
Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless
Sensornets

Rodrigo Fonseca∗ Sylvia Ratnasamy† Jerry Zhao‡ Cheng Tien Ee∗

David Culler∗ Scott Shenker∗,‡ Ion Stoica∗
∗University of California, Berkeley †Intel Research, Berkeley ‡International Computer Science Institute

{rfonseca, ct-ee, culler, istoica}@cs.berkeley.edu sylvia@intel-research.net {zhao, shenker}@icsi.berkeley.edu

Abstract
We propose a practical and scalable technique for

point-to-point routing in wireless sensornets. This
method, called Beacon Vector Routing (BVR), assigns
coordinates to nodes based on the vector of hop count
distances to a small set of beacons, and then defines a
distance metric on these coordinates. BVR routes pack-
ets greedily, forwarding to the next hop that is the closest
(according to this beacon vector distance metric) to the
destination. We evaluate this approach through a combi-
nation of high-level simulation to investigate scaling and
design tradeoffs, and a prototype implementation over
real testbeds as a necessary reality check.

1 Introduction

The first generation of sensornet deployments focused
primarily on data collection [23, 9]. In support of this
task, most current sensornet code bases [11, 7] offer only
the basic tree-based many-to-one and one-to-many rout-
ing primitives; protocols such as Directed Diffusion [12],
TAG[21], and others build trees that can both broadcast
commands and collect data, with various forms of ag-
gregation along the collection path. However, a grow-
ing number of recent proposed uses require more so-
phisticated point-to-point routing support. These in-
clude applications such as PEG (a pursuer-evader game
in which a large network tracks the movement of evader
robots [4]), approaches such as reactive tasking (com-
mands based on local sensing results), and data query
methods such as multi-dimensional range queries [20],
spatial range queries[8], and multi-resolution queries [6],
and data-centric storage [29].

Unfortunately, it is hard to test these ideas because
there is currently no practical and broadly-applicable
implementation of point-to-point routing for sensornets.
We know of two implementations of a reduced AODV
and of GPSR [15], but they haven’t been reported on in
the literature. As we discuss in the next section, they
have limitations on their applicability. It isn’t clear how
important these newly proposed uses are, but without a

point-to-point routing protocol we will never be able to
evaluate their true utility. Moreover, the applications and
services that emerge from the sensornet community will
depend, in part, on which routing primitives have scal-
able and practical implementations; hence, the lack of
a robust implementation of point-to-point routing might
well limit the scope of future sensornet applications.

The lack of point-to-point implementations is in stark
contrast with the bevy of proposed designs in this space.
As we review in the next section, there have been many
different approaches to this problem, but none has re-
sulted in a reliable implementation. We speculate that
this is largely due to the clash between the complexity
of these proposals and the demanding requirements of
sensornet implementation. Sensornet implementations
should not only meet stringent scaling, robustness, and
energy efficiency standards, but they should also func-
tion on a hardware base that has severe resource limita-
tions (in terms of memory and packet length) and varying
quality radios. The impact of these factors on design is
best illustrated by the experience of the TinyOS develop-
ers (described in [19]) where the algorithmically trivial
flooding and tree construction primitives took three years
and five successive implementations to get right.

Thus, simplicity is our primary design requirement.
We make minimal assumptions about radio quality, pres-
ence of GPS, and other factors, and want minimal com-
plexity in the algorithm itself. We do so by using the
previous hard-won successes in tree-building as the ba-
sic building block of our more general routing protocol.
We select a few beacon nodes and construct trees from
them to every other node (using standard techniques). As
a result, every node is aware of its distance (in hops) to
every beacon and these beacon vectors can serve as coor-
dinates. After defining a distance metric over these coor-
dinates, we can use a simple greedy distance-minimizing
routing algorithm. This approach, which we call Beacon
Vector Routing (BVR), requires very little state, over-
head, or pre-configured information (such as geographic
location of nodes). Routes are based on connectivity,
which nodes are naturally aware of, and in our simula-

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 329

tions and measurements appear to be reasonably close to
the minimal distance paths.

The remainder of this paper is organized as follows:
we compare BVR to related work in Section 2, trying to
illustrate both qualitative and quantitative differences be-
tween the various proposals. We present the BVR rout-
ing algorithm in Section 3 and use high-level simula-
tions to investigate scaling and design tradeoffs in Sec-
tion 4. We describe the details of the BVR implementa-
tion in Section 5 and evaluate our implementation with
two independent testbeds (to provide a much-needed re-
ality check on our results) in Section 6. Future directions
and our conclusions are presented in section 7.

2 Related Work

The many proposals for point-to-point routing in ad-hoc
wireless networks [26] can be broadly divided into four
very different categories. We discuss each of these in
turn, highlighting their pros and cons when applied to
sensor networks, and then contrast them with BVR. Ta-
ble 1 summarizes our discussion.

Shortest Path: This is the classical approach to rout-
ing in which a distributed form of Dijkstra’s algorithm
is used to compute the shortest path between a source
and destination. In early protocols such as Distance-
Vector, Link-State and DSDV, the shortest path between
all possible source-destination pairs is computed and ev-
ery node stores its next hop to every destination. For
a network with n nodes, this results in O(n2) message
exchanges for route discovery and O(n) routing state at
each node. This overhead, particularly the per-node state,
scales poorly to large networks. For example, a Mica2
mote has only 4KB RAM; in a 1000 node network, a
node’s routing table alone would exhaust this.

To reduce this overhead, Johnson et al. proposed the
use of on-demand route discovery [13]. The resulting
improvement in scalability depends entirely on the over-
all traffic pattern and, while these protocols perform ad-
mirably in many settings, they are not well-suited to
cases with traffic between many source-destination pairs
(which can be expected in DIM [20], PEG [4], Dimen-
sions [6], etc.).

Hierarchical Addressing: The (wired) Internet uses
careful address allocation which allows significant route
aggregation and thus smaller routing tables. This is in-
feasible in sensor networks in part because of the over-
head of manual configuration but also because a sensor-
net’s connectivity graph is dependent on the details of
its physical environment and is often quite variable; this
makes it difficult to determine a priori how addresses
should be assigned.

Francis’ [31] elegant Landmark Routing (LR) pro-
posal solves this problem by allowing nodes to self–

configure their addresses. LR uses a hierarchical set of
landmark nodes that periodically send scoped route dis-
covery messages. A node’s address is the concatenation
of its closest landmark at each level in the hierarchy. LR
reduces the overhead of route setup to O(n logn) and
nodes only hold state for their immediate neighbors and
their next hop to each landmark. However, LR requires a
protocol that creates and maintains this hierarchy of land-
marks and appropriately tunes the landmark scopes. The
original LR proposal does not address the details of such
a protocol and no workable implementation has been de-
ployed. More recent proposals adopting this approach
have been fairly complex [17], in conflict with our de-
sign goal of configuration simplicity.

Geographic Coordinates: A different and potentially
attractive solution for sensor networks is based on geo-
graphic routing [15, 1, 16]. Here, nodes are identified by
their geographic coordinates and routing is done greed-
ily; at each step, nodes pick as next-hop the neighbor
that is closest to the destination. When a node has no
neighbor that is closer to the destination, these proto-
cols enter perimeter mode, where the right-hand rule is
used to forward a packet along a planarized subgraph un-
til it reaches a node closer to the destination than the
starting point of perimeter mode (then it resumes its
greedy forwarding). Geographic routing is eminently
scalable— it incurs O(1) overhead for route discovery
and O(1) routing tables (a node need only discover and
store its one-hop neighbors), the planarization techniques
are purely local, and path lengths are close to the short-
est path [15]. Unfortunately, geographic routing has two
problems. First, the correctness of the common (local)
planarization algorithms, and hence the correctness of
perimeter mode routing, relies on a unit-graph assump-
tion under which a node hears all transmissions from
nodes within its fixed radio range and never hears trans-
missions from nodes outside this range. Measurement
studies [32, 33, 3] have shown that this assumption is
grossly violated by real radios. Second, and more seri-
ously, such routing requires that each node know its geo-
graphic coordinates. While there are some sensor nodes
that are equipped with GPS, the most widely used node,
the Berkeley mote [10], is not. Moreover, even when
available, GPS does not work in certain physical environ-
ments and the various proposed localization algorithms
[27] are not precise enough (at least not in all settings)
to be used for geographic routing. Finally, even ignor-
ing all the above, greedy geographic may be substantially
suboptimal because it does not use real connectivity in-
formation and geography is, as we show in Section 6,
not always in congruence with true network connectivity
(e.g., in the face of obstacles or consistent interference).

