

Beacon-based algorithms for geometric routing

Citation for published version (APA):
Biro, M., Iwerks, J., Kostitsyna, I., & Mitchell, J. S. B. (2013). Beacon-based algorithms for geometric routing. In
F. Dehne, R. Solis-Oba, & J. R. Sack (Eds.), Proc. 13th International Symposium on Algorithms and Data
Structures (WADS) (pp. 158-169). (Lecture Notes in Computer Science; Vol. 8037). Springer.
https://doi.org/10.1007/978-3-642-40104-6_14

DOI:
10.1007/978-3-642-40104-6_14

Document status and date:
Published: 01/01/2013

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://doi.org/10.1007/978-3-642-40104-6_14
https://doi.org/10.1007/978-3-642-40104-6_14
https://research.tue.nl/en/publications/a444e325-8ff5-4d86-9fb5-90862db1ae82

Beacon-Based Algorithms for Geometric

Routing ⋆

Michael Biro⋆⋆, Justin Iwerks⋆⋆, Irina Kostitsyna⋆ ⋆ ⋆, and
Joseph S. B. Mitchell⋆⋆

Stony Brook University

Abstract. We consider beacons, an analog of geographical greedy rout-
ing, motivated by sensor network applications. A beacon b is a point
object that can be activated to create a ‘magnetic pull’ towards itself ev-
erywhere in a polygonal domain P . We explore the properties of beacons
and their effect on points in polygons, as well as demonstrate polynomial-
time algorithms to compute a variety of structures defined by the action
of beacons on P . We establish a polynomial-time algorithm for routing
from a point s to a point t using a discrete set of candidate beacons,
as well as a 2-approximation and a PTAS for routing between beacons
placed without restriction in P .

1 Introduction

We consider a model of beacon-based routing that generalizes geographical greedy
routing in sensor networks. In geographical routing [1, 2], each node is given
a Euclidean coordinate and a message is transmitted to the neighbor whose
Euclidean distance to the destination is a minimum. When the distribution of
sensors is very dense, i.e. close to infinity, the route a message takes under
geographical routing will follow a straight line towards the destination, or, when
the message hits the network boundary, may follow a boundary edge to greedily
minimize the distance to the destination. This is precisely the model of beacon-
based routing in this paper (see also [3–6]), where the destination is a beacon. In
this context, we demonstrate algorithms to compute all nodes that can transmit
a message to a given beacon, to compute all nodes that a given node can transmit
to, as well as algorithms to compute an optimal, or nearly-optimal, sequence of
beacon locations to transmit messages between two given nodes in the network.

Other routing schemes in sensor networks that are related to beacons include
a family of routing methods that use landmarks, as in Fang et al., Fonseca
et al., and Nguyen et al., [7–9]. In this type of routing, a collection of nodes,
called landmarks, first transmit throughout the entire network so that each node

⋆ This research was supported by the National Science Foundation (CCF-1018388).
⋆⋆ Department of Applied Mathematics and Statistics, Stony Brook University, {mbiro,

jiwerks, jsbm}@ams.stonybrook.edu
⋆ ⋆ ⋆ Department of Computer Science, Stony Brook University,

ikost@cs.stonybrook.edu

can record its distance to each landmark. Then, in order to route towards a
destination, a function based on the distance vector to the landmarks is used
for selecting the neighbor to which to transmit the message next. The paper
containing a model most similar to ours is the one adopted in Nguyen et al., [9].
In their paper, the message is routed directly towards a single landmark until the
current node is at an equal distance away from the landmark as the destination.
At that point another landmark is selected. The paper shows that by choosing
the landmarks carefully, the message path’s length is within a constant factor of
the shortest path.

