
Beam-ACO applied to assembly line balancing∗

Christian Blum1, Joaqúın Bautista2, and Jordi Pereira3

1 ALBCOM, Dept. Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain

cblum@lsi.upc.edu

2 ETSEIB, Nissan Chair

Universitat Politècnica de Catalunya, E-08028 Barcelona, Spain

joaquin.bautista@upc.es

3ETSEIB, Dept. d’Organitzaćıó d’Empreses

Universitat Politècnica de Catalunya, E-08028 Barcelona, Spain

jorge.pereira@upc.edu

May 15, 2006

Abstract

Assembly line balancing concerns the design of assembly lines for the manufacturing of
products. In this paper we consider the time and space constrained simple assembly line
balancing problem with the objective of minimizing the number of necessary work stations.
This problem is denoted by TSALBP-1 in the literature. For tackling this problem we
propose a Beam-ACO approach, which is an algorithm that results from hybridizing ant
colony optimization with beam search. The experimental results show that our algorithm
is a state-of-the-art metaheuristic for this problem.

1 Introduction

Simple assembly line balancing (SALBP) [14] concerns the manufacturing of products via
assembly lines. An assembly line consists of a set of work stations arranged in a line, and by a
transport system which moves the product to be manufactured along the line. The product is
manufactured by performing a given set of tasks T = {1, . . . , n}. Each of the tasks j ∈ T has
a processing time tj > 0. A solution to a SALBP instance is obtained by the assignment of
all tasks to work stations subject to precedence constraints between the tasks. The assembly
line moves in constant speed, which leads to a maximum time c (called cyle time) in which
the tasks assigned to each work station must be performed. Therefore, an assignment of tasks
to work stations is only valid if the work load of each work station does not exceed the cycle

∗This work was supported by grants TIN-2005-08818-C04-01 and DPI2004-03475 of the Spanish government, and
by the “Juan de la Cierva” program of the Spanish Ministry of Science and Technology of which Christian Blum is a
post-doctoral research fellow. Moreover, we acknowledge Nissan Spain and the UPC Nissan Chair for partially funding
this work as well as for providing real data.

1

time. Several different optimization objectives are possible. A wide-spread objective is the
minimization of the number of necessary work stations. This particular problem is denoted
by SALBP-1 in the literature. It can be seen as a bin packing problem with additional side
constraints (see [1]).

The SALBP-1 problem has been one of the most studied assembly line problems in the last
40 years. Solution approaches include constructive heuristics based on priority rules (see [20]),
enumerative procedures such as branch & bound approaches (see [10, 9, 15, 19]), and several
metaheuristics such as tabu search [16, 11], simulated annealing [21], evolutionary computa-
tion [8], and ant colony optmization [2, 3]. The current situation for the SALBP-1 problem
is quite unusual: Enumerative approaches such as SALOME [15] still appear to be at least as
successful as metaheuristic approaches. However, the interest in well-working metaheuristics
is high, because the applicability of enumerative methods is limited to academic formulations
of the problem, and even slight differences between a real problem and the academic SALBP-1
make an enumerative approach unapplicable. In this work we consider a generalization of the
SALBP-1 problem, called TSALBP-1 (the time and space constrained simple assembly line
balancing problem with the objective of minimizing the number of necessary work stations).
This generalization was proposed by Bautista and Pereira in [3]. The generalization consists
in adding space constraints to the processing time constraints, and was motived by a real
assembly line balancing problem at the Nissan plant in Barcelona, Spain.

Motivation. Many existing metaheuristic techniques for the SALBP-1 problem do not
employ a direct solution approach. They rather solve the SALBP-1 in the following indirect
way: Given an initial solution with m work stations, the metaheuristic is applied to find a
solution with a fixed number of m − 1 work stations with a cycle time c′ as low as possible
(that is, the cycle time is considered variable). If a solution can be found with c′ ≤ c, the
found solution is a valid solution for SALBP-1 with m − 1 work stations. In the next step,
the number of work stations is reduced by one, and the metaheuristic is applied again. The
existing ACO approach for SALBP-1 (see [3]) works in this way.

In this work we wanted to study if a clever ACO hybrid can be directly applied to solve
the SALBP-1 (and its generalization, the TSALBP-1) with the goal of improving over the
indirect approaches. In order to achieve this, we tackle the TSALBP-1 with an hybrid ant
colony optimization (ACO) [6] algorithm called Beam-ACO [4], which is obtained by hy-
bridizing ACO with beam search.1 The main idea of Beam-ACO is to allow the extension
of partial solutions in several different ways. A lower bound is used to limit the number of
partial solutions that are visited by the algorithm. The existence of an accurate—and com-
putationally inexpensive—lower bound is crucial for the success of beam search (respectively,
Beam-ACO). In Beam-ACO, artificial ants perform a probabilistic beam search in which the
extension of partial solutions is done in the ACO fashion rather than deterministically.