Virtual Coordinates: Motivated by the ideal scaling
properties of schemes like GPSR, two recent proposals

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association330

Metric DV/LS AODV/DSR Landmark GPSR NoGeo GEM BVR
Setup overhead O(n2) n/a O(nlogn) — O(n

√
n) O(dn) O(rn)

Route overhead 1 O(n) if route > O(1) O(1) O(1) O(1) O(1)
is uncached; else O(1)

Per-node State O(n) depends on O(d + logn) O(d) O(d) O(d) O(d + r)
traffic pattern

Delivery Guar. yes yes yes assuming unit yes yes yes
graph topologies

Configuration no no hierarchically geographic perimeter coordinate pick r

scoped landmarks positions discovery construction random nodes
Local recovery ? (limited) no ? (limited) yes yes yes yes

Local repair no no no yes mostly no no

Table 1: Design considerations for sensornet routing algorithms and the tradeoffs using current solutions. This table is
intended to be illustrative rather than definitive. n is the number of nodes. Setup overhead refers to the total message traffic
generated to setup pairwise routes. While to some extent a one-time cost, this is also indicative of the overhead incurred by topology
changes. Route overhead refers to the number of transmissions relative to the optimal shortest path. Per-node state is the number
of routing entries maintained at each node. Delivery guarantee indicates whether a solution guarantees, at the algorithmic level,
whether the protocol is guaranteed to find a route to all destinations. Local recovery refers to a node’s ability to route around
failed nodes in the absence of any recovery protocol. Local repair refers to a protocol’s ability to limit the impact of node failure to
that node’s immediate neighbors. d denotes a node’s degree (immediate neighbors) and r denotes the number of beacons in BVR,
typically a small constant (10). A question mark indicates that our uncertainty about the claimed performance as the literature may
not have addressed the relevant consideration.

attempt to use geographic routing ideas without requiring
geographic coordinates. The NoGeo scheme [25] cre-
ates synthetic coordinates through an iterative relaxation
algorithm that embeds nodes in a Cartesian space. The
initialization technique for this scheme requires roughly
O(

√
n) nodes to flood the network, and for each of these

flooding nodes to store the entire O(
√

n×
√

n) matrix of
distances (in hops). This is keeping O(n) state at roughly
O(

√
n) nodes, an impractical burden in large networks.

GEM [24] uses a more scalable initialization scheme but
employs an intricate recovery process in which, when
nodes fail or radio links degrade, a potentially large num-
ber of nodes in the system must recompute routing labels
so as to maintain GEM’s regular topological structure.
Neither NoGeo nor GEM have been implemented on any
hardware platform and, while they represent significant
conceptual advances, the complexity of coordinate con-
struction and maintenance in these schemes is likely to
render both quite difficult to implement and operate in
practice.

BVR: BVR borrows, and differs, from each of the
above. BVR incurs smaller routing state than the short-
est path algorithms (constant vs. O(n)). From Landmark
Routing, BVR borrows from the notion of using land-
marks to infer node addresses, though the details of the
addressing and forwarding are entirely different. More-
over, BVR’s beacons are randomly chosen and need not
adhere to any particular structure. BVR uses greedy for-
warding over node coordinates, but (unlike GPSR) does
not require geographic information, makes no assump-
tions about radio connectivity, and (unlike NoGeo and
GEM) uses a very simple coordinate construction al-
gorithm. As mentioned earlier, the core mechanism in
BVR is the construction of reverse path trees similar to

[22, 34]. However, unlike these schemes, BVR does
not directly route along these trees and instead supports
point-to-point communication.

We have recently become aware of Logical Coordi-
nate Routing [2], developed simultaneously and indepen-
dently of BVR, which employs the same idea of nodes
obtaining coordinates from a set of landmarks and rout-
ing to minimize a distance function on these coordinates.
The main difference is the alternative method of routing
when local minima are reached in greedy routing: they
backtrack the packet along the path, until a suitable path
is found, or the route fails at the origin. While they never
have to resort to small scoped floods, as does BVR, their
algorithm does require that the nodes keep a record of
all packets forwarded recently, increasing the amount of
state in the nodes.

3 The BVR Algorithm

BVR defines a set of coordinates and a distance function
to enable scalable greedy forwarding. These coordinates
are defined in reference to a set of “beacons” which are a
small set of randomly chosen nodes; using a fairly stan-
dard reverse path tree construction algorithm every node
learns its distance, in hops, to each of the beacons. A
node’s coordinates is a vector of these distances. On the
occasion that greedy routing with these coordinates fails,
we use a correction mechanism that guarantees delivery.

Let qi denote the distance in hops from node q to bea-
con i. Let r denote the total number of beacon nodes.
We define a node q’s position P(q) as being the vec-
tor of these beacon distances: P(q) = 〈q1, q2, · · · , qr〉.
Two nodes can have the same coordinates, so we always
retain a node identifier to disambiguate nodes in such
cases. Nodes must know the positions of their neighbors

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 331

Packet fields Description
pkt.dst the destination’s unique identifier
pkt.P(dst) destination’s BVR position
pkt.δmin δmin

i seen, i ∈ 1, ..., k

Table 2: BVR packet header fields

to make routing decisions, so nodes periodically send a
local broadcast messages announcing their coordinates.

To route, we need a distance function δ(p, d) on these
vectors that measures how good p would be as a next hop
to reach a destination d. The goal is to pick a function so
that using it to route greedily usually results in success-
ful packet delivery. The metric should favor neighbors
whose coordinates are more similar to the destination.
Minimizing the absolute difference component-wise is
the simplest such metric. The key piece of intuition driv-
ing our design is that it is more important to move to-
wards beacons than to move away from beacons. When
trying to match the destination’s coordinates, we move
towards a beacon when the destination is closer to the
beacon than the current node; we move away from a
beacon when the destination is further from the beacon
than the current node. Moving towards beacons is always
moving in the right direction, while moving away from a
beacon might be going in the wrong direction (in that the
destination might be on the other side of the beacon). To
embody this intuition, we use the following two sums:

δ+
k (p, d) =

∑

i∈Ck(d)

max(pi − di, 0) and

δ−k (p, d) =
∑

i∈Ck(d)

max(di − pi, 0),

where Ck(d) is the set of the k closest beacons to d. δ+
k is

the sum of the differences for the beacons that are closer
to the destination d than to the current routing node p,
while δ−k measures the sum of the distances to the far-
ther beacons. We choose the next hop that minimizes δ+

k

and, when there is a tie, we break it by minimizing δ−k .
In practice, we implement this by minimizing the sum
δk = Aδ+

k + δ−k for some sufficiently large constant A.
In our implementation we use A = 10. In addition, δk

only considers the k closest beacons to d. This serves to
reduce the number of distance elements di that must be
carried in the packet, and is consistent with the idea of
moving towards close beacons.