In our model, a beacon can occupy a point location on the interior or the
boundary of P , ∂P . When a beacon is activated, we imagine that an object
starting at a point p ∈ P moves along a straight line toward b until it either
reaches b or makes contact with ∂P . If contact is made with ∂P , the object will
follow along ∂P as long as its straight-line distance to b decreases monotonically.
Following the path determined by the beacon, the object may alternate between
moving in a straight-line path toward b on the interior of P and following along
∂P . If there is no infinitesimal movement that an object at p can make so that
its distance to b (strictly) decreases, we say that the object is ‘stuck’ and has
reached a local minimum or dead point on ∂P (see Figure 3). If an object starting
at p eventually reaches b we say that b attracts p. Two points are routed if there
is a sequence of beacons that can be activated and then deactivated, one at a
time and in order, so that an object beginning at a starting point s would visit
each beacon in the sequence after it is activated and terminate at a destination
point t, which we will always require to be a beacon itself.

2 Properties of beacons

We examine the effect of beacons among obstacles in the plane. Our terminology
describes the attracted components to be moving objects, however, autonomous
robots, message delivery, or geographic routing interpretations are equally valid.
We begin with some definitions describing the structures and behavioral prop-
erties of beacons in polygons.

We define a beacon b as an transmitter-like object that is placed at a point
in a polygon P and can be activated to effect a pull on objects in P . When b is
activated, objects in P move to greedily minimize their Euclidean distance to b,
while being constrained to remain interior to P . A beacon b attracts a point p if,
under the action of b, an object starting at p moves so that its Euclidean distance
to b eventually decreases to 0. In this case, we also say that p is attracted to b.

Using these definitions, we may want to determine the set of points that are
attracted to a beacon b, called the attraction region of b, A(b) or determine the
set of beacons that attract a point p, called the inverse attraction region of p,

IA(p) (See Figure 1). If a beacon b is activated, objects at the points that are
attracted to b will reach b, but objects at the points not attracted to b will reach
a local minimum with respect to distance to b in P and remain there under the
influence of b. We are interested in determining the classification of the points of

P based on the final position of the points under the action of b. These questions
motivate the following definitions.

Fig. 1. (Left) The attraction region of a beacon b. (Right) The inverse attraction region
of a point p.

We say a point d in P is a dead point with respect to a beacon b if d is not b,
and an object at d remains stationary under the influence of the beacon b. That
is, d is a point such that the Euclidean distance from b to d is a non-zero local
minimum inside of P . For a given beacon b in a polygon P , let D(b) be the set
of dead points with respect to b in P .

Then, for each dead point of a beacon b in a polygon P , d ∈ D(b), define
the dead region of d with respect to b, DRb(d), to be the set of points of P that
reach d if the beacon at b is activated. Since d is at a local minimum with respect
to Euclidean distance to b, if a point reaches d it can never leave d under the
action of b.

We can bound the number of dead points a given beacon may have in a
polygon P .

Theorem 1. Let P be a simple polygon on n vertices. If D(b) is the set of dead

points with respect to b, then 0 ≤ |D(b)| ≤ n − 3. Similarly, let P be a polygon

with n vertices and h holes. If D(b) is the set of dead points with respect to b,

then 0 ≤ |D(b)| ≤ n− h− 3. Furthermore, these bounds are tight.

Proof. For simple P : If P is convex, then there are no dead points, satisfying
the lower bound. Since b ∈ P , at least 3 edges of P must have a point visible
to b, which implies that these three edges cannot have any dead points. Since
no edge can have more than 1 dead point, this implies that the upper bound of
n − 3 cannot be exceeded. An example achieving the upper bound is shown in
Figure 2.

For arbitrary P : If P is convex and the holes are triangles oriented so they lack
dead points, then there are no dead points, satisfying the lower bound. Let H be
the set of holes, and let ni be the number of vertices of the ith hole. First, examine
the polygon, P − H, with all the holes removed. Polygon P − H has at most
n−∑

i ni vertices, and since b ∈ P , P −H can have at most n−∑
i ni − 3 dead

points. Now examine a hole i ∈ H, with ni vertices. Take a planar arrangement
consisting of only b and i and note that at least one edge of i must be visible to b,
so it does not contribute a dead point. Therefore, i can contribute at most ni−1
dead points, and all holes together contribute at most

∑
i(ni−1) = (

∑
i ni)−h.