Paper outline. In Section 2 we present a technical definition of the TSALBP-1 problem. In
Section 3 we first study the potential of parametrizing a simple priority rule based heuristic,
before we outline Beam-ACO. Finally, in Section 4 we present the computational results, and
in Section 5 we offer conclusions and an outlook to the future.

1Beam search is a classical tree search method that was introduced in the context of scheduling [13].

2

2 TSALBP-1

An instance (T, G, c, a) of the TSALBP-1 problem consists of four components. T = {1, . . . , n}
is a set of n tasks that must be procecced by a line of work stations. Each task j ∈ T has
a processing time tj > 0, and a space requirement aj > 0 (both values may be integer or
real values). Furthermore, given is a precedence graph G = (T, A), which is a directed graph
without cycles whose nodes are the tasks. An arc li,j ∈ A indicates that i must be processed
before j. Given a task j ∈ T , we denote by Prej ⊂ T the set of tasks that must be processed
before j. Finally, c is the processing time limit of a work station (called the cycle time), and
a is the available space of a work station.

A solution is obtained by assigning each task to exactly one work station. In this work we
represent a solution s as an ordered set 〈S1, . . . , Sm〉 of m ≤ n work stations Sk. Each work
station Sk ⊆ T is a set of tasks. A solution s is valid if the following conditions are fullfilled:

1.
⋃m

k=1 Sk = {1, . . . , n} and
⋂m

k=1 Sk = ∅. These conditions ensure that each task is
assigned to exactly one work station.

2.
∑

j∈Sk

tj ≤ c, for k = 1, . . . , m. This ensures that no work station has too much load.

3.
∑

j∈Sk

aj ≤ a, for k = 1, . . . , m. Herewith is ensured that the space limits of the work

stations are not exceeded.

4. For each task j in a work station Sk it must hold that
⋃k

l=1 Sl contains Prej , which
ensures that the precedence constraints between the tasks are respected.

All our algorithms exclusively generate valid solutions. Finally, note that each SALBP-1
instance can be transformed into a TSALBP-1 instance by setting tj := aj ∀ j ∈ T , and by
setting a := c.

Objective function. The objective function of TSALBP-1 is the number of work stations
of a solution, which must be minimized. Given a solution s, this objective function is denoted
by c1(s) = |s|. However, this objective function contains large plateaus, that is, many different
solutions will have the same objective function value. Therefore, we introduce a second criteria
in order to distiguish between solutions with the same number of work stations. The second
criteria concerns the remaining time and space in the last work station Sm ∈ s. We use the
following notations:

trem(s) := c −
∑

j∈Sm

tj and arem(s) := a −
∑

j∈Sm

aj (1)

Using these notations, the second criteria is defined as c2(s) = trem(s)
c

+ arem(s)
a

. Having c1 and
c2 we can indirectly defined a new objective function f(·) as follows. Given s 6= s′,

f(s) < f(s′) ⇔ c1(s) < c1(s
′) OR c1(s) = c1(s

′) and c2(s) < c2(s
′) . (2)

This means that—in the case of equality concerning the first criteria—a solution s is regarded
as better than a solution s′ if and only if more space and time is remaining in the last work
station of solution s. Note that despite the fact that Beam-ACO uses the objective function
f(·), we will present the results only in terms of the original objective function.

3

Algorithm 1 Priority-rule heuristic for TSALBP-1

1: input: An instance (T, G, c, a) of TSALBP-1
2: k := 0
3: while T 6= ∅ do
4: k := k + 1
5: Sk ←FillWorkStation(T, k) /* see Algorithm 2 */
6: T := T \ Sk

7: end while
8: output: Solution s = 〈S1, . . . , Sk〉

Reverse problem instances [14]. Given a problem instance (T, G, c, a), the corresponding
reverse problem instance (T, Gr, c, a) is obtained by inverting all the arcs in the precedence
graph G. Each solution sr = 〈S1, . . . , Sm〉 to the reverse problem instance (T, Gr, c, a) can
be converted into a solution s to the original problem instance (T, G, c, a) by inverting the
ordered list of tasks, that is, s = 〈Sm, . . . , S1〉. We introduce this property, because it is
known from the literature that the reverse problem instance may be easier to solve than the
original one, or vice versa.

3 The algorithm

In this section we outline our implementation of Beam-ACO for TSALBP-1. In the first
part of the section we deal with a parametrized version of the constructive heuristic that is
the basis of the Beam-ACO approach. The second part of the section is concerned with the
Beam-ACO approach itself.