To route to a destination dst, a packet has three header
fields, summarized in Table 2: (1) the destination’s
unique identifier, (2) it’s position P(dst) defined over
the beacons in Ck(dst), and (3) δmin, a k-position vec-
tor where δmin

i is the minimum δ that the packet has seen
so far using Ci(dst), the i closest beacons to dst. δmin

i

can guarantee that the route will never loop.
Algorithm 1 lists the pseudo-code for BVR forward-

ing. The parameters are r, the total number of beacons,

Algorithm 1 BVR forwarding algorithm
BVR FORWARD(node curr, packet P)

// first update packet header
for (i = 1 to k) do

P.δmin
i = min (P.δmin

i , δi(curr, P.dst))

// try greedy forwarding first
for (i = k to 1) do

next← argminx∈NBR(curr){δi(x, P.dst)}
if (δi(next, P.dst) < P.δmin

i) then
unicast P to next

//greedy failed, use fallback mode
fallback bcn← closest beacon to P.dst

if (fallback bcn != curr) then
unicast P to PARENT(fallback bcn)

//fallback failed, do scoped flood
broadcast P with scope P.P(dst)[fallback bcn]

and k ≤ r, the number of beacons that define a des-
tination’s position. Forwarding a message starts with a
greedy search for a neighbor that improves the minimum
distance we have seen so far. When forwarding the mes-
sage, the current node (denoted curr) chooses among its
neighbors the node next that minimizes the distance to
the destination. We start using the k closest beacons to
the destination, and if there is no improvement, we suc-
cessively drop beacons from the calculation.

In some situations greedy forward may fail, in that no
neighbor will improve on δmin

i for any i. We use a ‘fall-
back’ mode to correct this. The intuition behind fallback
mode is that if a node cannot make progress towards
the destination itself, it can instead forward towards a
node that it knows is close to the destination and towards
which it does know how to make progress. The node for-
wards the packet towards the beacon closest to the desti-
nation; i.e., to its parent in the corresponding beacon tree.
The parent will forward as usual – first trying to forward
greedily and, failing to do so, using fallback mode.

A packet may ultimately reach the beacon closest to
the destination and still not be able to make greedy
progress. At this point, the root beacon initiates a scoped
flood to find the destination. Notice that the required
scope of the flood can be precisely determined – the dis-
tance in hops from the flooding beacon to the destina-
tion is determined from the destination’s position in the
packet header. While this ensures that packets can al-
ways reach their destination, flooding is an inherently
expensive operation and hence we want to minimize the
frequency with which it is performed, and also its scope.
Our results show both these numbers to be low.

Beacon Maintenance Sensor network nodes are prone
to failure and we must provide a mechanism to maintain

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association332

the set of beacons when they fail. We first note that the
algorithm we described can function with fewer than r
beacons, and even when there is inconsistency in the bea-
con sets nodes are aware of, by routing only based on the
beacons they have in common. Thus, the beacon mainte-
nance need not be perfect, it only needs to guide the sys-
tem towards a state where there are r globally recognized
beacons. We now sketch such an algorithm. For conve-
nience, we describe the simplest algorithm we’ve used;
we’ve also experimented with more advanced algorithms
but describing them would take us too far afield.

To detect beacon failures, each entry in the beacon
vector is associated with a sequence number. Beacons
periodically advance their sequence number; if a node
detects that a sequence number has not been updated
with a given timeout period then it deletes that beacon
from the set it uses to route (note that this decision need
not be globally consistent). When the number of beacons
alive falls below a configurable parameter r, non-beacon
nodes will nominate themselves as beacons. Using ideas
from SRM [5], each node sets a timer that is a function of
its unique identifier and, when the timer expires, it starts
acting like a beacon. If it detects that there are more
than r beacons with identifiers smaller than its identifier,
it then ceases to be a beacon. Algorithm 2 shows our
beacon selection algorithm. More sophisticated beacon
maintenance protocols can be designed to more fully op-
timize beacon placement and suppression.

Algorithm 2 BVR beacon maintenance algorithm
BEACON ELECT MYSELF(r, B)

// invoked periodically; B is the current set of beacons
if (|B| > r) then

set timer T =
log(myID)

log(maxID(B))
∗ Tmax + jitter

TIMER T EXPIRES(r, B)
if (|B| < r) then

Announce myself as a beacon

BEACON SUPPRESS MYSELF(r, B)
if (myID ∈ B)&(|B| > r)&(myID >rth guested(B))
then

Stop announcing myself as a beacon

Location Directory Our description so far assumes
that the originating node knows the coordinates of the
intended destination. Depending on the application, it
may be necessary for the originating node to first look
up the coordinates by name. We describe a simple
mechanism to map node identities to its current coordi-
nates, although this is not the focus of this paper. We
propose to use the beacons as a set of storage nodes,
by using consistent hashing [14] to provide a mapping
H : nodeid 7→ beaconid, from node ids to the set of bea-
cons. As all nodes know all beacons, any node can inde-

pendently (and consistently) compute this mapping. The
location service consists of two steps: each node k that
wishes to be a destination periodically publishes its coor-
dinates to its corresponding beacon bk = H(k). Publish-
ing the information entails a self-lookup, which serves as
a confirmation. If the coordinates do not change, nodes
may choose to refresh their coordinates at a very low rate.
Even with changes, we rate limit the update traffic. When
a node i wants to route to k, it sends a lookup request
to the beacon bk. Upon receiving a reply, it then routes
to the received coordinates. Further communication be-
tween the nodes may skip the lookup phase by caching
or piggybacking their own location information on the
packets they send. We expect that typical data exchanges
will be significantly greater in size than these lookup ex-
changes, so we don’t expect that lookup traffic will be a
dominant source of sensornet traffic.

This soft-state based approach allows two mechanisms
to recover from beacon failures. First, the hashing
scheme allows the deterministic choice of backup bea-
cons to replicate the information. The degree of replica-
tion depends on the expected failure rate of beacons. Sec-
ond, the periodic updates will naturally populate a newly
elected beacon that replaces a failed beacon. It is impor-
tant to note that given the redundancy of the coordinate
system, even slightly outdated information will lead the
routes close to the destination. As we show in our exper-
imental results, both the magnitude and the frequency of
the changes to coordinates is small in practice.

4 Simulation Results

To evaluate the BVR algorithm, we use extensive simu-
lations and experiments on testbeds of real sensor motes.
To aid the development of BVR and to better understand
its behavior and design tradeoffs we start by evaluating
BVR using a high-level simulator that abstracts away
many of the vagaries of the underlying wireless medium.
While clearly not representative of real radios, these sim-
plifications allow us to explore questions of algorithm
behavior over a wide range of network sizes, densities,
and obstacles that would not be possible on a real testbed.

In practice however, the characteristics of wireless
sensor networks impose a number of challenges on ac-
tual system development. For example, the mica2dot
motes have severe resource constraints – just 4KB of
RAM, typical packet payloads of 29 bytes etc. – and the
wireless medium exhibits changing and imperfect con-
nectivity. Hence, our next round of evaluation is at the
actual implementation level. We present the implemen-
tation and experimental evaluation of our BVR prototype
in Sections 5 and 6 respectively and our simulation re-
sults in this section.

Our simulator makes several simplifying assumptions.
First, it models nodes as having a fixed circular radio
range; a node can communicate with all and only those
nodes that fall within its range. Second, the simulator

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 333

ignores the capacity of, and congestion in, the network.
Finally, the simulator ignores packet losses. While these
assumptions are clearly unrealistic, they allow the sim-
ulator to scale to tens of thousands of nodes. We place
nodes uniformly at random in a square planar region, and
we vary the total number of beacons r, and the number
of routing beacons, k. In all our tests, we compare the
results of routing over BVR coordinates to greedy geo-
graphic routing over the true positions of the nodes.

Our default simulation scenario uses a 3200 node net-
work with nodes uniformly distributed in an area of 200
× 200 square units. The radio range is 8 units, and aver-
age node degree is 16. Unless otherwise stated, a node’s
neighbors are those nodes within its one hop radius.