Adding the two contributions yields n−∑
i ni − 3+

∑
i ni − h = n− h− 3 dead

points. An example achieving the upper bound is shown in Figure 2. ⊓⊔

b b

Fig. 2. (Left) A simple polygon with n = 8 vertices and n−3 = 5 dead points. (Right)
A polygon with n = 14 vertices, h = 2 holes and n − h − 3 = 14 − 2 − 3 = 9 dead
points. The four additional dead points are shown.

Lemma 1. The set of dead regions, D(b), along with the attraction region of b,

A(b), forms a partition of the polygon P .

Proof. We see that every point must eventually either reach b or be forced to
stop at a dead point, so these sets cover P . We remove any ambiguity about the
movement of a point on a reflex vertex (having internal angle greater than π)

by assuming it always falls to the left of
−→
bp. Then, every point follows a unique

path induced by the beacon b, as the rules for all possible positions are fixed.
Therefore a point cannot end up at two different dead points d1 and d2, and
so the dead regions and attraction region subdivide the polygon into disjoint
regions. Since each point is in a region, this is a partition of the polygon P . ⊓⊔

Using local criteria (see [6] for details), we can determine special cut vertices,
split vertices, and split edges that are vital in determining the boundary edges of
the partition of a polygon under the action of a beacon. Cut vertices are reflex
vertices of the polygon such that the ray emanating from the vertex oriented
away from b lies interior to the polygon. There are three classes of cut vertices,
depicted in Figure 4, corresponding to the different ways the ray may lie in the
polygon. Furthermore, we examine the different cut vertices for situations where

b
y

x

Fig. 3. The partition of P with respect to b. Highlighted is the attraction region A(b)
of beacon b; x and y are dead points with respect to b.

the vertex acts as a separator, i.e., where the edges are angled so that points on
the left of the ray from b slide away from points on the right of the ray and vice
versa. These special vertices are the split vertices, and the line segment from
them to the first intersection of the ray with the polygon is called the split edge
of that split vertex. The far vertex of a split edge is called the ray vertex of
that split edge (split vertex, respectively). Using these special classes of vertices,
we may classify the boundary of the partition of a simple polygon P into an
attraction region and dead regions.

b b b

pi+1

pi

pi-1

pi+1

pipi-1 pi+1pi

pi-1

Class I Class II Class III

Fig. 4. Three classes of cut vertices

Theorem 2. If P is a simple polygon, and e = piqi is a split edge of b, then e

is the boundary between two regions of the partition of P with respect to b. If P

has holes, then e may lie entirely interior to a region of the partition, but cannot

intersect more than one region of the partition due to b.

Proof. In the case where P is simple, e is a diagonal of the polygon P + qi
and therefore splits it into two pieces, PL and PR. The convention mentioned
in Lemma 1 means that the points on e move to the left and so are part of PL.
Since e is parallel to bpi, the direct unconstrained action of b can never pull a
point from PL to PR or vice versa. Therefore, the only possible way for a point
to move from one side of e to the other is to move unconstrained until reaching
∂P and then slide along an edge. In order to slide along an edge across e, it must
pass pi, and therefore must slide along pipi+1, or pi−1pi, depending on whether
it started in PL or PR. Since pi is a split vertex, then regardless of which class
cut vertex it is, due to the angles defined for a split vertex, a point on edge pipi+1

or pi−1pi is pulled away from pi, and can never reach it. Therefore, since the
polygon is simple, the points on one side of e cannot end in the same location as
the points on the right side and so are in different regions. Furthermore, e is the
boundary of at most two regions as the unconstrained points all travel parallel
to their ray from b and end at the same point, meaning that a given ray lies in
the same region. Therefore, they are in different regions and e is their boundary.