3.1 A parametrized priority rule heuristic

Priority rule heuristics are successful constructive methods for solving scheduling-type prob-
lems such as assembly line balancing. Therefore, we chose this type of algorithm as construc-
tive mechanism for Beam-ACO. First we outline the heuristic, and then we study possible
improvements of this heuristic by means of parametrization [7]. The priority rule heuristic for
assembly line balancing works as follows (see also [3]): The algorithm assigns tasks to work
stations, starting from the first work station. At each step, the algorithm selects one of the
available tasks (that is, tasks whose predecessors are already assigned to work stations) and
assigns it to the current work station. This is done until no available task can be added to
the current work station without violating the cycle time or the space limitation. When this
situation occurs, the algorithm opens the next work station. This process is continued until
all tasks are assigned to work stations. This heuristic is pseudo-coded in Algorithm 1.

When filling a work station, the successive choice of tasks is performed in function
ChooseTask(T ′) (see Algorithm 2), which works as follows. Let T av ⊆ T ′ be the set of tasks
such that Prej ∩ T ′ = ∅ for all j ∈ T av, that is, T av is the set of available tasks. Moreover, let
T sat ⊆ T av be the set of available tasks such that crem− tj = 0 or arem−aj = 0. Henceforth, we
call T sat the set of saturating avaiable tasks, because they saturate (in terms of time and/or
space) the current work station. If T sat is non-empty, a task is chosen from T sat, otherwise
from T av. The actual choice of a task is done by using so-called priority rules. In our work we

4

Algorithm 2 Function FillWorkStation(T, k)

1: input: A set T of tasks, and the index k of the work station to be filled
2: T ′ := T

3: Sk := ∅
4: crem := c

5: arem := a

6: while T ′ 6= ∅ and ∃ i ∈ T ′ s.t. crem − ti ≥ 0 and arem − ai ≥ 0 do
7: j ←ChooseTask(T ′)
8: T ′ := T ′ \ {j}
9: Sk := Sk ∪ {j}

10: crem := crem − tj
11: arem := arem − aj

12: end while
13: output: Filled work station Sk

employ a mixed rule that gives joint priority to the duration of a task, the space requirement
of a task, and the total number of tasks succeeding the given task:

ηj =
tj

c
+

aj

a
+

∣

∣Sucall

j

∣

∣

max1≤i≤n |Sucall

i |
, j ∈ T sat (respectively j ∈ T av) (3)

Hereby, Sucall

j denotes the set of all tasks that can be reached from j in the precedence graph
G via a directed path. Function ChooseTask(T ′) is implemented such that the task that max-
imizes the priority rule is chosen. The use of priority rule heuristics is quite popular, because
they are usually fast in execution and achieve reasonably good results. Accordingly, many
different priority rules have been proposed. The problem of priority rules is their inflexibility,
that is, each rule generally works well only for certain types of problem instances. This was
our motivation for introducing more flexibility into the priority rule shown in equation (3)
before using it as heuristic information in our Beam-ACO approach. This can be done by
parametrizing the three terms of the priority rule (3) as follows:

ηj =

(

κ1 ·
tj

c

)

+
(

κ2 ·
aj

a

)

+

(

κ3 ·

∣

∣Sucall

j

∣

∣

max1≤i≤n |Sucall

i |

)

, (4)

where κ1, κ2, κ3 ∈ [−1, 1]. Given a problem instance, the goal is naturally to find values
for κ1, κ2, and κ3 such that the parametrized priority rule works best. This is a difficult
optimization problem itself, which may be solved by techniques for continuous optimization
that do not require gradient information. Examples from the field of swarm intelligence are
ACO and particle swarm optimization. In fact, we implemented both the ACOR algorithm
by Socha [18], and a standard particle swarm optimizer as proposed by Shi and Kennedy
in [17]. However, surprisingly both optimization techniques are outperformed by a simple
random search algorithm (henceforth denoted by RAND), which works as follows: At each
iteration, a setting for the parameters κ1, κ2, and κ3 is chosen uniformly at random from
the parameter value space. Then, two solutions are constructed with this parameter set by
Algorithm 1:

1. A solution to the original problem instance.

5

2. A solution to the reverse problem instance. This solution is subsequently converted into
a solution to the original problem instance.

RAND proceeds until a computation time limit is reached, and outputs the best solution
found together with the parameter set which produced this best solution (with respect to the
objective function f(·)).

In order to test the potential of RAND, we applied the algorithm to all 269 problem in-
stances from the SALBP-1 benchmark set by Scholl (see http://www.assembly-line-balancing.
de). The results are shown in Table 1. The results of RAND (applied for 120 seconds to each
problem instance) are compared to the results of the application of Algorithm 1 (applied to
both, the original instance as well as the reverse instance). Algorithm 1 is applied with a
parameter setting such that κ1 + κ2 = 1.0 and κ3 = 1.0, which corresponds to the standard
use of the priority rule as described in the literature. The second column of Table 1 indicates
how many (out of 269 instances) were solved to optimality. The third table column gives
the average gap to the optimal solution (for example, if the generated solution has 5 work
stations, and the optimal solution has 3 work stations, the gap is 2). The fourth column
provides the worst gap observed over the 269 instances, and the last column indicates the
computation time (in seconds). In the case of Algorithm 1, the given time is the average
computation time over the 269 instances. In the case of RAND, the given time is the aver-
age over the computation times needed to find the best solution in each of the 269 applications.