4.1 Metrics
In our evaluation, we consider the following performance
metrics:

(Greedy) success rate: The fraction of packets that
are delivered to the destination without requiring flood-
ing. We stress that the final scoped flooding phase en-
sures that all packets eventually reach their destination.
This metric merely measures how often the scoped flood-
ing is not required. Like previous virtual coordinate solu-
tions [24, 25], we report on the success of routing without
scoped floods because that provides the most unambigu-
ous evaluation of the quality of node coordinates them-
selves; e.g., scoped flooding, which will always succeed,
does not depend on coordinates. If our results are compa-
rable to those with true positions, then BVR would have
overcome the need for geographic information in cur-
rent proposals. Nonetheless, later in this section, we also
present results on a metric we term transmission stretch
that does explicitly account for the overhead of scoped
floods.

Flood scope: The number of hops it takes to reach the
destination in those cases when flooding is invoked.

Path stretch: The ratio of the path length of BVR to
the path length of greedy routing using true positions.

Node load: The number of packets forwarded per
node.

In each test, we’re interested in understanding the
overhead required to achieve good performance as mea-
sured by the above metrics. There are three main forms
of overhead in BVR:

Control overhead: This is the total number of flood-
ing messages generated to compute and maintain node
coordinates and is directly dependent on r, the total num-
ber of beacons in the system. We measure control over-
head in terms of the total number of beacons that flood
the network. Ideally, we want to achieve high perfor-
mance with reasonably low r.

Per-packet header overhead: A destination is de-
fined in terms of its k(≤ r) routing beacons. Because
the destination position is carried in the header of every
packet for routing purposes, k should be reasonably low.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

S
uc

ce
ss

R
at

e
w

/o
Fl

oo
di

ng

Number of Beacons

True positions

5 routing beacons
10 routing beacons
20 routing beacons

Figure 1: Success rate of routes without flooding in a
3200 node network, for different numbers of total bea-
cons, r, and routing beacons, k.

Routing state: The number of neighbors a node main-
tains in its routing table.

4.2 Routing Performance vs. Overhead
In this section, we consider the tradeoff between the rout-
ing success rate and the flood scope on one hand, and the
overhead due to control traffic (r) and per-packet state
(k) on the other hand. We use our default simulation sce-
nario and for each of ten repeated experiments, we ran-
domly choose r beacons from the total set of nodes. We
vary r from 10 to 80 each time generating 32, 000 routes
between randomly selected pairs of nodes.

Figure 1 plots the routing success rate for an increas-
ing total number of beacons (r) at three different values
of k, the number of routing beacons (k = 5, 10, and
20) As expected, the success rate increases with both
the number of total beacons and the number of routing
beacons. We draw a number of conclusions from these
results. We see that with just k = 10 routing beacons
we can achieve routing performance comparable to that
using true positions. The performance improvement in
increasing k to 20 is marginal. Hence, from here on,
we limit our tests to using k = 10 routing beacons as a
good compromise between per-packet overhead and per-
formance. Using k = 10, we see that only between 20
to 30 total beacons (r) is sufficient to match the perfor-
mance of true positions. At less than 1% of the total
number of nodes, this is very reasonable flooding over-
head. The scope of floods as a function of r decreases
from 7 at r =10 to 3 at r =70.

The average path length in these tests was 17.5 hops
and the path stretch, i.e., the length of the BVR path over
the path length using greedy geographic routing over true
positions, is 1.05. In all our tests, we found that the
path stretch was always less than 1.1 and hence we don’t
present path stretch results from here on.

We also compared the distribution of the routing load
over nodes using BVR versus greedy geographic rout-
ing over true positions and found that for most nodes,

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association334

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

S
uc

ce
ss

R
at

e
w

/o
Fl

oo
di

ng

Number of Beacons

True positions, low density

True positions, high density

High Density (15.7)
Low Density (9.8)

Figure 2: Success rate of routes without flooding, for
3200 node topologies with different densities, for k = 10
routing beacons.

the load is virtually identical though BVR does impose
slightly higher load on the nodes in the immediate vicin-
ity of beacons. For example, for the above test using
r = 40 and k = 10, the 90th percentile load per node
was 48 messages using BVR compared to 37 messages
using true positions.

In summary, we see that BVR can roughly match the
performance of greedy geographic routing over true po-
sitions with a small number of beacons using only its
one-hop neighbors.

4.3 The Impact of Node Density
In this section, we consider the impact of the node den-
sity on the routing success rate. Figure 2 plots the success
rate for the original density of 16 nodes per communica-
tion range, and for a lower density of 9.8 nodes per com-
munication range. While at high density the performance
of both approaches is comparable, we see that at low den-
sities BVR performs much better than greedy geographic
routing with true positions. In particular, while the suc-
cess rate of the greedy routing is about 61%, the success
rate of BVR reaches 80% with 30 beacons, and 90% with
40 beacons. Thus, BVR achieves an almost 30% im-
provement in the success rate compared to greedy rout-
ing with true positions. This is because the node coordi-
nates in BVR are derived from the connectivity informa-
tion, and not from their geographic positions which may
be misleading in the presence of the voids that occur at
low densities.

These results reflect the inherent tradeoff between the
amount of routing state per node and the success rate
of greedy routing. At lower densities, each node has
fewer immediate neighbors and hence the performance
of greedy routing drops. One possibility to improve the
performance of our greedy routing is to have nodes main-
tain state for nodes beyond their one-hop neighborhood.
This however increases the overhead and complexity of
maintaining routing state. To retain high success rates
without greatly (or needlessly) increasing the routing

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

S
uc

ce
ss

R
at

e
w

/o
Fl

oo
di

ng

Number of Beacons

True positions, low density (o.d. 2-hop)

True positions, high density (o.d. 2-hop)

High Density (15.7)
Low Density (9.8)

High Density + on-demand 2-hop (17.0)
Low Density + on-demand 2-hop (12.7)

Figure 3: Success rate of routes without flooding, for the
same topologies as in figure 2, comparing the on demand
acquisition of 2-hop neighborhood information.

Algorithm avg max % nodes avg
ngbrs ngbrs w/ 2hop success

BVR (hi-dens) 15.7 30.7 0 96.1
BVR+2hop (hi-dens) 17.0 67.5 5 99.7
true postns (hi-dens) 15.7 31.7 0 96.3

true postns+2hop (hi) 15.8 48.0 0.7 99.5
BVR (lo-dens) 9.8 22.1 0 89.2

BVR+2hop (lo-dens) 12.7 50.0 15 97.0
true postns (lo-dens) 9.8 22.8 0 61.0

true postns+2hop (lo) 10.7 36.3 6 82.7

Table 3: State requirements using on-demand two hop
neighbor acquisition for BVR and true positions at two
different network densities. These state requirements are
averaged over 10 runs with k = 10 and r = 50.

state per node, we propose the use of on-demand two-
hop neighbor acquisition. Under this approach, a node
starts out using only its immediate (one-hop) neighbors.
If it cannot forward a message greedily, it fetches its
immediate neighbors’ neighbors and adds this two-hop
neighbors to its routing table. The intuition behind this
approach is that the number of local minima in a graph is
far smaller than the total number of nodes. Thus, the on-
demand approach to augmenting neighbor state allows
only those nodes that require the additional state to incur
the overhead of maintaining this state.

To evaluate the effectiveness of using on-demand two-
hop neighbor acquisition, we repeat the experiments in
Figure 2 using this approach. The results are plotted
in Figure 3. Not surprisingly, this approach greatly im-
proves the routing success rate. With only 20 beacons,
the success rate of BVR exceeds 99% for the high den-
sity network, and 96% for the low density network. Ta-
ble 3 shows the average and worst case increase in the
per-node routing state for both BVR and true positions.
Using BVR, at high density, only 5% of nodes fetch their
two-hop neighbors while 15% of nodes do so at the lower
densities. Thus acquiring two-hop neighbors on demand
represents a big win at a fairly low cost.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 335

0

20

40

60

80

100

100 1000 10000

N
um

be
ro

fB
ea

co
ns

Nodes

1-hop neighborhood
2-hop on-demand neighborhood

Figure 4: Number of beacons required to achieve less
than 5% of scoped floods, with k = 10 routing beacons.