If P has holes, then the same argument holds, except for the fact that some
split edges may have points arbitrarily close on either side that end up in the
same location due to points sliding around holes. This corresponds to the split
edge lying entirely inside a given region. ⊓⊔

Conversely, we can classify the boundary edges of the partition of P with
respect to b.

Theorem 3. If a curve is a boundary edge of a region in the partition of a

polygon P defined by a beacon b then it is either a part of the boundary of P or

a split edge of b.

Proof. Take a boundary component c of a region that is not part of an edge of
P . If some length of c is not parallel to the ray from b, then the unconstrained
attraction from b will pull points across c, implying that the two sides share a
dead region. Therefore, c must be a straight segment parallel to the ray from b.
Now, c must intersect the polygon at two locations, say s1 and s2, with s1 closer
to b. All points on c slide down c to s1 under the influence of b. If s1 is on the
interior of an edge, there are two cases. If s1 is a dead point, then points on both
sides of the edge of s1 slide to s1, implying that c is in the interior of the dead
region of s1, contradiction. If s1 is not a dead point, then it will slide along the
edge, either left or right. In both cases, points from both sides of c end at the
same dead point, so c is not on a boundary. Therefore, s1 is a vertex. We see
that the conditions that force all points from one side of c to a different region
than all points on the other side of c are exactly the conditions that make c a
split vertex.

Therefore the boundary edges of regions in the attraction arrangement are
exactly the edges of P , dead edges, or edges of the form (pk, qi) or (qi, qj) for
some pair of adjacent ray vertices qi, qj . ⊓⊔

These theorems form the idea for the attraction-region algorithms for points
given in the next section. We first find the split vertices of the polygon with
respect to the beacon b, then propagate the split edges to find the ray vertices. In
simple polygons, this immediately gives the attraction partition of the polygon P

with respect to a point beacon b. For polygons with holes, some of the split edges
may not be relevant, so we then walk along the boundary of each region, deleting
edges seen twice, as they are interior edges. Then, the attraction arrangement
is exactly a decomposition of P into polygons each of which either contains a
single dead point or, in the case of the attraction region, b. The arrangement
therefore consists of the dead regions and the attraction region.

In the following, we give some additional global properties of the attrac-
tion region of a point in a polygon P . Specifically, properties of connectedness,
convexity, simplicity, and complexity are given for both simple polygons and
polygons with holes.

Proposition 1. Given a beacon b, b ∈ A(b). Furthermore, the visibility polygon

of b, V (b), is a subset of A(b).

Proof. Each point in the visibility polygon moves to greedily minimize its Eu-
clidean distance to b. Since the straight line path connecting them to b lies in
the polygon, that is the path they take, and they are attracted to b. There are
also examples where equality is achieved. ⊓⊔

Proposition 2. The attraction region of a beacon b in a polygon P is connected.

Proof. Take two arbitrary points in A(b), say p1 and p2. Then, b attracts both
p1 and p2, as well as the entirety of the paths each take under the action of b.
The concatenation of these two paths gives a path from p1 to b to p2, showing
that A(b) is connected. ⊓⊔

Theorem 4. The attraction region of a beacon b in a simple polygon P is convex

with respect to P . This is not necessarily the case if P has holes.

Proof. A subset R of a polygon P is convex with respect to P if, for any two
points p1 and p2 in R, either p1 is not visible to p2, or the line segment p1p2
lies entirely in R. See Figure 5. Take a line segment that does not intersect ∂P
with endpoints p1 and p2 that are both attracted to b. Suppose there exists a
point on the segment, p3, that is not attracted to b. Since p3 is not attracted to
b, p3 lies outside A(b) and so there exists a split edge that separates p3 from b.
Since the line segment is convex, that split edge must also separate one of p1 or
p2 from b, and that is a contradiction, as both p1 and p2 are attracted to b. In
polygons with holes, the line segment may be intersected by many split edges,
instead of at most 2 as in simple polygons. Therefore, there can be points on the
line segment that are not attracted to b. ⊓⊔

Corollary 1. The attraction region of a beacon b in a simple polygon P is sim-

ple, i.e. it has no holes.

b b

p1

p2

p1

p2p3p3

Fig. 5. A beacon’s attraction region is convex with respect to a simple polygon and is
not necessarily convex with respect to a polygon with holes.