Table 1: Results of the application of Algorithm 1 (2nd table row) with a parameter setting
such that κ1 + κ2 = 1.0 and κ3 = 1.0, and of RAND to the 269 SALBP-1 instances from
http://www.assembly-line-balancing.de.

solved avgerage gap worst gap average time

Algorithm 1 164 0.41 3 0.000017
RAND 200 0.26 2 0.0019

The results show the following. In a fraction of a second, RAND is able to find parameter
settings which allow to solve 200 of the 269 problem instances. In contrast, with the standard
parameter setting, only 164 instances can be solved. Also the average and worst gaps to the
optimal solutions are reduced.

Finally, we wanted to study the reason for the effectiveness of a random search technique
such as RAND. For this purpose we placed a fine grid over the parameter space, and applied
Algorithm 1 (both to the original and the reverse instance) for each grid point. In Figure 1
we show some of our results in two dimensions. The x-axis shows κ1 + κ2, and the y-axis
shows κ3. A grid point is shown in black, if the correspsonding parameter setting leads to the
generation of an optimal solution. The two cases that are shown in Figure 1 are typical for
many instances of the benchmark set. Usually, the optimal parameter areas (shown in black)
are large enough for a random search algorithm to quickly find an optimal parameter setting.
Note that in Figure 1(a) is shown a case in which the standard setting does not lead to the
construction of an optimal solution.

6

(a) c = 3786 (b) c = 3985

Figure 1: The black areas show the parameter settings with which optimal solutions are
generated by Algorithm 1. The precedence graph used for the two figures is ARC83 from
http://www.assembly-line-balancing.de.

3.2 Beam-ACO for TSALBP-1

Our Beam-ACO approach—pseudo-coded in Algorithm 3—works as follows. First, algorithm
RAND (see previous section) is used in function DetermineHeuristicInformation() for setting
the heuristic information. Then, the pheromone values are initialized. At each algorithm
iteration, ao ants construct solutions to the original problem instance, and ar ants construct
solutions to the reverse problem instance. The solutions to the reverse problem instance are
subsequently converted to solutions to the original problem instance. During each solution
construction a lower bound is used for detecting situations in which the resulting final solu-
tion must be worse than the best solution found by the algorithm so far. In this case the
corresponding solution construction is aborted. Finally, the pheromone values are updated
in function UpdatePheromoneTrail(T ,∗). The pheromone values are re-initilized in case of
algorithm convergence. In Algorithm 3 we use the following notations: T = {τj,k}j,k=1,...,n

is the set of pheromone values. Hereby, a pheromone value τj,k represents the desirability of
assigning task j to work station k. Furthermore, sib is the best solution constructed at an
iteration, and sbsf is the best solution found since the start of the algorithm. The functions
of our algorithm are outlined in more detail below.

DetermineHeuristicInformation(): The parametrized priority rule heuristic outlined in Algo-
rithm 1 is used as constructive mechansim of our Beam-ACO approach. In order to find
good parameter settings for κ1, κ2, and κ3 of Equation 4, this function applies algorithm
RAND (see previous section) for 0.5 seconds.2 Given these parameter values, the heuristic
information is determined as follows. Let

ηmin := min{ηj | j ∈ T} (5)

ηmax := max{ηj | j ∈ T} . (6)

Then we defined the heuristic information for the Beam-ACO approach to be

ηaco

j :=
ηj − ηmin + 1

ηmax

∀ j ∈ T . (7)

2Note that this time limit is arbitrarily chosen. A smaller time limit (for example, 0.1) would probably
work as well.

7

Algorithm 3 Beam-ACO for TSALBP-1

1: input: An instance (T, G, c, a) of TSALBP-1
2: sbsf ← DetermineHeuristicInformation()
3: forall τj,k ∈ T do τj,k := 0.5 end forall
4: cf := 0
5: while termination conditions not satisfied do
6: I := ∅
7: for i = 1 to ao do
8: si ← ConstructSolution(T) /* see Algorithm 4 */
9: if si 6= null then I := I ∪ {si}

10: end for
11: for i = 1 to ar do
12: sr

i ← ConstructReverseSolution(T)
13: if sr

i 6= null then
14: Obtain a solution si to the original instance from sr

i

15: I := I ∪ {si}
16: end if
17: end for
18: cf ← ComputeConvergenceFactor(T)
19: if I = ∅ then
20: UpdatePheromoneTrail(T ,sbsf)
21: else
22: sib := min{f(si) | si ∈ I}
23: UpdatePheromoneTrail(T ,sib)
24: if f(sib) < f(sbsf) then sbsf := sib

25: end if
26: if cf < 0.05 then
27: forall τj,k ∈ T do τj,k := 0.5 end forall
28: end if
29: end while
30: output: sbsf

Note that we can not use the ηj values directly as heuristic information, because some of them
might be negative. Additionally, the best solution found by RAND is returned by function De-
termineHeuristicInformation(), and is used as the currently best found solution of the algorithm.