4.4 Scaling the Network Size

In this section, we ask the following question: how many
beacons are needed to achieve a target success rate as the
network size increases? To answer this question, we set
the target of the routing success rate at 95%. Figure 4
plots the number of beacons required to achieve this tar-
get for both BVR using a one-hop neighborhood, and
BVR using on-demand two-hop neighbor acquisition. In
both cases the number of routing beacons is 10.

There are two points worth noting. First, the number
of beacons for the on-demand two-hop neighborhood re-
mains constant at 10 as the network size increases from
50 to 12, 800 nodes. Second, while the number of bea-
cons in the case of BVR with one-hop neighborhood
increases as the network size increases, this number is
still very small. When the network is greater than 800
nodes, the number of beacons for the one-hop neighbor-
hood never exceeds 2%.

These results show that the number of beacons re-
quired to achieve low flooding rates grows slowly with
the size of the system.

4.5 Performance under obstacles

We now study the BVR performance in the presence of
obstacles. We model obstacles as horizontal or vertical
“walls” with lengths of 10 or 20 units. For comparison,
recall that the radio range of a node is 8 units.

Table 4 shows the success rates of BVR routing over
a one-hop neighborhood for different numbers of obsta-
cles. For each entry, we also show, in parentheses, the
success rate of greedy routing using true positions. Sur-
prisingly, as the number of obstacles and/or their length
increases, the decrease in success rate using BVR is not
significant. In the worst case the success rate drops only
from 96% to 91%. For comparison, the success rate of
greedy routing with true positions drops from 98% to
43%! Again, this is because the node coordinates in BVR
reflect their connectivity instead of their true positions.

Length of Number of Obstacles
Obstacles 0 10 20 50

10 0.96 (0.98) 0.96 (0.91) 0.95 (0.87) 0.95 (0.79)
20 0.96 (0.98) 0.95 (0.84) 0.94 (0.70) 0.91 (0.43)

Table 4: Comparing BVR with greedy forwarding over
true positions in the presence of obstacles

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50 60 70 80

Tr
an

sm
is

si
on

S
tre

tc
h

Number of Beacons

Low Density, w flood
High Density, w flood

Low Density, w/o flood
High Density, w/o flood

Figure 5: Transmission stretch, average total number of
messages sent per route over the the number of messages
sent over the shortest path.

4.6 Transmission Stretch
Our results so far evaluated the success of routing with-
out scoped floods. Because scoped flooding incurs
higher messaging overhead than unicast forwarding, we
now look at a metric we call transmission stretch. We
measure transmission stretch as the ratio of the total (uni-
cast and scoped-flood) number of messages transmitted
in routing a packet to that required using the optimal
shortest path as computed by Dijkstra’s algorithm. Fig-
ure 4.5 plots this stretch for BVR routing with and with-
out the use of scoped flood. In the absence of scoped
floods we compute stretch only over those routes that do
not require floods. We can see that at both low and high
density, the transmission stretch improves with increas-
ing number of beacons and rapidly drops to very close to
1. This shows that the use of scoped floods does not in-
cur significant additional overheads. We repeated these
tests for network sizes from 50 to 3200 and found that in
all cases, the stretch was less than 1.1.

5 BVR Implementation

This section describes our prototype implementation
of BVR in TinyOS [11] for the mica2dot motes.
The resource constraints of the mote hardware and the
vagaries of the wireless medium lead to a number of
practical difficulties not addressed in our discussion so
far. In particular, the following are four key issues that
must be addressed in a real implementation:
Link estimation: In a wireless medium, the notion of an
individual link is itself ill-defined as the quality of com-
munication varies dramatically across nodes, distance
and time. Link estimation is used to characterize a link

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association336

as the probability of successful communication rather
than a simple binary on/off relation.
Link/neighbor selection: The limited memory in the
mote hardware prevents a node from holding state for all
its links. Link selection determines the set of neighbors
in a node’s routing table.
Distance estimation: Recall that our BVR algorithm
defines a node’s coordinates as its distance in hops to
a set of beacons. We describe how we define the hop
distance from a node to a beacon when individual links
are themselves defined in terms of a quality estimate.
Route selection: This addresses how a node forwards
packets in the face of lossy links.

Each of the above is a research problem in itself (see
[32, 33] for a detailed exploration of some of these is-
sues); while our implementation makes what we believe
are sound choices for each, a comprehensive exploration
of the design space for each individual component is be-
yond the scope of this paper. We describe our solutions
to each of the above problems and present the results of
our system evaluation in the following section.

Currently, our prototype sets the number of routing
beacons equal to the total number of beacons (k = r)
and does not implement the successive dropping of bea-
cons in computing distances for greedy forwarding (i.e.,
a node that cannot make greedy progress using all avail-
able beacons switches directly to fallback mode). We
also do not implement the on-demand neighbor acquisi-
tion described in the previous section. If anything, these
simplifications can only degrade performance relative to
our earlier simulation results.

5.1 Link Estimation and Selection
Estimating the qualities of the links to and from a node
is critical to the implementation of BVR as this affects
the estimated distance from beacons as well as routing
decisions. For example, consider a node that on occasion
hears a message directly from a beacon over a low quality
link. If, based on these sporadic receptions, the node
were to set its distance from the beacon to be one hop
then that would have the undesired effect of drawing in
traffic over the low quality link.

We implemented a passive link estimator, based on the
work by Woo et al.[32]. We tag all outgoing packets
with a sequence number, such that the receiving nodes
can estimate the fraction of packets that are lost from
each source. We collect statistics in successive time win-
dows, and the estimation is derived from an exponen-
tially weighted moving average of the quality over time.
This estimates the quality of incoming links. To accom-
modate link asymmetry, every node periodically trans-
mits its current list of incoming link qualities. It is aided
by the fact that nodes transmit at a minimum rate, mak-
ing estimation more reliable: in BVR, nodes periodi-
cally broadcast “hello” messages used to announce coor-

dinates and maintain the beacon trees. The link estimator
is also responsible for detecting “dead” neighbors, and to
keep a table with the best quality links.

Because motes have limited memory, a node may not
be able to (or may not want to devote the memory needed
to) hold state for all the nodes it might hear from. Hence
on the one hand we want a node to hold state for its
highest quality links but on the other hand the node does
not have the memory resources necessary to estimate the
quality of all its links. To tackle this problem we use
a scheme that guarantees that a node’s link will store a
set of neighbors with quality above a given low quality
replacement threshold L. When a node is first inserted
in the link table it is subject to a probation period. We
set the probation period to be such that the link estimator
would have converged to within 10% of the stable quality
of the link. An entry in the link table cannot be replaced
unless it is past probation and has a link quality below
the replacement threshold. In our prototype, we use a
link table size n of 18 neighbors, and set L to 20%.

5.2 Distance Estimation
Every node in BVR maintains two key pieces of in-
formation: (1) its distance in hops to the root beacons
and (2) the positions of the node’s immediate neighbors.
The only control traffic for maintaining both consists
of periodic local neighbor exchanges, in which nodes
advertise their distance to each beacon, in the style of
distance-vector routing algorithms. A beacon’s periodic
announcement includes a sequence number that is incre-
mented at every interval. Through periodic neighbor ex-
changes, nodes build a reverse path tree to every beacon.
A node maintains the highest sequence number and a par-
ent along the tree to every beacon. These combined can
eliminate count-to-infinity problems, loops, and allows
for the detection of dead beacons.