Theorem 5. The partition of a polygon P with respect to a beacon b has bound-

ary complexity O(n). Specifically, A(b) has complexity O(n). Furthermore, there

are cases with Ω(n) complexity. See Figure 2.

Proof. P has n vertices and there are at most n−3 additional ray vertices added
to make P ′. Split edges cannot cross, and so there are at most 2n − 3 vertices
in the partition of P . Therefore, the partition has complexity O(n). Since A(b)
is a subset of the partition, it must also have at most O(n) complexity. ⊓⊔

3 Algorithms for Computing Attraction Regions

Recall the definition of the attraction region of a point: The attraction region,
A(b), of a beacon b in a polygon P is defined as the set of points p in P that are
attracted by b.

We can compute the attraction region, A(b), by various methods; details
can be found in [6]. One method is based on a simple rotational sweep, taking
time O(n log n), and space O(n), in simple polygons and polygons with holes.
Another method is based on preprocessing P for ray-shooting queries, resulting
in time O(n log n) in a simple polygon and O(

√
hn log n) in a polygon with h

holes. Alternatively, the ray shooting approach can be done in time O(n) in a
simple polygon and O(nh) in a polygon with h holes by using a triangulation to
propagate only the split edges relevant to the attraction region, exploiting the
connectedness and convexity properties of the attraction region.

Our overall most efficient method of computing A(b) yields a running-time
bound of O(T (n) + n), where T (n) is the time to triangulate the given polygon
(O(n) in simple polygons, and O(n+h log1+ǫ h), respectively for simple polygons
and polygons with holes [10,11]). This is (nearly) optimal time, yet the difficulty
of implementation may make the prior algorithms more suitable for practical
use.

This algorithm computes the necessary split edges by finding a radial trape-

zoidization of the polygon P emanating from the beacon b. This trapezoidization
may be computed from a triangulation of P in linear time, by a modification of
the result on parallel trapezoidization by Fournier and Montuna [12]. See also
the thesis of Mouawad [13] for a description of the modification from parallel
to radial trapezoidization. Once the trapezoidization is found, the split edges
with respect to b may be found quickly, and after a linear amount of additional
work as described above, we compute the full partition of P with respect to b in
O(T (n) + n) time and O(n) space.

Theorem 6. The partition of a polygon P with respect to a beacon b can be

computed in O(n) time and space if P is simple, and O(n + h log1+ǫ h) time,

O(n) space if P has holes.

4 Algorithms for Computing Inverse Attraction Regions

Recall the definition of the inverse attraction region of a point or region: The
inverse attraction region, IA(p), of a point p in a polygon P is defined as the set
of beacon locations b in P that attract p. Similarly, the inverse attraction region

of a subset R, IA(R), in a polygon P is defined as the set of points p in P such
that a beacon b at p attracts at least one point of R.

In this section we discuss the computation of the inverse attraction region
of a point p in a polygon P , as well as the inverse attraction region of a subset
of P . Note that inverse attraction regions, unlike attraction regions, may have
Ω(n) connected components (Ω(n2) components in polygons with holes) and the
components may be free-floating in the interior of the polygon, with boundary
edges defined by non-local conditions. This makes their computation more diffi-
cult, and we resort to a decomposition approach that determines an arrangement
that contains the inverse attraction, then test each face of the arrangement for
attraction, using the algorithms in the preceding section. (see [6] for details).

4.1 Algorithm for the inverse attraction region of a point

The algorithm begins by constructing an arrangement Ap made from taking the
arrangement of lines defined by each edge of the polygon and the lines through
each reflex vertex that are perpendicular to the edges incident on the reflex
vertex. Then, using the properties of split vertices, we can prove the following
results.