ConstructSolution(T): This function is pseudo-coded in Algorithm 4. An ant constructs a
solution as follows. Work stations are successively filled one after the other. However, in
contrast to Algorithm 1, an ant fills each work station in kext different ways (see lines 8-11
of Algorithm 4). In the context of beam search, kext is the number of extensions that may
be obtained from a partial solution. For all our experiments we have used the setting of
kext = 50.

In order to fill a work station, an ant uses the function FillWorkStation(T, k) which is
pseudo-coded in Algorithm 2. Function ChooseTask(T ′) of Algorithm 2 is hereby implemented
as follows. First, we flip a coin in order to decide if the construction step is performed
deterministically, or probabilistically. In case of a deterministic construction step, the set of

8

tasks from which to choose an operation, denoted by T c, is determined as follows: If the set
of available saturating tasks T sat is non-empty, we set T c := T sat, otherwise T c := T av (see
Section 2 for the definition of T sat and T av). Then, from T c is chosen the task that maximizes

pj =

(

k
∑

i=1
τj,i

)

· ηaco

j

∑

l∈T c

(

k
∑

i=1
τl,i

)

· ηaco

l

. (8)

This formula uses the summation rule introduced by Merkle and Middendorf for scheduling
problems [12]. In case of a probabilistic construction step, T c is set to T av, and a task is
chosen by rhoulette-wheel-selection with respect to the probabilities shown in Equation 8.

After filling a work station, a lower bound LB(·) is applied to the current partial solution
s extended by the filled work station (see line 10 of Algorithm 4). The value of the lower
bound indicates the minimum number of work stations needed by a solution that contains
the current partial solution extended by the filled work station. In this work we used a very
simple lower bound: Given a partial solution s, let T rem be the set of tasks that are not yet
assigned to work stations. Then:

LB(s) = max

∑

j∈T rem

tj

c

,

∑

j∈T rem

aj

a

(9)

Only if the lower bound value is not worse than the number of work stations of the best
solution found so far, the extension of the current partial solution is considered (see line 10 of
Algorithm 4). Finally, from all the possible extensions of a partial solution, the one with the
lowest lower bound value is chosen (see line 13 of Algorithm 4). Note that this corresponds to
a beam search algorithm with a beam width equal to 1. We decided for this setting, because
in this work we only wanted to test the potential of a beam search approach. However, we
want to make the reader aware of the fact that a proper setting of the beam width might
improve the results of the algorithm even further.

Finally, function ConstructReverseSolution(T) works in the same way as function ConstructSolution(T),
just that it constructs a solution for the reverse problem instance. The same pheromone val-
ues are used, just in a slightly different way. For example, the pheromone value that expresses
the desirability to assign task j to the first work station of the reverse problem instance is
pheromone value τj,|sbsf|, instead of τj,1, and so on.

ComputeConvergenceFactor(T): Given the current pheromone values, this function computes
a value cf to indicate the state of convergence of the algorithm:

cf = 2 ·

n
∑

j=1

|sbsf|
∑

k=1

min{τmax − τj,k, τj,k − τmin}

n · |sbsf| · (τmax − τmin)

(10)

When the pheromone values are initialized, cf is 1; on the other side, when the algorithm is
converged, cf is 0. We have set τmax to 0.99, and τmin to 0.01. Note that the use of these

9

Algorithm 4 Function ConstructSolution(T ,sbsf) of Algorithm 3

1: input: The set of pheromone values T , and sbsf

2: T = {1, . . . , n}
3: k := 0
4: s := 〈〉
5: while T 6= ∅ do
6: k := k + 1
7: I := ∅
8: for i = 1, . . . , kext do
9: Si

k =FillWorkStation(T, k) /* see Algorithm 2 */
10: if LB(s ∪ Si

k) ≤ |sbsf| then I = I ∪ Si
k

11: end for
12: if I 6= ∅ then
13: S∗

k := argmax{LB(s ∪ Si
k) | Si

k ∈ I}
14: T := T \ S∗

k

15: s := 〈S1, . . . , S
∗
k〉

16: else
17: output: null

18: end if
19: end while
20: output: Solution s = 〈S1, . . . , Sk〉

bounds and their value setting is motivated by the implementation of MAX -MIN AS algo-
rithms implemented in the hyper-cube framework (see, for example, [5]).