Central to BVR is a node’s distance in hops to each
beacon. In the presence of lossy links, it is important to
avoid using long and unreliable links, which can give the
false impression of a low hopcount to the root. To this
effect, nodes determine their distance from the beacon
by choosing parents that minimize the expected number
of transmissions (ETX) to the root [32] along the reverse
path. The ETX for one link with forward and reverse
transmission success probability pf and pr is 1

(pf×pr) ,
and the ETX to the root is obtained incrementally by
adding the ETX for each link. A node’s distance is the
number of hops along such path. We use some hysteresis
when selecting parents with different hopcounts to in-
crease the stability of the coordinates.

5.3 Route Selection
When selecting the next hop in forwarding a message,
our BVR prototype takes into account both the progress
in the distance function and the quality of the links. Usu-

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 337

Link Estimator
Size of Table 18
Expiration 5 succ. windows
Replacement Thresh. 20% quality
Reverse Link Info Period 17.5s ± 50% (jittered)
Update Link Period 30 (fixed)
Exponential Average smoothing constant 40%

BVRState
Position Broadcast T 10s ± 50% (uniform)

Table 5: Parameters used in the experiments on both the
Office-Net and Univ-Net testbeds

ally, the nodes that make the most progress are also fur-
ther away, and present poor link quality. We order all
links that make some progress towards the destination
by expected progress: the product of the bidirectional
link quality and the actual progress in the distance func-
tion. This is analogous to the PRR × Distance met-
ric from [28], found to be optimal for geographic rout-
ing. When sending a message, we use two optimizations
for reliability. First, we use link level acknowledgments
with up to five retransmissions. Second, if a transmis-
sions fails despite the multiple retries, the node will try
the other neighbors in decreasing order of their expected
progress. Only when it has exhausted all possible next
hop options will the node revert to fallback mode.

Table 5 summarizes our various parameter settings.
We selected these based on both our own experience and
those reported by Woo et al.[32] with the mote radios.
We intend to achieve good tradeoff between maintaining
freshness of the routing state, and the amount of con-
trol traffic generated. A back-of-the-envelope calcula-
tion based on our measured channel capacity indicates
that our timer settings lead to control traffic of approx-
imately 5% of the channel capacity. Fully understand-
ing the generality of our parameter selection is beyond
the scope of this paper and a topic we intend to explore.
Nonetheless, because sensornet topologies (unlike most
other networks) are dependent on so many deployment
specific issues — interference and obstacles in the phys-
ical environment, number and layout of nodes, power
settings, etc. — we do expect deployments to always
involve some amount of a priori calibration to guide pa-
rameter selection.

6 Prototype Evaluation

This section presents the results of our experiments with
the BVR prototype deployed over two testbeds. The first
(Office-Net) consists of 42 mica2dot motes [10] in
an indoor office environment of approximately 20x50m
while the second (Univ-Net) is a testbed of about 74
mica2dot motes deployed across multiple student of-
fices on a single floor of UC Berkeley’s Computer Sci-
ence building. In both testbeds, motes are connected
to an Ethernet backchannel that we use for logging and

1

2

55 56

59

66

3

9

11

12

13

14

20

21

22 27

28

30

33

35
41

92

4

5

17

24

42

4345

46

47

48

50

52

67

68

69

72

97

19

49

10

26

37

15

25

16

23

39

18

29

31

38

63

32

34 36

40

73

98

44

64

70

51 53

74

60 61

54

62

65 57

58

~45m

Figure 6: Neighborhood graph as determined by the
neighbor tables of motes. Each node is shown with its
ID. The positions of the nodes are to scale.

driving the experiments. These testbeds are of moderate
scale, with diameters of five and 7 hops, respectively, and
hence do not truly stress BVR’s scalability. Nonetheless,
these deployments are an invaluable (if not the only!)
means by which to test our algorithms under the non-
uniform and time-varying radio characteristics that can-
not be easily captured in simulation.

On both testbeds, we set parameters as described in
the previous section. Our experiments consist of a setup
phase of several minutes to allow the link estimations
to converge, beacon trees to be constructed and nodes
to discover their neighbors’ positions. After this setup
phase, we issue route commands from a PC to individual
motes over the Ethernet backchannel.

In the reminder of this section we evaluate four main
aspects of the BVR design:
Link Estimation: We validate that a node indeed selects
high quality neighbors. This is important because, as has
been reported, the details of link estimation are at once
tricky and greatly impact performance. Moreover, be-
cause link quality is a function of environment, topology
and traffic patterns, we could not just expect behavior
identical to previous studies [32, 33].
Routing Performance: We evaluate BVR’s success rate
on two testbeds under increasing load. We find that the
routing success rate is high (over 97%) when the network
load is low, and degrades gracefully as the load increases.
Dynamics: We evaluate performance under both node
and beacon failures and show that BVR sustains high
performance even under high node failure rate.
Coordinate Stability: Because many applications may
use node coordinates as addresses, it is important that
these coordinates vary little in magnitude and over time.
We find that BVR coordinates are quite stable.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association338

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
ro

fL
in

ks

Quality

All links
Neighbor Table Links

Figure 7: Histograms of the measured link qualities of
all links and of the subset of these links chosen that are
part of motes’ routing tables. Notice how the latter are
proportionately better quality.

6.1 Link Estimation

We verify that BVR successfully estimates individual
link qualities and selects high quality neighbor links over
which to route. Our data also shows little correlation
between distance and link quality. Since the evaluation
of the link estimator does not require a large multi-hop
network, we obtain our results from a subset of twenty
three motes in our Office-Net environment. Based on the
packets logged at each mote, we record the true quality
of every link over which even a single packet was re-
ceived. Figure 7 compares these measured link qualities
to those of the subset of links selected by motes in their
routing tables. Note how the fraction of neighbor links
selected in each range of quality increases with quality,
which confirms that nodes choose links with compara-
tively good qualities to be part of their coordinate tables.

We also examined the network-wide connectivity in
our testbeds. Figure 6 shows a snapshot of the network,
drawn to scale, and the connectivity as determined by the
neighbor tables at each mote on the 74 node Univ-Net
testbed. We see that network connectivity is frequently
not congruent with physical distance (e.g., mote pairs 32-
30, 32-9, 26-37, 35-27, 54-59). We also note the exis-
tence of short but asymmetric links (motes 24-26).

For the same testbed, Figure 8 shows the relation be-
tween link quality and physical distance between pairs of
nodes that are neighbors (as determined by BVR’s link
and neighbor selection algorithms). While BVR select
predominantly high quality neighbors, these are quite
frequently not physically close; in fact, a fair number
of neighbors are more than halfway across the network.
Note that these observations contradict the circular radio
assumptions made by typical geographic routing algo-
rithms and lend credibility to the need for connectivity-
derived coordinates.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

Q
ua

lit
y

E
st

im
at

ed
by

th
e

M
ot

es

Distance(m)

Figure 8: Link quality versus distance. Network connec-
tivity is not always correlated with physical distance.

6.2 Routing Performance

In the following experiments, after the setup phase, each
mote periodically attempts to route to a random des-
tination mote. We present BVR routing performance
in terms of successful packet delivery under increasing
routing load. In these tests we do not experiment with
beacon selection, and just preconfigure 5 well spread
nodes to act as beacons. In the following section we
evaluate our implementation of beacon selection using
the low-level mote simulator TOSSIM [18].

Figure 9 present results for the Office-Net and Univ-
Net testbeds. The graphs show: (1) the overall success
rate measured as the fraction of routes that arrived at the
target destination, (2) the fraction of routes that required
scoped flooding, (3) the fraction of routes that failed due
to contention drops where contention drops are pack-
ets that were dropped due to a lack of sending buffers
along the internal send path in the mote network stack
and (4) failures which are routes that failed despite the
multiple retries; i.e., the message was repeatedly sent out
over the channel but no acknowledgments were received.
The graph also plots the aggregate network route request
rate over time with the scale on the right hand Y axis.
Our tests start (after the setup phase) with a rate of one
route request per second for a period of approximately
one hour; after this we increase the route request rate ev-
ery 400 seconds up to a maximum rate of approximately
8 routes/second.