Lemma 2. If b1 and b2 are two points in a face F of the arrangement Ap and

pi is a split vertex relative to b1, then pi is a split vertex relative to b2.

This allows us to show that the faces of the arrangement are constant with
respect to attracting p.

Theorem 7. If b1 and b2 are two points in a face F of the arrangement Ap and

p ∈ A(b1), then p ∈ A(b2).

Therefore, we can test a candidate point from each face of the constructed
arrangement, using the algorithms discussed in the previous section, and deter-
mine which faces make up the inverse attraction region. Walking through the
arrangement allows us to update the attraction regions quickly, so this algorithm
runs in O(n2) time.

Theorem 8. The inverse attraction region of a point p in a polygon P can be

computed in O(n2) time.

4.2 Algorithm for the inverse attraction region of a region R

The following algorithm is a modification of the preceding algorithm, and works
to compute the inverse attraction region of a polygonal region R with |R| = m. It
uses the same decomposition idea, but with a slightly more refined arrangement,
AR, made of the lines defined by each edge of the polygon, the lines through
each reflex vertex perpendicular to the edges incident to the reflex vertex, and
the lines from each vertex of R through each reflex vertex of P .

This allows us to show that the faces of the arrangement AR are constant
with respect to attracting a point from R.

Theorem 9. If b1 and b2 are two points in a face F of the arrangement AR

and R ∩A(b1) 6= ∅, then R ∩A(b2) 6= ∅.

Therefore, we can test a candidate point from each face of the constructed ar-
rangement, using the attraction region algorithms from the previous section, and
determine which faces make up the attraction region of R. Walking through the
arrangement allows us to update the attraction regions quickly, so this algorithm
runs in O(m2n2) time.

Theorem 10. The inverse attraction region of a region R with |R| = m, in a

polygon P , can be computed in O(m2n2) time.

Later, we will use this algorithm for computing the inverse attraction region
of a triangle, which takes O(n2) time.

Corollary 2. The inverse attraction region of a triangle in a polygon P can be

computed in O(n2) time.

5 Beacon Routing

We are interested in finding a minimum beacon path between two points s, t,
in a polygon P . A minimum beacon path from s to t is the smallest possible
collection of points b1, b2, . . . , bk in P with the property that b1 attracts s, bi+1

attracts bi for i = 1, . . . , k − 1, and t attracts bk. Specifically, in this section, we
solve the minimum beacon path problem for a special case where we are given
a set of m candidate beacon locations, and we also approximate the solution in
the general case.

5.1 Algorithm for minimum beacon routing with candidate beacons

If we are given a collection ofm candidate beacon locations, the minimum beacon
path algorithm constructs a digraph G whose vertices are the candidate locations

and which has the edge
−−−→
(u, v) if u ∈ A(v). The minimum beacon path is then

given by the shortest s− t path in G.

Theorem 11. A minimum beacon path from s to t, chosen from a set of m

candidate locations in a polygon P , can be found in time O(mn+m2) for simple

polygons, and O(m(n+ h log1+ǫ h+m log h)) for polygons with holes.

Proof. Correctness follows from the one-to-one correspondence between s − t

beacon paths and s− t paths in the graph G.
For simple polygons, the main contributor to the running-time is constructing

G, where for each of the m + 2 point in C, we spend O(n) computing the
attraction region, and spend O(n + m) determining which edges to include in
G. This yields a total running-time of O(m(n+m)) = O(nm+m2). Computing
the triangulation, the point location, and the shortest-path algorithm are all
dominated by this running-time, so the total running-time is O(nm+m2).