UpdatePheromoneTrail(T ,∗): This function either uses solution sib or solution sbsf for updating
the pheromone values. sbsf is only used in case no iteration best solution exists, due to solution
construction abortions. Let us denote the updating solution by supd. Then, for j = 1, . . . , n

and k = 1, . . . , |supd| the corresponding pheromone value τj,k is updated as follows:

τj,k = min {max {τmin, τj,k + ρ · (δj,k − τj,k)} , τmax} , (11)

where ρ ∈ (0, 1] is a learning rate (which we have set to 0.1 for all the experiments). Moreover,
δj,k is 1, if task j is assigned to work station k in solution supd, and 0 otherwise.

This concludes the description of our algorithm. The experimental results are outlined in
the following section.

4 Computational results

We implemented the Beam-ACO algorithm in ANSI C++ using GCC 3.2.2 for compiling the
software. Our experimental results were obtained on a PC with Intel Pentium 4 processor
(3.06 GHz) and 1 Gb of memory. We performed three series of computational tests, which
are outlined in the following.

10

Table 2: Results obtained by Beam-ACO in comparison to the results of solution techniques
from the literature. The second table row provides the number of solved SALBP-1 instances
(out of 269). The third table row contains the average computation times (in seconds) for
finding the best solution of each run. Note that the computation time comparison is not
really useful, because the computers that were used are quite different.

SALOME [15] PrioTabu [16] EurTabu [16] ANTS [3] HGA [8] Beam-ACO

solved 227 200 214 227 214 245
avg. time 98.6 101.8 62.6 13.84 n. g. 1.92

4.1 Results for SALBP-1 instances

First we applied Beam-ACO to all 269 SALBP-1 instances from the benchmark obtainable
from http://www.assembly-line-balancing.de. The results of Beam-ACO are presented
in a summarized form and compared to other approaches in Table 2. Beam-ACO was applied
10 times for 120 seconds to each problem instance. We can note that Beam-ACO solves more
problem instances to optimality than any other available technique. In particular, we can
note that Beam-ACO solves more instances than ANTS, which is an ACO algorithm that
utilizes the indirect resolution approach as outlined in the introduction.

Exemplary we show the results of Beam-ACO for the 26 difficult instances based on the
precedence graph called SCHOLL in Table 3. The results show that Beam-ACO can solve
more instances to optimaliy (namely, 9) than the two most recent metaheuristic approaches.
The computation times show that, in case the optimal solution can be found, this is usally
the case after 30 to 40 seconds. In case the optimal solution is not found, the gap is never
greater than 1, and the computation times are very low. This means that Beam-ACO finds
very easily near-optimal solutions.

4.2 Results for the TSALBP-1 instances

We also applied our algorithm to the 269 TSALBP-1 instances that were generated by Bautista
and Pereira (see [3]) from the 269 SALBP-1 instances.3 We exemplary show the results
concerning the 26 instances based on the precedence graph called SCHOLL in Table 4. The
results are compared to the results of the standard ACO approach ANTS by Bautista and
Pereira (see [3]), which is the only available technique for TSALBP-1. The results show that
in 14 out of 26 cases, Beam-ACO improves the best known solution. In other 11 cases, Beam-
ACO matches the best known solution values. Only in one case Beam-ACO does not match
the performance of ANTS. This case is characterized by a relatively small cycle time. In
general, we noticed the tendency that Beam-ACO—when applied to TSALBP-1 instances—
is better when the cycle time is bigger. This might be caused by the fact that the quality of
the lower bound is higher for bigger cycle times. Exchanging our simple lower bound by a
more sophisticated lower bound might help to improve the performance of Beam-ACO when
smaller cycle times are concerned.

3This was done by setting aj := tn−j+1 for all j ∈ T , and a := c.

11

4.3 Results for the Nissan TSALBP-1 instance

Finally we applied Beam-ACO to the real-life instance provided by the Nissan plant in
Barcelona, Spain. This instance consists of 140 tasks, a cycle time of 180 seconds, and a
space limit of 4. This real-life instances is easily solvable: Our Beam-ACO approach finds
in a fraction of a second an optimal solution with 21 work stations. Also when disregarding
space constraints (that is, regarding it as a SALBP-1 isntance), it is easily solvable. The
optimal solution in this case has 17 work stations.

5 Conclusions and outlook to the future

In this work we have proposed a hybrid ant colony optimization approach called Beam-ACO
for the TSALBP-1 problem. Beam-ACO is obtained by hybridizing ant colony optimization
with beam search. Our approach differs from existing ant colony optimization approaches for
TSALBP-1 (and from most existing metaheuristics) by the fact that it solves the problem
in a direct way. The results show that Beam-ACO is a state-of-the-art metaheuristics, for
example, for the well-studied SALBP-1 problem, which is a specific case of TSALBP-1.