On Office-Net, BVR achieved an average success rate
(greedy or flood) of 99.9% until a load of about 8.8 re-
quests/second, at which point we start seeing a small
number of contention drops. 1.2% of all route requests
in this period resulted in scoped flooding (with an aver-
age scope of 2 hops), and less than 0.1% were contention
drops. Similarly for Univ-Net, the average success rate
was 98.5%. 5.5% of all routes required scoped flooding
(with again an average scope of 2 hops), there were no
contention drops, and 1.15% of routes failed due to per-
sistent loss. We repeated the above tests with a larger
number of beacons and recorded similarly high success

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 339

0

20

40

60

80

100

120

140

20 30 40 50 60 70 80 90 100 110
0

2

4

6

8

10

%
of

R
ou

te
s

R
ou

te
R

eq
ue

st
s

pe
rS

ec
on

d

Time(min)

Success (Greedy + Scoped Flood)
Scoped Flood
Contention
Failure
Route Request Rate

0

20

40

60

80

100

120

140

30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

%
of

R
ou

te
s

R
ou

te
R

eq
ue

st
s

pe
rS

ec
on

d

Time(min)

Success (Greedy + Scoped Flood)
Scoped Flood
Contention
Failure
Route Request Rate

Figure 9: Results of routing tests under increasing routing load, for Office-Net on the left and Univ-Net on the right.
Rate on the right hand Y axis is the aggregate number of route requests issued per second in the network.

rates; due to space considerations, we do not present
these here. These experiments indicate that our BVR im-
plementation works correctly in a real deployment, and
can sustain a significant workload of routing messages.

6.3 Node Dynamics
Sensor nodes are vulnerable to temporary or permanent
failures due to depleted energy resources, or damage
from weather conditions. We test BVR’s resilience to
such failures using both TOSSIM and real testbed exper-
imentation. We show that BVR can recover from both
node and beacon failures and sustain good routing per-
formance without incurring high overhead. We first eval-
uate BVR’s robustness to non-beacon node failure us-
ing the Office-Net testbed and then evaluate robustness
to beacon failure in TOSSIM.

6.3.1 Node Failure

To verify BVR’s robustness to node failure in a real de-
ployment, we ran tests on the Office-Net testbed with
artificially induced node failures. The setup for this is
identical to that in Section 6.2 except that we maintain a
query load of one route/second and, after a warming pe-
riod, repeatedly kill one random (non-beacon) mote ev-
ery five minutes until all but the beacons nodes have been
killed. Note that, once dead, we never resurrect a mote;
this failure model is more realistic for sensor networks
where the predominant cause of failure is battery exhaus-
tion and not (as on the Internet) node reboots or discon-
nections [30]. Figure 10 plots the success rate (along
with the number of live motes) over time. We see that
BVR is extremely resilient to random node failure. The
routing success rate remains mostly high until well over
80% of the motes are killed, at which point the success
rate drops. Closer examination of the logs revealed that
while node failures do lead to occasional dips in success
rate, BVR quickly recovers. This behavior stems from
the redundancy in the coordinate system, the route selec-
tion mechanisms, and the adaptability of the coordinates
to the topology changes.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

%
of

R
ou

te
s

N
um

be
ro

fM
ot

es

Time(min)

Success (Greedy + Scoped Flood)
Nodes alive

Figure 10: Office-Net Success rate (left Y axis) and num-
ber of live motes (right Y axis) over time. BVR maintains
high success rates under increasing node failure.

6.3.2 Beacon Failure

Section 3 discussed the need to maintain a reasonable
number of beacon nodes in the network. Our BVR im-
plementation includes Algorithm 2 which we tested us-
ing TOSSIM. Our TOSSIM experiments choose a base-
line configuration of 100 motes with 8 beacons and ex-
pected node degree of 12. We use TOSSIM’s lossy link
generator, which is itself based on empirical data and in-
cludes lossy and asymmetric connectivity. After a 30
minute setup phase, we initiate a constant rate of one
route per second between random node pairs and kill a
randomly selected beacon node at increasing rates. Suc-
cess rates are computed in 100 second time windows un-
der traffic load of 1 route request per second.

Figure 11 shows a typical simulation run. We see that
routing performance does not degrade with occasional
beacon failures, and tolerates high failure rates reason-
ably well. This is largely because BVR routes well with
even a partial beacon vector set. Residual beacon vec-
tors from recently deceased beacons also serve as hints
for packet forwarding. Closer examination of the test log
shows that the convergence time of the beacon replenish-
ment is fast, and dependent as expected on the network
diameter and frequency of neighbor exchanges. Candi-

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association340

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

%
of

R
ou

te
s

Time(min)

Success(Greedy + Scoped flood)
Scoped flood
Beacon killed

Figure 11: Resilience to beacon failure (TOSSIM): Ran-
domly chosen beacons fail at increasing rates up to a
maximum rate of 1/10 per min. Success rates are com-
puted in 100 second windows.

date beacons are efficiently suppressed and hence we ob-
served no significant communication overhead.

6.4 Coordinate Stability
Our results so far have shown that BVR generates good
coordinates in that they correctly guide routes towards
a target destination. Coordinates stability is important
for routing performance, especially for applications that
require a location database such as that described in Sec-
tion 3. Not only may routing to outdated coordinates
lead to routing failures, but constant changes can gener-
ate heavy update and lookup traffic close to the beacons.

In Figure 12 we look at the number of nodes with
changes in coordinates per fixed 100-second intervals for
a run in Office-Net, with a load of one route per second.
This approximates the minimum aggregate update traffic
that would be seen in the network if motes were to up-
date at most once every such period, when their coordi-
nates changed. From the graph we see that there are more
nodes with changes in the beginning, as the link estima-
tors are stabilizing, and then there is a reduction. The av-
erage number of motes with changes per slot is 0.95, and
the 95th percentile is 9. We also looked at 10 second in-
tervals, and the average number of motes with changes is
0.13 per interval, which is relatively consistent. In terms
of number of changes, during this period of 100 minutes,
90% of the motes had 5 or fewer changes in coordinates.
The results we saw in the Univ-Net testbed are similar.
Figure 13 plots the distribution of the magnitude of in-
dividual coordinate changes over all coordinate changes.
Magnitude here is simply the change in a node’s distance
to a beacon; i.e., a change in distance to a beacon from
5 hops to 3 hops would be counted as a magnitude of 2.
We see that change, when it occurs, is small: for both
testbeds, in this case, at least 80% of the changes were
of 2 or less hops. These results suggest that BVR can be
used as a stable routing solution that is scalable, robust,
and does not unduly load beacons.

7 Conclusions and Future Work

Beacon Vector Routing is a new approach to achieving
scalable point-to-point routing in wireless sensornets. Its
main advantages are its simplicity, making it easy to im-
plement on resource constrained nodes like motes, and
resilience, in that we build no large-scale structures. In
fact, the periodic flooding from the beacons means that
no matter what failures have occurred, the entire state
can be rebuilt after one refresh interval. Our simulation
results show that BVR achieves good performance in a
wide range of settings, at times significantly exceeding
that of geographic routing. Our implementation results
suggest that BVR can withstand a testbed environment
and thus might be suitable for real deployments.

However, we are at the very early stages of our inves-
tigation. We need to better understand how BVR’s per-
formance is linked to radio stability, the generality of our
parameter selection as well as more rigorous approaches
to tuning these parameters. Most importantly however,
we have not yet implemented any applications on top of
BVR, so we don’t yet know if it provides a suitably stable
substrate on which to build. All of these items represent
future work.

References
[1] BOSE, P., MORIN, P., STOJMENOVIC, I., AND URRUTIA, J.

Routing with guaranteed delivery in ad hoc wireless networks.
Wireless Networks 7, 6 (2001), 609–616.

