular job start 



its execution restoring the chec
executing its unique content. 

• Another option is periodic checkpo
to improve environment reliability,
scenarios like hardware failures, ma
migration of resources, etc. 

Fig. 1. Typical use cases of checkpoint & restore tec
execution for troubleshootng b) speculative execu
reliability 
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Fig. 3. Screenshot of DMTCP Checkpoint Sessions Manager implemented 
for Intel’s Arch team. 

 
After completion, a user can launch the CPU simulator from 
any of the created restore points. 
Fig. 4. Restore points selection and running – screenshot of DMTCP 
Checkpoint Sessions Manager. 

 
Until recently, the architecture engineers had to rerun entire 
flows interactively, with a high risk of missing the failure 
point and starting the run all over again. With automated 
DMTCP capabilities, the debugging process is being executed 
in the batch environment - architecture engineers may start 
debugging a simulated CPU model from the most recent 
restore point in effective and productive manner, saving 
significant amounts of time and computing capacity. 

V. Results 
Our achievements can probably be broken down into two main 
buckets. One on hand, we managed to kickstart a cooperation 
project with the academy and bridge the constraints and 
bureaucracy gaps while under tight budget. On the other, we 
have gained some impressive technological results along the 
way. 

As mentioned before, DMTCP is being piloted by Intel’s 
Architecture and Strategic Planning team to greatly improve 
the debugging efficiency of the CPU simulator – the major 
tool used for performance simulations of the CPU architecture. 
With periodic checkpoints every 15 minutes and a robust 
restore capability, the design engineers are able to skip 
rerunning the successful part of their 18-hour simulation and 
launch a restore point that occurs close to a failure. This 
approach eliminates the need for resources required for the 
rerun, and improves the debugging efficiency by allowing a 
repeatable replay of code in the restored sessions. 

Furthermore, the cooperation with the university has led to 
significant improvements in the functionality of DMTCP, 
including support for mixed 32/64-bit executables and 
libraries, ability to restart (restore) with a different UID than 
the one that originally ran the program and created a 
checkpoint, and ability to use file descriptors referring to a 
relative path. Most importantly, the co-Intel-developed 
DMTCP milestone version has a significance reduction in the 
performance penalty, and it is in line with the Intel IT 
requirements. Our baseline is less than 10% degradation 
compared to standard flows, whereas before our involvement, 
many applications suffered from 20-30% degradation. Table 
III summarizes the runtime results for a standard debug run 
and those with DMTCP checkpoints. 

TABLE III.  WITH DMTCP CHECKPOINTING EVERY 15 MINUTES, THE 
REPLAY OF A DEBUG RUN IS RESTRICTED TO JUST THE LAST CHECKPOINT 

RATHER THAN THE WHOLE 18-HOUR RUN 

Without DMTCP With DMTCP 

CPU flow simulation runtime (h) > 18 < 0.25 

VI. The future 
Within Intel IT, we will focus on the development and 
enhancement of the DMTCP technology for use with 
graphical EDA tools, with strong network dependencies. 
Moreover, we will work on integrating the software into 
Netbatch, which will then expose the checkpoint & restore 
capabilities across the entire global batch setup. 

There is also additional engagement with third-party vendors 
to include native DMTCP support in their tools, as well as 
engagement with super-computing development teams on 
enabling DMTCP for the Xeon Phi [9] family of products. 

VII. Conclusion 
Checkpoint & Restore technology has significant merits and 
business ROI in large compute environments like the Intel 
IT’s global setup. We see a strong demand for this kind of 
capability with the design teams. The use case with Intel’s 



Architecture and Strategic Planning team is an important 
milestone in the overall enablement of the DMTCP software 
within Intel. Most importantly, our project has led to a number 
of significant improvements in the core functionality of the 
technology, which can only be fully realized when coupled 
with a complex ecosystem like Intel’s chip design 
environment, due to its unique scope and size. Exciting future 
milestones will include checkpointing for EDA tools, and a 
complete integration with Intel’s batch-like distributed 
management solutions. 

Our partnership with the DMTCP team clearly demonstrates 
academy-industry cooperation. We hope it will serve as a 
precedent for future endeavors of similar nature. From the 
technical perspective, enabling a complete flexible and robust 
checkpoint & restore solution for the development teams is a 
revolutionary achievement, creating a new reality for the fast-
paced SoC transition happening across Intel. From the 
strategic point of view, we have exercised significant industry 
leadership and impact, and managed to work around the tight 
restrictions that persist in the company today, showing that 
innovation coupled with real customer needs still define the 
core of our business. 
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