In the future we plan to study the influence of the different algorithmic components on the
performance of Beam-ACO. It would be interesting to know, for example, which influence the
heuristic information (obtained by parametrizing the priority rule) exactly has. Furthermore,
we plan to extend the experimental evaluation of the algorithm to beam widths greater than
one. We expect that this will further improve the algorithms’ performance.

References

[1] K. R. Baker. Introduction to sequencing and scheduling. Wiley, New York, 1974.

[2] J. Bautista and J. Pereira. Ant algorithms for assembly line balancing. In M. Dorigo,
G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002 –

Third International Workshop, volume 2463 of Lecture Notes in Computer Science, pages
65–75. Springer Verlag, Berlin, Germany, 2002.

[3] J. Bautista and J. Pereira. Ant algorithms for a time and space constrained assembly
line balancing problem. European Journal of Operational Research, 2006. In press.

[4] C. Blum. Beam-ACO—Hybridizing ant colony optimization with beam search: An ap-
plication to open shop scheduling. Computers & Operations Research, 32(6):1565–1591,
2005.

[5] C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization. IEEE

Transactions on Systems, Man, and Cybernetics – Part B, 34(2):1161–1172, 2004.

[6] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

[7] A. Fügenschuh. Parametrized greedy heuristics in theory and practice. In M. J. Blesa,
C. Blum, A. Roli, and M. Sampels, editors, Proceedings of HM 2005 – 2nd International

Workshop on Hybrid Metaheuristics, volume 3636 of Lecture Notes in Computer Science,
pages 21–31. Springer Verlag, Berlin, Germany, 2005.

12

[8] J. F. Gonçalves and J. R. de Almeida. A hybrid genetic algorithm for assembly line
balancing. Journal of Heuristics, 8:629–642, 2002.

[9] T. R. Hoffmann. EUREKA: A hybrid system for assembly line balancing. Management

Science, 38:39–47, 1992.

[10] R. V. Johnson. Optimally balancing large assembly lines with ”FABLE”. Management

Science, 34:240–253, 1988.

[11] D. L. Lapierre, A. Ruiz, and P. Soriano. Balancing assembly lines with tabu search.
European Journal of Operational Research, 168:826–837, 2006.

[12] D. Merkle and M. Middendorf. An ant algorithm with a new pheromone evaluation rule
for total tardiness problems. In Proceedings of the EvoWorkshops 2000, volume 1803 of
Lecture Notes in Computer Science, pages 287–296. Springer Verlag, Berlin, Germany,
2000.

[13] P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International Journal

of Production Research, 26:297–307, 1988.

[14] A. Scholl and C. Becker. State-of-the-art exact and heuristic solution procedures for
simple assembly line balancing. European Journal of Operational Research, 168(3):666–
693, 2006.

[15] A. Scholl and R. Klein. SALOME: A bidirectional branch and bound procedure for
assembly line balancing. INFORMS Journal on Computing, 9:319–334, 1997.

[16] A. Scholl and S. Voss. Simple assembly line balancing—Heuristic approaches. Journal

of Heuristics, 2:217–244, 1996.

[17] Y. H. Shi and R. C. Eberhart. A modified particle swarm optimizer. In In the proceedings

of the IEEE International Conference on Evolutionary Computation, pages 96–73. IEEE
press, 1998.

[18] K. Socha. ACO for continuous and mixed-variable optimization. In M. Dorigo, M. Birat-
tari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of

ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm

Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 25–36. Springer
Verlag, Berlin, Germany, 2004.

[19] A. Sprecher. Dynamic search tree decomposition for balancing assembly lines by parallel
search. International Journal of Production Research, 41:1423–1430, 2003.

[20] F. B. Talbot, J. H. Patterson, and J. H. Gehrlein. A comparative evaluation of heuristic
line balancing techniques. Management Science, 32:430–454, 1986.

[21] P. M. Vilarinho and A. Simaria. A two-stage heuristic method for balancing mixed-model
assembly lines with parallel workstations. International Journal of Production Research,
pages 1405–1420, 2002.

13

Table 3: Results obtained by Beam-ACO in comparison to the results of two of the best
techniques available for SALBP-1: ANTS is a standard ACO approach proposed in [3], and
TABU is a recent tabu search approach proposed in [11]. The comparison is performed on
the 26 difficult instances based on the precedence graph called SCHOLL. The instances differ
in the cycle time, which is indicated in the first table column. The second column (headed by
bks) contains the best known solution, and the third and fourth column contain the values
of the best solutions found by ANTS, respectively TABU. Finally, the last 3 table columns
provide the results of Beam-ACO, concerning the best solution found in 10 runs (best), the
average and standard deviation of the results (average (std)), and the times including the
standard deviation at which the best solutions were found (average time (std)).

c bks ANTS TABU Beam-ACO
best average (std) average time (std)