[2] CAO, Q., AND ABDELZAHER, T. A scalable logical coordinates
framework for routing in wireless sensor networks. In IEEE Real-
time Systems Symposium (December 2004).

[3] COUTO, D. D., AGUAYO, D., CHAMBERS, B., AND MORRIS,
R. Performance of multihop wireless networks: Shortest path is
not enough. In Proceedings of HotNets (Oct. 2002).

[4] DEMIRBAS, M., ARORA, A., AND GOUDA, M. A pursuer-
evader game for sensor networks. In Proceedings of the Sixth
Symposium on Self-Stabilizing Systems (2003), pp. 1–16.

[5] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C., AND
ZHANG, L. A reliable multicast framework for light-weight
sessions and application level framing. In Proceedings of SIG-
COMM (1995), ACM Press, pp. 342–356.

[6] GANESAN, D., ESTRIN, D., AND HEIDEMANN, J. DIMEN-
SIONS: Why do we need a new data handling architecture for
sensor networks? In Proceedings of the ACM HotNets (October
2002), ACM, pp. 143–148.

[7] GIROD, L., STATHOPOULOS, T., RAMANATHAN, N., ELSON,
J., ESTRIN, D., OSTERWEIL, E., AND SCHOELLHAMMER, T.
EmStar: An environment for developing wireless embedded sys-
tems software. In Proceedings of the Second SenSys (Nov. 2004),
ACM Press.

[8] GREENSTEIN, B., ESTRIN, D., GOVINDAN, R., RATNASAMY,
S., AND SHENKER, S. DIFS: A distributed index for features
in sensor networks. In Proceedings of First IEEE WSNA (May
2003).

[9] HAMILTON, M., ALLEN, M., ESTRIN, D., ROTTENBERRY, J.,
RUNDEL, P., SRIVASTAVA, M., AND SOATTO, S. Extensible
sensing system: An advanced network design for microclimate
sensing, June 2003.

[10] HILL, J., AND CULLER, D. Mica: a wireless platform for deeply
embedded networks. IEEE Micro 22, 6 (November 2002), 12–24.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 341

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

C
ou

nt

Time(min)

Number of Motes with changes

Figure 12: Number of motes with at least one coordinate
change per slot of 100 seconds. This approximates the
update traffic the location database would see, assuming
a minimum update period of 100 seconds per mote.

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

Fr
ac

tio
n

of
C

ha
ng

es
<=

x

Magnitude of Changes (hops)

Office-Net
Univ-Net

Figure 13: Distribution of the magnitude of individ-
ual coordinate changes over all coordinate changes seen
across all nodes over test durations of 60 minutes on the
Office-Net and Univ-Net testbeds.

[11] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER,
D., AND PISTER, K. System architecture directions for net-
worked sensors. In Proceedings of the ASPLOS (2000), ACM
Press, pp. 93–104.

[12] INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. Di-
rected Diffusion: a scalable and robust communication paradigm
for sensor networks. In Proceedings of the 6th Annual MOBI-
COM (2000), ACM Press, pp. 56–67.

[13] JOHNSON, D. B., AND MALTZ, D. A. Dynamic source routing
in ad hoc wireless networks. In Mobile Computing, Imielinski
and Korth, Eds., vol. 353. Kluwer Academic Publishers, 1996.

[14] KARGER, D. R., LEHMAN, E., LEIGHTON, T., LEVINE, M.,
LEWIN, D., AND PANIGRAHY, R. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving hot spots
on the world wide web. In Proc. 29th ACM STOC (May 1997),
pp. 654–663.

[15] KARP, B., AND KUNG, H. T. GPSR: Greedy perimeter stateless
routing for wireless networks. In Proceedings of the 6th annual
MOBICOM (2000), ACM Press, pp. 243–254.

[16] KUHN, F., WATTENHOFER, R., ZHANG, Y., , AND
ZOLLINGER, A. Geometric ad-hoc routing: Of theory and prac-
tice. In 22nd ACM PODC (2003).

[17] KUMAR, S., ALAETTINGLU, C., AND ESTRIN, D. Scalable
object-tracking through unattended techniques (scout). In Pro-
ceedings of the 2000 International Conference on Network Pro-
tocols (2000), IEEE Computer Society, p. 253.

[18] LEVIS, P., LEE, N., WELSH, M., AND CULLER, D. Tossim:
accurate and scalable simulation of entire TinyOS applications.
In Proceedings of the First SenSys (2003), ACM Press, pp. 126–
137.

[19] LEVIS, P., MADDEN, S., GAY, D., POLASTRE, J., SZEWCZYK,
R., WOO, A., BREWER, E., AND CULLER, D. The emergence
of networking abstractions and techniques in tinyos. In Proceed-
ings of the First USENIX/ACM NSDI (March 2004).

[20] LI, X., KIM, Y. J., GOVINDAN, R., AND HONG, W. Multi-
dimensional range queries in sensor networks. In Proceedings of
the First SenSys (2003), ACM Press, pp. 63–75.

[21] MADDEN, S. The design and evaluation of a query processing
architecture for sensor networks. PhD thesis, UC Berkeley, 2003.

[22] MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND HONG,
W. TAG: a tiny aggregation service for ad hoc sensor networks.
In OSDI (2002).

[23] MAINWARING, A., POLASTRE, J., SZEWCZYK, R., CULLER,
D., AND ANDERSON, J. Wireless sensor networks for habitat
monitoring. In Proceedings of ACM WSNA (Sept. 2002).

[24] NEWSOME, J., AND SONG, D. Gem: Graph embedding for
routing and data-centric storage in sensor networks without ge-
ographic information. In Proceedings of the First SenSys (2003),
ACM Press, pp. 76–88.

[25] RAO, A., RATNASAMY, S., PAPADIMITRIOU, C., SHENKER,
S., AND STOICA, I. Geographic routing without location infor-
mation. In Proceedings of the 9th Annual MOBICOM (2003),
ACM Press, pp. 96–108.

[26] ROYER, E. M., AND TOH, C.-K. A review of current routing
protocols for ad-hoc mobile wireless networks. IEEE Personal
Communications 6 (April 1999), 46–55.

[27] SAVVIDES, A., HAN, C.-C., AND SRIVASTAVA, M. B. Dy-
namic fine-grained localization in ad-hoc networks of sensors. In
Mobile Computing and Networking (2001), pp. 166–179.

[28] SEADA, K., ZUNIGA, M., HELMY, A., AND KRISHNA-
MACHARI, B. Energy-efficient forwarding strategies for geo-
graphic routing in lossy wireless sensor networks. In Proceedings
of the 2nd SenSys (2004), ACM Press, pp. 108–121.

[29] SHENKER, S., RATNASAMY, S., KARP, B., GOVINDAN, R.,
AND ESTRIN, D. Data-centric storage in sensornets. SIGCOMM
Comput. Commun. Rev. 33, 1 (2003), 137–142.

[30] SZEWCZYK, R., POLASTRE, J., MAINWARING, A., ANDER-
SON, J., AND CULLER, D. An analysis of a large scale habi-
tat monitoring application. In Proceedings of the Second SenSys
(2004), ACM Press.

[31] TSUCHIYA, P. F. The Landmark Hierarchy: a new hierarchy for
routing in very large networks. In ACM SIGCOMM (1988), ACM
Press, pp. 35–42.

[32] WOO, A., TONG, T., AND CULLER, D. Taming the underlying
challenges of reliable multihop routing in sensor networks. In
Proceedings of the First SenSys (2003), ACM Press, pp. 14–27.

[33] ZHAO, J., AND GOVINDAN, R. Understanding packet delivery
performance in dense wireless sensor networks. In Proceedings
of the First SenSys (2003), ACM Press, pp. 1–13.

[34] ZHAO, J., GOVINDAN, R., AND ESTRIN, D. Computing aggre-
gates for monitoring wireless sensor networks. In Proceedings of
the IEEE SNPA (May 2003).

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association342