For polygons with holes, the running time is increased, as for each of the
m+2 points in C, we spend O(n+h log1+ǫ h) computing the attraction regions,
and then spend O(n+m log h) to locate the candidates in the triangles. Again,
the triangulation, point-location, and shortest-path algorithms are dominated
by this running-time, so the total is O(m(n+ h log1+ǫ h+m log h)) ⊓⊔

5.2 Approximation algorithm for minimum beacon routing

We also approximate the minimum beacon path by finding the inverse attraction
regions of the set of triangles in a triangulation, then building a digraph G whose

vertices correspond to triangles (along with s and t) and which has edge
−−−→
(u, v)

if u ∩ IA(v) 6= ∅. Then, a minimum s, t path in G corresponds to a sequence of
triangles where a point in each triangle is attracted by a point in its successor
triangle in the path. These points may not be the same, but a single additional
beacon per triangle allows us to link the sequence of points together to yield a
2-approximation to the minimum beacon path.

Theorem 12. A 2-approximation for the minimum beacons path from s to t can

be found in time O(n3). This procedure can be iterated to achieve a polynomial-

time approximation scheme for minimum beacon paths.

Proof. Since the minimum beacon s− t path is at least as long as the minimum
path in G, and we use at most two beacons in our beacon path for each beacon
in the minimum path in G, we have at most twice as many beacons as necessary.
The running time is dominated by the computing of the inverse attraction region
of triangles. By Corollary 2, this takes O(n2) per triangle, so O(n3) total. We can
then find the attracted/attracting points by walking through the path starting
from t, computing attraction regions for the points already determined. The

minimum beacon path has length at most O(n), [3], and so we spend at most
O(n2), or O(n2 + nh log1+ǫ h), to do so.

By increasing the number of iterations, (i.e IA(IA(. . . (IA(a)))) = IAk(a))
we modify the above algorithm to find a beacon path that has at most k + 1
beacons for every k beacons in the minimum beacon path, yielding a PTAS. ⊓⊔

References

1. P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with guaranteed de-
livery in ad hoc wireless networks,” Wireless Networks, vol. 7, no. 6, pp. 609–616,
2001.

2. B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for wireless
networks,” in Proc. 6th International Conference on Mobile Computing and Net-
working. ACM, 2000, pp. 243–254.

3. M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. Mitchell, “Beacon-based routing
and coverage,” in 21st Fall Workshop on Computational Geometry, 2011.

4. ——, “Beacon-based structures in polygonal domains,” in CG:YRF 2012, Abstracts
of the 1st Computational Geometry: Young Researchers Forum, 2012.

5. J. Iwerks, “Combinatorics and complexity in geometric visibility problems,” Dis-
sertation, Stony Brook University, 2012.

6. M. Biro, “Beacon-based routing and guarding,” Dissertation, Stony Brook Univer-
sity, 2013.

7. Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang, “Glider: Gradient landmark-
based distributed routing for sensor networks,” in INFOCOM 2005. 24th IEEE
International Conference on Computer Communications, vol. 1. IEEE, 2005, pp.
339–350.

8. R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler, S. Shenker, and I. Sto-
ica, “Beacon vector routing: Scalable point-to-point routing in wireless sensor-
nets,” in NSDI 2005. Proc. 2nd Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 329–342.

9. A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. Guibas, “Landmark selection
and greedy landmark-descent routing for sensor networks,” in INFOCOM 2007.
26th IEEE International Conference on Computer Communications. IEEE, 2007,
pp. 661–669.

10. B. Chazelle, “Triangulating a simple polygon in linear time,” Discrete & Compu-
tational Geometry, vol. 6, no. 1, pp. 485–524, 1991.

11. R. Bar-Yehuda and B. Chazelle, “Triangulating disjoint jordan chains,” Interna-
tional Journal of Computational Geometry and Applications, vol. 4, no. 4, pp.
475–481, 1994.

12. A. Fournier and D. Y. Montuno, “Triangulating simple polygons and equivalent
problems,” ACM Transactions on Graphics (TOG), vol. 3, no. 2, pp. 153–174,
1984.

13. N. Mouawad, “Minimal obscuring sets,” Master’s thesis, McGill University, 1990.