1394 50 52 51 51 51.00 (0.00) 0.82 (0.87)
1422 50 51 50 50 50.00 (0.00) 0.29 (0.39)
1452 48 50 49 49 49.00 (0.00) 0.78 (0.99)
1483 47 49 48 48 48.00 (0.00) 1.47 (1.35)
1515 46 48 47 47 47.00 (0.00) 0.39 (0.77)
1548 46 46 46 46 46.00 (0.00) 0.67 (0.26)
1584 44 46 45 45 45.00 (0.00) 1.48 (0.92)
1620 44 44 44 44 44.00 (0.00) 1.27 (0.82)
1659 42 44 43 43 43.00 (0.00) 0.52 (0.57)
1699 42 42 42 42 42.00 (0.00) 2.71 (0.29)
1742 40 41 41 41 41.00 (0.00) 0.47 (0.33)
1787 39 40 40 40 40.00 (0.00) 0.59 (0.27)
1834 38 39 39 39 39.00 (0.00) 0.34 (0.27)
1883 37 38 38 38 38.00 (0.00) 0.022 (0.024)
1935 36 37 37 37 37.00 (0.00) 0.21 (0.15)
1991 35 37 36 35 35.90 (0.32) 0.33 (0.97)
2049 34 35 35 35 35.00 (0.00) 0.013 (0.0057)
2111 33 34 34 34 34.00 (0.00) 0.010 (0.0042)
2177 32 33 33 32 32.90 (0.32) 9.28 (29.31)
2247 31 32 32 32 32.00 (0.00) 0.0090 (0.0054)
2322 30 31 31 31 31.00 (0.00) 0.012 (0.0090)
2402 29 30 30 30 30.00 (0.00) 0.010 (0.0051)
2488 28 29 29 29 29.00 (0.00) 0.011 (0.0047)
2580 27 28 28 27 27.80 (0.42) 14.02 (31.99)
2680 26 27 27 26 26.10 (0.32) 47.14 (36.68)
2787 25 26 26 25 25.20 (0.42) 50.19 (30.97)

14

Table 4: Results obtained by Beam-ACO in comparison to the results of ANTS [3], which is
so far the only available technique for TSALBP-1. The comparison is performed on the 26
instances based on the precedence graph called SCHOLL. The instances differ in the cycle
time (which is at the same time the space limit). Cycle time, respectively space limit, are
indicated in the first table column. The second column (headed by bks) contains the values
of the best known solution. The arrow indicates that Beam-ACO was the first algorithm to
generate this best known solution value. The third column contains the values of the best
solutions found by ANTS. Finally, the last 3 table columns provide the results of Beam-ACO,
concerning the best solution found in 10 runs (best), the average and standard deviation of
the results (average (std)), and the times including the standard deviation at which the
best solutions were found(average time (std)).

c, a bks ANTS Beam-ACO
best average (std) average time (std)

1394 → 59 60 59 60.00 (0.47) 30.50 (35.27)
1422 58 58 59 59.00 (0.00) 9.21 (10.07)
1452 → 57 58 57 57.40 (0.52) 13.82 (36.23)
1483 → 55 56 55 56.20 (0.63) 34.23 (33.35)
1515 54 54 54 54.40 (0.52) 51.43 (40.23)
1548 53 53 53 53.10 (0.32) 3.22 (5.79)
1584 → 51 53 51 51.70 (0.48) 26.61 (38.82)
1620 → 49 50 49 49.70 (0.48) 15.79 (23.57)
1659 → 48 49 48 48.30 (0.48) 40.80 (34.67)
1699 → 46 47 46 46.90 (0.32) 14.33 (14.77)
1742 → 45 46 45 45.00 (0.00) 38.65 (31.60)
1787 → 44 45 44 44.00 (0.00) 20.90 (21.57)
1834 43 43 43 43.00 (0.00) 13.13 (7.59)
1883 42 42 42 42.00 (0.00) 9.04 (4.05)
1935 41 41 41 41.00 (0.00) 9.36 (5.87)
1991 40 40 40 40.00 (0.00) 6.24 (3.45)
2049 → 38 39 38 38.00 (0.00) 12.64 (10.05)
2111 37 37 37 37.00 (0.00) 2.02 (4.28)
2177 36 36 36 36.00 (0.00) 2.06 (3.70)
2247 → 34 35 34 34.80 (0.42) 10.37 (19.81)
2322 → 33 34 33 33.40 (0.52) 33.66 (36.84)
2402 → 32 33 32 32.70 (0.48) 27.83 (45.99)
2488 → 31 32 31 31.00 (0.00) 42.11 (22.34)
2580 30 30 30 30.00 (0.00) 4.20 (3.00)
2680 29 29 29 29.00 (0.00) 3.83 (3.92)
2787 28 28 28 28.00 (0.00) 4.41 (4.15)

15

